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Abstract

The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the
relative importance of these controls respond to changing spatial scales is poorly understood. We designed a ‘‘moving
window’’ resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous
spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire
size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating
effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the
dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis
suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to
larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our ‘‘moving
window’’ resampling technique. Although the threshold derived from this analytical method may rely heavily on the
sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes.
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Introduction

Fire is an integral component of many terrestrial ecosystems [1],

one that shapes vegetation structure [2,3] and plant traits [4]. In

boreal forests, fire is mainly influenced by fuel, weather, and

topography, but the relative importance of these influences is

controversial [5–9]. Some studies have noted that fire is mainly

dominated by weather, especially during severe weather events

that drive large fires (hereafter: weather hypothesis) [5,9].

Supporters for the weather hypothesis argue that fire driven

mainly by weather consumes different fuel types indiscriminately;

therefore, the influence of fuel on fire is negligible. By contrast,

some studies demonstrated that fuel also influences fire, even

under extreme weather conditions [6,8], by filtering and

modifying fire behavior (hereafter: fuel and weather hypothesis)

[10]. Advocates for the fuel and weather hypothesis believe that

fire will burn preferentially in some fuel type over others;

therefore, vegetation and fuel types less susceptible to fire can be

used as fire breaks to slow the rate of spread or lessen the intensity

of fires, and to aid suppression efficiency.

Fire spread is a spatially contiguous process driven by controls

acting across a range of scales [11,12]. Scale refers to the spatial

extent of an ecological process, such as the extent of fire spread

(fire size) considered in this study. At a fine scale, local distribution

of flammable fuels and topography (bottom-up controls) determine

when and where a fire occurs, and subsequently its rate and

direction of spread. As fires grow in size, they reach points where

future fire growth will be governed by controls operating at coarser

scales, such as weather or climate (top-down controls) [11,13]. The

changes of dominant controls as fire size increases are often called

scale effects. Scale effects hypothesis are proposed as an

explanation for the two hypotheses mentioned above, which

argues that fire is determined by different controls operating at

different scales. Supporting evidence for such scale effects comes

from studies that evaluated controls on fire at several discrete

spatial scales [14–17]. Currently, few studies have attempted to

quantify the transition of landscape controls on fire across

continuous spatial scales [12,18].

According to the scale effects hypothesis, fire will reach a

threshold value size at which its spead will be primarily determined

by different spatial controls [13]; however, how to identify this

threshold value, which switches the dominant controls, is not

settled. Identifying the threshold value has important practical

implications for fire or fuel management plans. For example, fire

or fuel management may need to be altered on either side of the

threshold value due to the change of dominant controls on fire;

therefore, identifying such values is critical to designing effective

management plans in areas where fire supression or fuel treatment

are widely used, such as Northeast China [19,20] or in the western

US [21]. Because the relative importance of controls on fire across

spatial scales may be nonlinear, identifying the threshold value

requires a quantification of the relative importance of spatial

controls on fire at continuous spatial scales, rather than several

discrete spatial scales used by previous studies [13–16].

The relative influence of fuel and weather on fire may also be

influenced by fuel composition (e.g., species composition and

configuration) [6,9,10,22]. Fuel characteristics influence the
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propagation and pattern of fire disturbance [23]. A heterogeneous

fuel complex will greatly enhance the influence of fuel on fire. For

example, Bergeron et al. [10] concluded that higher heterogeneity

of fuel in the southern mixed-wood forest regulated fire spread

more strongly than that in the northern boreal forests where

coniferous trees dominated in western Quebec. Even in regions

where climate exerted a dominant control on fires, fuel also

strongly regulated the strength of correlations between climate and

fires [22]. In contrast, a homogeneous fuel complex environment

provides no choice for fire to burn preferentially, and therefore

weather may correlate well with fire regimes irrespective of spatial

scales [9]. The scale effects on the relative importance of fuel and

weather on fire should therefore be region-specific due to

differences in fuel characteristics.

Our main objective in this study was to test the scale effects of

controls on fire spread across continuous spatial scales in a Chinese

boreal forest landscape and to determine whether these scale

effects are affected by fuel composition. Fuel composition in this

study refers to proportional area of various fuel types in the

‘‘neighborhoods’’ of each individual fire patch (see Methods: data for

details). We used fuel composition, weather at the time of fire

occurrence, and local topography characteristic for each individ-

ual fire to quantify their relative importance on fire. We designed a

‘‘moving window’’ resampling technique that allowed us to

quantify their relative importance on fire at continuous spatial

scales. Specific research questions include: (1) did fire spread

exhibit preferential burning among fuel type in this boreal forest

landscape? (2) did scale effects hold true in explaining relative

importance of fuel, topography, and weather across continuous

spatial scales? and (3) can we find the threshold values for fire size

that switch the dominant control of fire from bottom-up controls

(i.e. fuel and topography) to top-down controls (i.e. weather)?

