
Prediction of P53 Mutants (Multiple Sites) Transcriptional
Activity Based on Structural (2D&3D) Properties
R. Geetha Ramani1, Shomona Gracia Jacob2*

1 Department of Information Science and Technology, College of Engineering, Guindy, Anna University, Chennai, Tamilnadu, India, 2 Faculty of Information and

Communication Engineering, Anna University, Chennai, Tamilnadu, India

Abstract

Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the
recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration
of p53 causes tumor regression. However laboratory investigations are more often laborious and resource intensive but
computational techniques could well surmount these drawbacks. In view of this, we formulated a novel approach utilizing
computational techniques to predict the transcriptional activity of multiple site (one-site to five-site) p53 mutants. The
optimal MCC obtained by the proposed approach on prediction of one-site, two-site, three-site, four-site and five-site
mutants were 0.775,0.341,0.784,0.916 and 0.655 respectively, the highest reported thus far in literature. We have also
demonstrated that 2D and 3D features generate higher prediction accuracy of p53 activity and our findings revealed the
optimal results for prediction of p53 status, reported till date. We believe detection of the secondary site mutations that
suppress tumor growth may facilitate better understanding of the relationship between p53 structure and function and
further knowledge on the molecular mechanisms and biological activity of p53, a targeted source for cancer therapy. We
expect that our prediction methods and reported results may provide useful insights on p53 functional mechanisms and
generate more avenues for utilizing computational techniques in biological data analysis.
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Introduction

Prediction of proteins, structures and methods to re-establish the

normal state of activity in a biological structure is a significant task

with profound social impact [1–2].Earlier studies on rescue

mutants have detailed information reporting the results obtained

using genetic strategies and p53 assays in the yeast and

mammalian cells [1]. A number of human malignancies including

lung, breast, head and neck, colorectal, pancreatic and gastric

cancers confirmed the presence of high frequency of p53

mutations [1–6]. It was also reported that many malignancies

detected at a young age could be successfully eradicated even in

highly advanced stages [1] [6–7]. Moreover re-establishing wild

type p53 function would benefit a large sector of cancer victims by

providing ample scope for therapy [7–8]. In-vitro experimentation

of each mutation site and patient record is a labour- and resource

–intensive task consuming voluminous quantity of time, expertise

and capital [1] [7] [9–10]. In view of this, we believed there was

adequate justification to carry out a detailed exploration on the use

of computational techniques to investigate the occurrence and

activity of p53 mutants that could further lead to novel measures of

developing therapeutic remedies from the structure and functional

mechanism of cancer rescue mutations.

P53, also known as TP53 or tumor protein or tumor suppressor

p53 is a tetramer multi domain transcription factor that has an

essential role in maintaining the genomic integrity of the cell by

controlling the cell cycle and inhibiting the formation of tumours

[1–2][11–13]. Wild-type p53 negatively regulates cell growth and

division, whereas p53 mutants do not suppress cell growth and in

some cases promote the growth of tumour cells [14–16]. In nearly

half of all human cancers, this inactivation was an obvious

consequence of mutations in the p53 gene [16–18]. However

previous research and reports have affirmed the fact that loss of

p53 activity due to missense mutations at the core DNA Binding

Domain (DBD) could be restored by second site suppressor

mutations [1] [12][17]. Considering the cost of labour and

resources involved in in-vitro experimentation of p53 mutations, it

was highly essential and imperative to formulate computational

strategies and techniques to analyze the consequences of diverse

mutations and detect pertinent features that reinstated inactive

(non-functional) mutations to active (functional) state.