Materials and Methods

Study area
Our study area was 937, 244 ha of boreal forest landscape in the

Great Xing’an Mountains of Northeastern China (52u259N

122u399E to 51u149N 124u219E) (Figure 1). The area falls within

the cool temperate zone with long and severe winters. The annual

average temperature and precipitation are 4.7uC and ,500 mm,

respectively [24,25]. Elevation varies gradually from 400 m in the

northeast to 1500 m in the southwest. The vegetation is cool

temperate coniferous forests, which are the southern extension of

eastern Siberian boreal forests [25]. Larch (Larix gmelini), a widely

distributed late successional coniferous species, is the most

dominant tree species and can occupy a wide range of moisture

gradient. Birch (Betula platyphylla), a widely distributed broadleaf

species, intersperses with larch forest in xeric sites and can form

pure stands in open spaces created by fire and harvest. Other

species, such as Scotch pine (Pinus sylvestris var. mongolica), Koyama

spruce (Picea koraiensis), willow (Chosenia arbutifolia), two species of

aspen (Populus davidiana and P. suaveolens), and dwarf Siberian pine

(Pinus pumila; occurs mostly in elevations .800 m) are interspersed

with larch forest and have a small area of distribution (,2%).

Historical fire regime was characterized by frequent, low

intensity surface fires mixed with infrequent stand-replacing fires

[26]. Xu et al. [25] used fire scar data to conclude that the mean

return interval was about 30 years for low intensity surface fires

and 120 years for high intensity crown fires in pristine larch forests

of this region. However, several decades of effective fire exclusion

policy and extensive logging have dramatically changed fire

regimes. Currently, fires are less frequent but more intense, with a

much longer mean return interval than before these policies and

activities [20,27]. Clear-cutting combined with an altered fire

regime has resulted in a fragmented forest landscape with

simplified age structure and species composition. Since 1998, the

Natural Forest Protection Project (NFPP) has been implemented to

maintain forest sustainability. NFPP is similar to the zoning

strategies proposed in North America (TRIAD or three zones)

(MacLean et al. 2008), in which different management zones are

established with different sets of objectives and priorities.

Data
Dependent variable: fire data. We obtained a 20-year fire

dataset for 146 fires from the Huzhong Forest Fire Prevention

Agency (Huzhong, Heilongjiang, China, 165036) for 1991–2010

detailing fire origin location (recorded as x, y coordinate), size, date

of occurrence, and extinction. We found that 89% of fires were

caused by lightning, and most occurred in remote areas, either on

high elevation sites or far from roads, which made fire suppression

difficult.

We mapped all burned patches based on the fire dataset and

Landsat Thematic Mapper (TM) imagery. The time series of TM

images during August from 1990 to 2011 were downloaded from

US Geological Service EROS Data Center (http://glovis.usgs.

gov/). Based on the recorded fire origins and reflectance change of

pre- and post-fire TM imageries, burned patch boundaries were

visually identified in bands 2, 3, and 4 false-color composite

images. We manually delineated 111 lightning burned patches

from 1991 to 2010 (Figure 1). The other 35 fires recorded in the

fire dataset could not be identified, either due to wrong location

information or too small in size to be identified in the 30 m

resolution TM imagery. The delineated burned patches were

checked by local fire managers or revisited in the August 2011 field

inventory when necessary.

Our analysis revealed that area calculated from manually

delineated burned patches was not significantly different from the

reported data; therefore, we are confident that our delineated

burned patches captured the spatial characteristics of fires. Some

larger burned patches may contain unburned islands with

relatively small areas in valley bottoms. These small unburned

islands within burned patches were difficult to map using TM

imagery and therefore could not be delineated. The size of burned

patches ranged from 1 to 8379 ha, with a median value of 31 ha.

About 25% and 75% percentile were 7 and 100 ha, respectively.

The burned patch size was used as the dependent variable in the

analysis.

Explanatory variables: fuel, weather, and topography

data for each individual fire. Fuel composition data. We

computed the composition of fuel for each individual fire within its

neighborhood, which we defined as a circular area twice the size of

the actual burned patch (Figure 2a). The composition of fuel

within its neighborhood was considered as the locally available fuel

conditions for the fire, a practice commonly used in previous

studies [6,9,17]. The center of a neighborhood circle for a fire was

the recorded origin location. As such, we assumed the fire starts

from the origin and spreads equally in all directions without the

influence of any other factors, such as fuel, weather, or

topography. In this way, we can capture the effect of local fuel

composition on fire spread. Although fuel composition calculated

using this approach may be sensitive to fire ignition, we feel our

fire ignition data are fairly accurate because most fires can be

detected within several hours of occurrence due to strict fire

prevention policy and effective fire monitoring networks. Because

the fire prevention agency also requires the reporter to find

evidence for cloud to ground striking point of all lightning fires, we

Dominant Controls on Fire Spread
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are confident that the bias of available fuel type derived from the

neighborhood will be limited.

We obtained forest stand maps of 1990 and 2000 produced

from high resolution digital inventory data and updated every 10

years by the Forest Resource Management agency. The main

utility of the forest stand map was to design management activities,

such as harvesting. The forest stand map recorded relative

percentage of canopy species and average age of dominant canopy

species. Major understory species were also recorded, but

quantitative information was lacking. For fires that occurred from

1991 to 2000, we intersected the 1990 forest stand map with the

neighborhoods of each individual fire. For fires that occurred from

2001 to 2010, we intersected the 2000 forest stand map with

neighborhoods of each individual fire.