Previous work on p53 mutant transcriptional activity prediction

is attributed to Mathe et al. [19]who reported a Residual Score

Profile (RSP) predicted transactivation accuracy varying from

64.2% to 78.5% using decision –tree models on missense mutants

obtained from the Protein Data Bank. Recent work on multiple-

site p53 transcriptional activity was carried out by Huang et al.,

[20] in which the authors used eight types of features to represent

the mutants and then selected the optimal prediction features

based on the maximum relevance, minimum redundancy
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(mRMR) approach [21], and Incremental Feature Selection (IFS)

method. The Mathew’s Correlation Coefficient (MCC) [22]

obtained by using Nearest Neighbour (NN) algorithm [23–24]

and jack-knife cross validation [22]for one-, two-, three- and four-

site p53 mutants were 0.678, 0.314, 0.705, and 0.907, respectively.

Their investigation however did not include five-site and six-site

p53 mutants and the authors have not reported on the

performance of other standard feature selection or classification

algorithms.

In order to portray the impact of applying computational

techniques in predicting clinical outcomes, the current investiga-

tion focussed on the recent article by Huang et al. [20] published

in this journal that reported the MCC of Nearest Neighbor

algorithm on predicting p53 mutant transcriptional activity by

means of Incremental Feature Selection with the mRMR method.

We chose this paper for three main reasons. First, their work is the

most recent and the data is publicly available to replicate the work.

Second, p53 mutants are a great challenge to both biological and

computer science researchers because of their imbalanced class

distributions and voluminous records. Third, their work presented

both biological and computational advancement that led research-

ers to focus on specific regions in the p53 core domain that

significantly influenced p53 activity. However their results did not

support a comparative study of classifier performance and focussed

only on the predictive power of the NN algorithm. Moreover they

had introduced a novel predictor approach to predict all types of

mutation records irrespective of the nature of records (class

distribution), number of instances and type of mutation (indepen-

dent/co-occurring). We believed it was quite unlikely that a single

predictive technique be able to classify well such diverse nature of

data.

This research was dedicated to formulating novel computational

approaches to predict and classify the transcriptional activity of

multiple site (one-site, two-site, three-site, four-site, and five-site)

p53 mutants using optimal set of predictive features that generated

higher MCC and accuracy in prediction compared to previous

work. Our method placed emphasis on the 2D structure surface of

the p53 mutants and the 3D structural changes of the tumor

protein, that have been reported to be highly essential in deciding

the p53 activity [20–21][25]. In this work we introduced three

novel predictor methods. The first method targeted the detection

of single independent p53 mutation activity while the second and

third approaches were found suitable to predict the activity of co-

occurring mutations that combined with the one-site p53 mutants.

The second approach generated higher MCC in prediction with

both a very large/small number of instances and imbalanced class

distribution of records while the third approach served well with

fewer instances and balanced records. To maintain brevity, we will

call the first, second and third approaches as Independent

Predictor (IP), Imbalanced Mutation Predictor (IMP) and

Balanced Predictor (BP) methods respectively. We utilized the

feature sets obtained by the CFS Subset Evaluator commonly for

all the approaches. The features extracted by this technique were

passed in an incremental manner to the classifiers to determine the

prediction accuracy. Three benchmark classification algorithms

viz, Bayesian Network Learning algorithm and Ensemble classi-

fiers viz, AdaBoost Learning using Decision Stump (ABDS)

algorithm and Random Committee using Random Tree (RCRT)

algorithm showed improved results in prediction. The perfor-

mance of the classifiers was evaluated using Jack-knife cross-

validation technique based on the following scores: Mathews

Correlation Coefficient (<MCC ), Accuracy (<ACC ), Sensitivity

(<SEN ) and Specificity (<SPE ). We also establish the fact that the

utilization of 2D and 3D structural details of the p53 mutants

showed higher prediction accuracy in detecting the p53 mutant

transcriptional activity. It has also been validated by analysis of the

feature sets that 2D structure features constituted a substantial

portion of the optimal feature sets and played a pivotal role in

transcriptional activity prediction of p53 site-specific mutations.