We assigned intersected polygons within neighborhoods to one

of four fuel types: coniferous, mixed, broadleaf, and meadow and

others. The first three fuel types are based on the polygon’s

dominant tree species. If a polygon was mainly composed of

coniferous or broadleaf trees (relative percentage .70%), the

polygon was assigned to a coniferous or broadleaf fuel type.

Otherwise, the polygon was assigned to a mixed forest fuel type.

Fuel type ‘‘meadow and others’’ includes all non-forested areas,

predominantly grassland on the newly burned or harvested areas

and wetlands (hereafter: meadows). Our statistics revealed that the

median size for a stand (fuel type) is 23.1 ha; the 25th and 75th

percentile sizes were 12.8 and 34.7 ha, respectively. Further

analysis indicated that coniferous forest fuel type constituted

54.4% of total fuel type; the 25th and 75th percentile sizes were

12.5 and 33.9 ha, respectively. Mixed forest fuel type constituted

22.6% of total fuel type; the 25th and 75th percentile sizes were

15.3 and 36.7 ha, respectively. Broadleaf forest fuel type

constituted 13.6% of total fuel type; the 25th and 75th percentile

sizes were 14.2 and 36.4 ha, respectively. Meadows fuel type

constituted 5% of total fuel type; the 25th and 75th percentile sizes

were 5 and 25.3 ha, respectively (Figure S1).

The fuel composition within a neighborhood was calculated as

the percentage in area of each of the fuel types. Following this

procedure, a 4-dimensional vector was constructed with elements

proportional to each fuel type within the neighborhood. We let Ai

be the total area of neighborhood of the ith fire, wi,j be the area of

fuel type j in the ith fire, and the vector of proportions xi is

calculated as:

Figure 1. Study area with delineated fire patches from 1991 to 2010, roadway coverage, and digital elevation model.
doi:10.1371/journal.pone.0055618.g001

Figure 2. Schematic representations of a fires and its
‘‘neighborhood’’. A ‘‘neighborhood’’ was defined as twice (a), 4 (b),
and 8 (c) times the size of the actual fires patch, respectively.
doi:10.1371/journal.pone.0055618.g002
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xi~(wi,1=Ai,wi,2=Ai,wi,3=Ai,wi,4=Ai)

with elements being the proportional areas of the coniferous,

mixed, broadleaf stand, and meadows, respectively. The calcula-

tion of fuel composition data in this study is similar to Cumming

[6] and Podur & Martell [9].

For each fire, we also intersected burned patch with the forest

stand map to calculate the burned fuel composition within each

individual fire, following the procedure for fuel composition within

its neighborhoods. The fuel composition within a burned patch

(which can be considered as observed burned fuel composition)

was compared with fuel composition within its neighborhood

(which can be considered as expected burned fuel composition) to

determine whether the burn exhibited a preferential fuel type.

Fire weather data. We used antecedent and post-ignition

fire weather data for each corresponding fire in the analysis. Six

daily fire weather indices were computed based on Van Wagner

[28]: Fine Fuel Moisture Code (FFMC), Duff Moisture Code

(DMC), Drought Code (DC), Initial Spread Index (ISI), Buildup

Index (BUI), and Fire Weather Index (FWI). The first three indices

are fuel moisture codes, which are numerical ratings of the

moisture content of different fuel layers on the forest floor, highly

correlated to fire occurrence [29]. The remaining three compo-

nents are fire behavior indices, which represent the rate of fire

spread and the frontal fire intensity; their values rise as the fire

danger increases.

Calculation of fire weather indices is based on consecutive daily

observations of temperature, relative humidity, wind speed, and

24-hour rainfall. Daily meteorological data for our study area were

obtained from National Centers for Environmental Prediction

(NECP) reanalysis-2 data (http://www.esrl.noaa.gov/psd/, ac-

cessed 7 October 2011) for 1991 to 2010 because daily

meteorological data for our study area are scarce or incomplete.

The NECP reanalysis data have a spatial resolution of 1.87561.92

degrees. We extracted daily meteorological data from a grid cell

that falls within our study area to calculate fire weather indices.

Fire weather indices for each individual fire were calculated as the

average value of 30 daily codes preceding fire occurrence to date

and daily codes during the fire initiation and extinction. Daily

codes for the 30 days preceding fire were used because, based on

preliminary analysis (data not shown), they are more strongly

related to fire size than the 15 or 45 days preceding fire.

In this study, fire weather anomalies, which were calculated as

the difference between indices value for each individual fire and

20-year (1991–2010) average, were used to quantify its effect on

fire size. Fire weather anomalies captured the weather conditions

at the actual time of fire occurrence. Preliminary analysis indicated

that fire size was positively correlated to fire weather anomalies,

except for DC (Figure S2), possibly because DC is an indicator of

seasonal drought and therefore cannot capture the short term

effects of weather on fire. DC was therefore removed from the

subsequent analysis.

Topography data. Local topography data used in this study

included elevation, aspect, and slope within in the neighborhood

of each fire. A digital elevation model (DEM) was generated from

1:100 000 contour lines map at 10 m intervals. Slope and aspect

surfaces were derived from the DEM. Aspect was further

converted into potential solar radiation (Poten_rad) using the

formula described by [30]:

Poten rad ~ cos ((h{225)=180|p),

where h is the aspect derived from Arc/Info ‘‘aspect’’ function,

which ranged from 0 to 360. The Poten_rad ranged from 21 to 1,

with higher values indicating higher potential solar radiation.

Local topography data were calculated as mean values in the

neighborhood because previous studies have suggested that

topographic characteristics within a neighborhood may hold more

relevant information to controls on fire regimes [14,17]. Analysis

indicated that local topography characteristic data were normally

distributed, with mean values of 16u slope, 900 m elevation, and 0

aspect (Figure S3).

Fire suppression data. According to fire management

policy, all fire should be aggressively attacked irrespective of their

locations in this area [19]. To account for fire suppression effects

on fire spread, we used distance to nearest road (Dis_Rd) as a

simple indicator of fire suppression efficiency. A shorter distance to

road allows easier access to burned patches, thus may render

higher fire suppression efficiency. Dis_Rd was calculated using

Arc/Info ‘‘distance’’ function.

Regression modeling
We constructed regression models of fire size using boosted

regression trees (BRTs) for the explanatory variables (Table 1).

The BRT method combines the strengths of two algorithms,

regression trees and boosting, and is suitable for ecological

analyses because of its flexibility in modeling complex nonlinear

relationships, analyzing different data types, relatively transparent

approach, and interpretability of output in describing relationships

between dependent and independent variables [31–33]. The BRT

method fits the best possible model to the data structure through

an iterative partitioning approach of regression trees, but it

reduces predictive error by ‘‘boosting’’ initial models with

additional, sequential trees that model the residuals in randomized

subsets of the data [31,32]. An a priori model specification or test

of hypothesis was therefore not required, and because BRTs can

accommodate virtually any data distribution, no transformations

were required. Recent comparative analyses of ecological datasets

suggested BRT models often outperform alternative statistical

approaches in terms of predictive accuracy and interpretability

[16,34].

We used fire size as the dependent variable with respect to

explanatory variables and implemented the BRT analysis using

‘‘gbm’’ package version 1.5.7 in R 2.13 [35]. BRT involves

subsampling and bagging of the dataset to improve model fitting

and introduce randomness. To limit the stochasticity in model

outcomes caused by the subsampling and bagging, we created an

ensemble of 50 BRT models for each model run and then

averaged the results. In this study, we used the following

parameters when fitting regression trees: bag fraction = 0.5,

shrinkage rate = 0.005 and number of trees = 300. The BRT

method reports the relative importance of each explanatory

variable by averaging the number of times it is selected as a tree

node over all trees and the squared improvements resulting from

these nodes.

To reduce the potential collinearity in explanatory variables, we

conducted a Pearson correlation analysis between all explanatory

variables. A Pearson rank correlation matrix showed a strong

pairwise correlation between fire weather indices (r.0.8) but not

for other variables (r,0.4); therefore, we performed a principal

component analysis to reduce the collinearity between fire weather

indexes. We selected the first three axes for principle component

analysis because they explained more than 98% of the information

of fire weather indices. The first three axes were therefore used as

fire weather data instead of the five fire weather indices in the

subsequent analysis.

Dominant Controls on Fire Spread
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Analysis of data
Preferential burning analysis. To test whether fires exhibit

preferential burning for a fuel type, we compared the log-ratios of

the proportion of observed burned fuel composition with expected

burned fuel composition using a pairwise student’s t test to

determine whether the compositions are significantly different

from one another at a given confidence level. Detailed procedures

can be found at Cumming [6] and Podur & Martell [9].

Quantifying the relative importance of fuel, topography,

and weather on fire across the continuous spatial

scales. We designed a ‘‘moving window’’ resampling approach

to quantify the relative importance of fuel, topography, and

weather on fire across the continuous spatial scales. We first

reorganized the fire dataset by fire size in ascending order. We

then subset 60 fires each time from the reorganized dataset by size,

similar to the ‘‘one dimension moving window’’ approach

(Figure 3). This resampling procedure produced 51 subsets of 60

fires, with a mean fire size from 11 to 445 ha. We selected 60 fires

to make a balance between sample size for performing BRT

analysis (60 fires) and plotting the relative importance of controls

to the fire size (51 subsets). Finally, we used the BRT method to

quantify the relative importance of each individual variable on fire

size using the 51 subsets. Dis_Rd was included as an independent

variable in the BRT analysis but was not included in the result

presentation because its relative importance is not the focus of the

current study. We grouped the relative importance of each

variable into fuel, topography, and weather. The relative

contribution of fuel, topography, and weather, expressed as a

percentage, was plotted for mean fire size to show their transition

across the continuous spatial scales.

Based on the relative importance of fuel, topography, and

weather on fire across the continuous spatial scales, we identified

the threshold of fire size that switches the dominant control of fire

from bottom-up controls (e.g., fuel and topography) to top-down

controls (e.g., weather) by comparing the point (fire size) at which

the relative importance of weather outweighs the relative

importance of fuel. Because fire size was positively correlated to

fire weather anomalies (Figure S2), we could also identify the

Table 1. Dependent and exploratory variables used to assess the relative importance of topography, fuel, and fire weather on fire
spread in the boreal forest of Northeast China from 1990 to 2010.