Previous, recent and related research on p53 mutants, Cancer

and computational approaches have reported that the following

requirements [25–26] be met for a successful predictor for

biological data. They are stated to be the need for an authenticate,

standard dataset to train and test the predictor, formulation of

suitable statistical/scientific expressions that rightly signalled the

inherent association of the predictor features with the target

attribute, the existence of an algorithm or system that performed

the prediction followed by the statement of evaluation measures to

rank the estimated accuracy of the predictor [27–28]. We deal

with the aforementioned methodology in the following sections.

Materials and Methods

Dataset
The P53 Mutant dataset available at the University of

California, Irvine (UCI) Machine Learning (ML) Repository that

can be accessed at http://archive.ics.uci.edu/ml/p53+Mutants

[29–32] was utilized as the benchmark dataset to train and test the

proposed predictor system. Biophysical models of mutant p53

proteins yielded the features to predict the transcriptional activity.

All class labels were determined via in vivo assays [31]. There

were a total of 5409 attributes per instance. The attribute

description is provided as Table S1. Attributes named V1–

V4826 represented 2D electrostatic and surface based features.

Attributes V4827–V5408 represented 3D distance based features.

The target attribute was denoted by V5409 that carried two

possible values to represent p53 transcriptional activity (Active/

Inactive). The dataset initially comprised of 16772 p53 mutant

records. This was primarily analyzed to filter the records that

could not be encoded (records held missing values specific to 2D/

3D structural properties). This resulted in the removal of 180

instances thus reducing the total size of the data to 16592 records.

The data was further partitioned to identify the structural features

pertaining to specific secondary-site mutations resulting in 5

subsets as depicted in Table 1.

Once the data was pre-processed to suit the software

specifications, the computational techniques were explored to

generate the prediction of the p53 transcriptional activity. The

preliminary requirement as mentioned by Huang et al. [20] was

said to be the formulation of peptide samples with a potential

mathematical relation to design an effective predictor system. The

expression needed to significantly portray the intrinsic correlation

of the predictor with the target to be predicted. The set of

predictors was given by the following relation

Table 1. Site-Specific P53 Mutant Records.

S.No Site Active Records Inactive Records Total No.of Records

1. 1 8 54 62

2. 2 57 16319 16376

3. 3 63 49 112

4. 4 7 24 31

5. 5 6 2 8

Training records 16589

doi:10.1371/journal.pone.0055401.t001

Prediction of P53 Mutants Transcriptional Activity
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Pr ed~½W1 W2 :::::::::::W5408� ð1Þ

where the subscript reflected the dimension of the vector and its

value, while the components ½W1 W2 :::::::::::W5408� were defined by

a series of features as elaborated below.

2D Structure Features
The 2D features were also known as the Surface Property Maps.

The structure features for each mutant were obtained using the

homology models described in [31–32]. The structures of mutant

proteins were simulated centred on the configuration of wild type

p53 by substitution with mutant amino acids following which the

structure features were extracted from the energy minimized

mutant model [30]. The 2D surface property maps were

Figure 1. Novel Computational Approach to Predict Site-Specific P53 Mutant Transcriptional Activity.
doi:10.1371/journal.pone.0055401.g001
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annotated with surface properties, such as electrostatics or h-bond

donor/acceptor status provided by the electrostatic add-ons to

AMBER 6 by Luo et al. [33].The molecular surface was mapped

to a sphere, following which steric and depth information was

recorded, and the sphere was mapped to a plane. The resulting

surface map was subtracted from the wild-type map to obtain the

resulting 2D features. The attributes 1–4826 of structure features

(V1–V4826) were calculated based on the 2D surface map of the

mutant protein [30–32].

3D Structure Features
3D features were also termed the Structure Distance Maps.