Variable name description mean ± sd

Fire (dependent) Patch size for each individual fire 2486898 (ha)

Fuel

Conif_Pct Percentage of coniferous forest available for burn within each
neighborhood circle

68.6631.6

Mixed_Pct Percentage of mixed forest available for burn within each
neighborhood circle

14.9623.1

Broad_Pct Percentage of broadleaf forest available for burn within each
neighborhood circle

9.1619.7

Meadows_Pct Percentage of other fuels available for burn within each
neighborhood circle

8.0615.6

Fuel_age Stand age for forest fuel (e.g., Conif_Pct, Mixed_Pct, Broadl_Pct) 84.2627.3 (yrs)

Fire weather anomalies

FFMC The Fine Fuel Moisture Code (FFMC) is a numeric rating of the
moisture content of litter and other cured fine fuels. This code is
an indicator of the relative ease of ignition and the flammability
of fine fuel.

9.9168.66

DMC The Duff Moisture Code (DMC) is a numeric rating of the average
moisture content of loosely compacted organic layers of
moderate depth. This code gives an indication of fuel
consumption in moderate duff layers and medium-size
woody material.

9.4667.70

ISI The Initial Spread Index (ISI) is a numeric rating of the
expected rate of fire spread. It combines the effects of
wind and the FFMC on rate of spread without the
influence of variable quantities of fuel.

0.9361.18

BUI The Buildup Index is a numeric rating of the total amount of
fuel available for combustion. It combines the DMC and the DC

13.0968.62

FWI The Fire Weather Index is a numeric rating of fire intensity.
It combines the Initial Spread Index and the Buildup Index.
It is suitable as a general index of forest fire danger.

2.3562.60

Topography

Elev Mean elevation within neighborhood circle for each fire 9116150 (m)

Aspect Mean aspect within neighborhood circle for each fire 20.05960.482

Slope Mean slope within neighborhood circle for each fire 11.4564.60 (degrees)

Fire suppression

Dis_Rd Distance to nearest road for each fire 2345.263587 (m)

doi:10.1371/journal.pone.0055618.t001

Dominant Controls on Fire Spread
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threshold for fire weather anomalies that switches the dominant

controls of fire. We identified the threshold for fire weather

anomalies because it can easily be calculated based on local

weather station data and also have predictive value for fire size.

Effects of fuel composition on the continuous transition of

various influences on fire. To test the effects of fuel

composition on the influence of spatial controls on fire, we

increased the size of the neighborhood for each fire to 4 (Figure 2b)

and 8 (Figure 2c) times that of the actual fires and recomputed the

expected fuel composition. Enlarging the neighborhoods intro-

duced different fuel types unequally by changing the expected fuel

composition in the neighborhoods. Our analysis indicated that

enlarging the neighborhoods introduced more fuel types of mixed

stands and fewer fuel types of coniferous, broadleaf and meadows

(Figure S4). Enlarging the neighborhoods also ensured that the

most complex burned patches were completely incorporated into

the neighborhoods. We used the fuel composition data and

recomputed the relative importance of fuel, topography, and

weather on fire across the spatial scales as described in the previous

section.

Results

Analysis indicated that fire exhibited preferential burning

patterns among different fuel types (p,0.05) (Table 2). The

observed annual burned rate was significantly lower than expected

in coniferous stands (p,0.05), while meadows showed an opposite

trend (p,0.05). Mixed and broadleaf stands showed a slightly

lower observed burned rate than expected but did not reach a

significant level (p.0.05). To further examine whether preferential

burning varied with fire size, we divided the fire dataset into three

subsamples by equal quintiles. Our first subsample included all

fires ,10 ha, and the second subsamples included all fires between

10 and 67 ha. We found no preferential burning for any of the four

fuel components for the first two subsamples. Our third subsample

included all fires .67 ha, and we found preferential burning

among different fuel types similar to that for all fires.

The prediction error of BRT analysis varied between 14 and

18%. Generally, the prediction error did not change dramatically

with fire size (Figure S5), suggesting a relatively consistent

prediction power of BRT analysis. The BRT analysis indicated

that the relative importance of fuel, weather, and topography

changed continuously with fire size. Fuel played a dominant role

in affecting small fires (,75 ha in our case) (Figure 4). Fuel,

topography, and weather exerted relatively comparable influence

on medium fires (76–150 ha in our case) (Figure 4). Fire weather

had a dominant role when the fire size was .150 ha (Figure 4).

Afterward, the larger fire size, the more important the influence of

fire weather. Generally, fire weather will gain more relative

influence from small to large scale, while fuel has an opposite

trend. The relative importance of topography fluctuated through-

out spatial scales but was generally below 30% (Figure 4 and 5). A

difference in fuel composition influenced the relative importance

of fuel, topography, and weather but did not change the general

pattern of their relative importance (Figure 5). Generally, the

effects of changing fuel composition on the relative importance of

fuel, topography, and weather are prominent for small fires but

indistinguishable for large fires (Figure 5).

Generally, most fires occurred under favorable fire weather

conditions (fire weather anomalies .0). The higher the value of

fire weather anomalies, the larger the fire size. The BRT analysis

indicated that weather was the dominant control when fire size

was .150 ha, which can be translated into 70th percentiles of fire

weather anomalies; therefore, a fire size larger than 150 ha or 70th

percentiles of fire weather anomalies switches the dominant

controls on fire from bottom-up controls (e.g., fuel and topogra-

phy) to top-down controls (e.g., weather) for our study area.

Discussion

Preferential burning among fuel types
Our results suggested that fire burned fuel types selectively in

this Chinese boreal forest landscape, although the selectivity is low.

Our results therefore support studies finding that fire burns

preferentially among fuel types in many other boreal forests [6,36],

but contradict others [9]; however, even studies that support

preferential burning among fuel types disagree on which fuel types

are more fire prone [6,37,38]. For example, Cumming [6] used

compositional analysis methods to assess the extent that fuel

composition burned by 48 fires between 1961 and 1997 in a boreal

mixed-wood region of Alberta differed from the composition of

available fuel, and found conifer-dominated stands are 3–10 times

more prone to burning than deciduous stands. However, Larsen

[37] estimated the time since last fire at 166 sample patches and

found higher fire susceptibility in aspen stands compared to white

spruce and black spruce stands. We believe that whether fire

exhibited preferential burning or which fuel type is more

susceptible to fire will be dependent on fuel characteristics being

studied.

Fire selected more strongly for meadows than expected,

because, we speculate, fine fuels are easily ignited and greatly

accelerate the rate of spread in this vegetation type [39].

Furthermore, a previous study found that increased availability

of flammable fine fuels has positive effects on lightning fire

frequency, and therefore contributed more to burned area [40].

Coniferous stands were significantly less fire prone in our analysis

which was unexpected because many studies have indicated that

coniferous stands tend to contain more flammable fuel conditions

[6,38] and have high initiation probability [8]. Our results are also

predictable, however, because intensive forest thinning has greatly

reduced the surface and ladder fuels in this Chinese boreal

landscape, which may lead to significantly lower fuel loading than

that in the North American boreal forest [41]. The low burned

rate in coniferous stands in our study area may also result from

interaction with other environmental factors. Coniferous stands

often dominate wet, cool north slopes, where fuel moisture content

is generally higher, resulting in fewer fires. Our previous study also

revealed that fewer fires occurred than expected in this region

[42]. For mixed and broadleaf stands, there were fewer fires than

expected, and these did not reach a significant level. These two

types of forest stands usually inhabit xeric south slopes, where fuel

loading is generally lower due to higher decomposition rate [43].

Furthermore, deciduous litter is less flammable, which also

Figure 3. Schematic representations of resampling procedure
of subset from dataset.
doi:10.1371/journal.pone.0055618.g003
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contributed to a lower burn rate [38], resulting in fewer fires in

these two forest types.

Relative importance of fuel, topography, and weather on
fire spread

Our results suggested that weather was the dominant control on

larger fires but not small fires, possibly because larger fires were

generally more severe, and previous studies have indicated that fire

severity is positively related to fire size in boreal forests [44,45].

Larger, more severe fires consume different fuel types without

preference and are therefore more strongly related to weather

conditions, but for smaller and less severe fires, fuel type played a

more important role in limiting fire size [46]. Generally, the top-

down controls gained more influence, while the bottom-up

controls such as fuel gained less influence when the fire size

becomes larger; therefore, the scaling effect of spatial controls on

fire holds true in this Chinese boreal forest landscape, which is

consistent with other studies [14–17].

Our results found that the relative importance of topography on

fire was rather persistent when fire size is ,30 ha and then

fluctuated dramatically with increasing fire size. Topography had

a minimum influence on small fires (fire size ,30 ha). Most small

fires burn within a single fuel type (see our Limitations section

below), which is generally contained within similar topographic

characteristics; therefore, the relative importance of fuel on fire

spread overwhelmed the effects of topography (Figure 4). How-

ever, the influence of topography, through its interaction with fuel

and climate, on fire spread gradually emerges when fires became

larger. For example, at fine scales, topography only influences fire

spread through its regulation on local fuel characteristic, such as

moisture, continuity, and loading. At large scales, the topography

determines fire spread by regulating vegetation structure and local

weather conditions. The effects of topography may therefore have

a varied influence on fire spread across spatial scales.

Changing fuel composition had a larger effect on the relative

importance of spatial controls for smaller fires (Figure 5), possibly

because smaller fires were usually dominated by a single large fuel

type while larger fires were usually dominated by more fuel types.

Therefore, enlarging the neighborhood may have a larger effect

on fuel composition for small fires, but only a trivial effect on large

fires. We did not examine the effects of multiple neighborhood

sizes for the topographic variables on the relative importance of

spatial controls on fire size; however, we do not believe enlarging

the neighborhood will have a significant effect on the results

because (1) topography is relatively flat in our study area, and

changing neighborhood size may not alter the local topographic

characteristics; (2) local topographic characteristic data were

normally distributed, and changing neighborhood size may not

alter the mean value of topographic variables.

Humans can exert a complex effect on fire regime in this

human-dominated boreal landscape, which may affect the scale

behavior of fire. Humans tend to increase ignition density by

roughly 50% of total fires [42], but they also contribute to a

decrease in fire size through suppression and management

activities. Consequently, humans are highly likely to have a

nonlinear effect on fire regime, which complicates prediction of

human effects on scaling behavior of controls. We can expect

human activities to increase the influence of weather on fire size,

however, because forest management tends to homogenize the

surface fuel loads [41] and therefore tends to diminish the effects of

fuel on fire. Such conclusions require more support from both

empirical and simulation studies, however.

Results implications
Landscape fuel management via fuel breaks is a major fire

management strategy, based on the assumption that fires will

spread more slowly and be less intense in the fuel breaks, and

therefore will be more easily suppressed [21]. Based on our

Table 2. local-scale fire preferential burning, summarized as burned area, annual burned rate and mean fire rotation period for
each fuel type.

Fuel type Burned area (ha)(20 years) Annual burned rate (6104) ( ) Fire Rotation Period (years) p value

Expected Observed Expected Observed Expected Observed

coniferous 21349.81 20476.9 20.90 20.05 478 497 ,0.05

Mixed 2400.937 2188.405 5.67 5.17 1763 1934 .0.05

Broadleaf 1072.959 1026.245 4.21 4.03 2375 2484 .0.05

Meadow and others 2722.021 3853.723 15.45 21.88 647 457 ,0.05

total 27545.72 14.68 681 ,0.05

Notes: Burned area is summarized as total area burned from 1991–2010 (20 years). Annual burned rate is proportion of area burned per year. Fire returned interval is the
average interval between fires at a given site. Expected values were calculated from the ‘‘neighborhoods’’ of fires; Observed values were calculated from the actual
burned patch. P value was calculated whether there is a significant difference between expected and observed value. stands for per 10,000.
doi:10.1371/journal.pone.0055618.t002

Figure 4. Relative influence of fuel, topography, and fire
weather with increasing fire size. X-axes are plotted on a log10

scale. Data was plotted based on the average value from 3 fuel
composition data.
doi:10.1371/journal.pone.0055618.g004
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analysis, this assumption may be valid if fire size is below a certain

critical threshold and when fuel is the main limiting factor for fire

spread. When fire size reached that threshold value or above,

however, fires were driven primarily by weather, and the fuel

break will be less effective. This threshold value is different among

forest ecosystems and can be potentially determined by transitions

of landscape controls on fires using a moving window resampling

technique. For forest landscape fire modellers, our results also have

practical implications. For example, when a disturbed area is the

focus of simulation, weather conditions should be carefully

parameterized because a few large fires accounted for the majority

of burned area [47]. If ignition density is the focus, fuel

characteristics and topography should be examined.

Wildfire is an ecological disturbance that tends to be governed

by cross-scale interaction [13], which is critical to understanding

the scale behaviour of wildfire. Recognizing the dominant controls

on fire spread change across a spatial extent is the first step to

forecast its behaviour by focusing on the importance of scale and

process. Peters et al. [13] proposed a general framework for

understanding the occurrence and consequence of fire across

spatial and temporal scales. The core of their framework is to

identify the threshold that can trigger cross-scale interaction, but

identifying that threshold before it occurs is a critical challenge.

Our approach provided a potential alternative to identify the

threshold that can trigger cross-scale processes.

Limitations
Data quality. In this study, we did not delineate unburned

islands within the fire perimeter. Although unburned islands can

be prevalent in larger fires of North America boreal forests [44],

they are not in our study area because (1) the unburned islands

(also called fire refugia) may be prevalent in moist sites, such as

valley bottoms, but these constitute a small proportion (,2%) in

this area; (2) the fire size was generally small, so that the resulting

bias may be limited.

Our fuel type data were derived from the official forest stand

maps, which were the most accurate and consistent vegetation

data to date. Our meadows category mainly contains grass, shrub,

and wetland, a fuel type shown by our preferential burning

analysis to favor fire spread. This seems somewhat counterintuitive

for wetlands, because studies have indicated that wetlands may act

as fuel breaks. However, in our study area, wetland is often

confined within the bottomland where permafrost exists. In

summer, wetlands may block fire spread because of higher fuel

moisture and abundant water, but in spring (March to May), the

main fire season with little precipitation, the brown vegetation

(mainly Carex tristachya and Betula fruticosa Pall., which provided

ample fine fuel) actually favor fire spread (CM Zhang, Huzhong

forest bureau, pers. comm.). Although the meadows category

constitutes a small area, it is critical to fire management because of

its flammability and fast rate of spread. We did not include a non-

Figure 5. Relative influence of a) fuel, b) topography, and c) weather on fire size. X-axes are plotted on a log10 scale. Fuel composition 1, 2,
and 3 stands for expected proportion of fuel types within ‘‘neighborhoods’’ of 2, 4, and 8 times of actual fires.
doi:10.1371/journal.pone.0055618.g005
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flammable fuel type (e.g., water body) in the analysis because that

category constitutes a negligible area (,1%), and our visual

inspection did not find any non-flammable areas within burned

patches or neighborhoods. Due to limited data, we were not able

to relate overstory fuel type to soil carbon and ground cover (only

species were recorded in the forest stand map; no coverage or

proportion data were included), although overstory constitutes a

large portion of the combusted fuel.

The results of our preferential burning analysis were not

significantly different among fuel types when fire size was ,67 ha

because most small fires burn within a single fuel type. For

example, the dominant fuel type often constituted more than 98%

of the burned area and neighborhoods of small fires. At this stage

(within-patch stage; see Figure 1 in [13]), local processes, such as

chemistry and amount of fuel within a patch, determined the fire

spread. Under these conditions, our compositional analysis may

fail to detect significant differences between observed and expected

proportion of various fuel types for small fires. With the increase in

fire size, the next stage (among patches spread stages; see Figure 1

in [13]) was reached, and the spread of fire was controlled by fuel

load and connectivity of fuel types. The difference between

observed and expected proportion of various fuel type became

more evident and could be detected by the compositional analysis.

As a fire grows, a threshold will be reached where fire spread is no

longer determined by local fuel conditions. At this stage (feedbacks

stage; see Figure 1 in [13]), the fire climate will probably

overwhelm local processes (e.g., fuel characteristics) as the

dominant factor of fire spread. Furthermore, fires at this stage

can produce enough heat to generate their own weather, allowing

even more rapid fire spread. Our compositional analysis therefore

focused on analyzing the preferential burning of various fuel types

across scales, in contrast to BRT analysis that focused on

identifying the dominant scaling behavior. Note, however, that

the inaccuracy of fuel type data, which can affect the performance

of compositional analysis, and prediction error of BRT analysis

may also affect the comparison. Nevertheless, these two analyses

are complementary and useful for fuel and fire management.

Fire size is the result of the interaction of fuel, topography, and

weather at multiple spatial scales; however, fire may also affect fuel

connectivity and configuration, which may in turn influence the

next fire spread. This interactive effect between fires is sometime

termed as ecological memory or self-regulation [48] of disturbance

events. For our analysis, this effect may compound the influence of

spatial controls on fire spread; therefore, the dependent variable

(fire size) should be considered as a quasi-dependent variable to

some degree. This effect is unlikely in our analysis, however,

because of the long fire return interval (.500 yr) [20,27] and short

fire data period (20 yr). In our BRT analysis, fire size was treated

as a response variable that can be explained by various spatial

controls. We then plotted the relative importance of various

controls across spatial scales, measured by fire size; therefore, fire

size acted individually for the BRT analysis and the plotting. From

this information, we could determine the threshold of fire size that

switched the dominant controls of fire spread.

Analytical method. The ‘‘moving windows’’ resampling

technique is easy to use, and the results are straightforward;

however, this technique requires a large dataset to yield a reliable

outcome because bagging and regression are involved in the

process. Without extensive data, analyses may show a wide

variation due to stochasticity (Figure 4). Moreover, various

methods to measure the dependent variable will also affect the

threshold. For example, when we used median fire size as the

dependent variable, the threshold for fire size was about 100 ha

because of decaying distribution of each sample, but this did not

affect the scale behavior of relative importance of each control

across continuous spatial scale. Further, the width of the moving

windows may significantly affect threshold identification because

the observations influence both BRT regression processes and the

value of the dependent variable; therefore, the threshold derived

from this analytical method relied heavily on the sampling

technique and methods to determine the dependent variable.

Nevertheless, our proposed method provides a potential alterna-

tive to understanding the threshold behavior of wildfires across

space. This information is important for forecasting ecosystem

dynamics influenced by spatial nonlinear phenomenon [13].

Conclusions

Fire spread is a spatially contiguous process regulated by

multiple controls, such as fuel, topography, and weather. But the

relative importance of these controls on fire across continuous

spatial scales has not been clearly understood. Our analysis of

scaling behavior and the detection of thresholds in fire spread was

achieved using BRT analysis and the moving window resampling

technique. Our method used commonly available datasets

describing fire size and spatial controls. The availability of these

data, together with an easily implemented approach, can be

applied to identify scale thresholds in wildfire regimes. Our

analysis indicated that (1) with increasing fire size, the dominant

control of fire switched from bottom-up controls (fuel and

topography) to top-down controls (weather); and (2) a threshold

for fire size will be reached, above which fires are driven primarily

by weather. The threshold, which may be ecosystem-specific, can

be identified using the ‘‘moving windows’’ method introduced in

this study.

Supporting Information

Figure S1 Patch size distribution for a) coniferous; b)
mixed; c) broadleaf; and d) meadows within fire scars.

(TIF)

Figure S2 The linear relationship between fire size and
anomaly of a) ISI, b)BUI, c)FWI, d)FFMC, and e) DMC.
The y axis (fire size) was logarithmic transformed.

(TIF)

Figure S3 Histogram distribution of a) slope; b) eleva-
tion; and c) aspect within fire scars.

(TIF)

Figure S4 Percentage of a) mixed, b) coniferous,
c)broadleaf, and d) meadows within a neighborhood
with different size. Fuel composistion 1, 2 and 3 was computed

in neighborhood with size of 2, 4, and 8 times of actual fire. The x

axis (fire size) was logarithmic transformed.

(TIF)

Figure S5 Prediction error of BRT with different fire
size. The x axis (fire size) was logarithmic transformed.
The prediction error was calculated as follows: Prediction

error = (predicted.value - observed.value) 6100/observed.value.

(TIF)
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