Attributes 4827–5408 (V4827–V5408) of structure features were

calculated based on the 3D distance difference map between

mutant and wild-type p53 [30–32]. Mutation of amino acid in p53

could be responsible for alteration in the protein 3D structure. The

3D distance map was an N6N matrix giving the Cartesian

distance between N residue alpha carbons. It reflected structural

shifts induced by the mutation [32]. The wild-type distance map

was subtracted, leaving a difference map. The p53 core domain

had 197 residues, hence resulted in a 1976197 matrix that was

collapsed to a distance vector that gave the magnitudes of the

distance changes [32]. This resulted in a 197 length vector map

portraying three features for each residue, the directional i, j, and k

vectors. This summed up to 591 features per mutant of which 582

features alone were retained as significant attributes [31–32]. The

3D distance difference map features symbolized the magnitudes of

the distance changes in the 3D structure [30–32].

Both the 2D structure features and 3D structure features were

downloaded from the UCI Machine Learning Repository [29] and

their annotations are supplied as Table S1.Thus a total of 5408

features constituted the attribute (feature) vector for each record in

the p53 mutant dataset while attribute 5409 indicated the target

category.

Record Space of Site-specific Mutants
Table 1 depicts the breakdown of the number of records

reflecting the total number of active and inactive records in each

site-specific subset. There were a total of 5 subsets, partitioned

based on the primary and co-occurring mutations sites.

General Computational Approach
The proposed approach for p53 mutant transcriptional activity

prediction through computational approaches is portrayed in

Figure 1. The approach comprised of the Training phase followed

by the Prediction Phase. The former involved preparing the

mutation data for process on software tools, data partitioning, and

relevance detection of each attribute in the partitioned subset,

construction of the prediction models and generation of prediction

rules pertaining to each site. The SPSS software [34] was used to

visualize and pre-process the mutant structural details according to

the mutation sites. Data are available at www.shomonagjacob-

research.com containing structural properties of site-specific

mutations. The computational analysis of the data was done with

data recorded on Microsoft Excel’s Comma Separated Version

files. The Machine Learning Tool WEKA [35] was employed to

perform attribute subset evaluation of the attributes using the CFS

subset attribute evaluator algorithm [35]. The classification

techniques utilized to build the predictor models for the mutation

sites with the generated feature sets were also implemented in

WEKA. The Prediction phase involved validation of the

prediction accuracy and performance evaluation of the classifier.

Jack-knife cross-validation [36] was employed wherein each of the

statistical samples was taken to be the test case with the remaining

samples considered the training set. The average MCC, accuracy,

sensitivity and specificity was recorded to rate the performance in

prediction of p53 mutant transcriptional activity and identify the

classification algorithm that generated the highest MCC. The

description of the attribute evaluator (feature ranking) and

classification techniques in the proposed predictor methods are

detailed below.

Correlation Feature Selection (CFS) Subset Attribute
Evaluator Method

Feature Selection [21] [23–24] played a crucial role in

classifier design as several reports [20–26] have previously

affirmed with acceptable justification. The most important phase

in construction of classifiers was to identify the most represen-

tative set of predictor attributes [37–38]. The CFS hypothesis

[35] [39] suggested that the most predictive features needed to

be highly correlated to the target class and least relevant to

other predictor attributes.

The following equation dictated the merit of a feature subset S

that consisted of ‘k’ features [40–41]:

MeritSk
~

krcfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kzk(k{1)rff

p ð2Þ

where, rcf was the average value of all feature-classification

correlations, and rff was the average value of all feature-feature

correlations. The CFS criterion [39–41] was defined as follows:

CFS~ MAX
SK

rcf 1 z rcf 2 z:::z rcfkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz2( rf 1f 2 z:::z rfifj

p
z:::z rfkf 1 )

" #
ð3Þ

where rcfiand rfifjvariables are referred to as correlations. The

attributes that portrayed a high correlation to the target class and

Table 2. Performance of Attribute Evaluator Algorithms on Site-Wise P53 Mutants Transcriptional Activity.

S.No Site Number of Selected Features

CFS Subset Information Gain Gain Ratio Symmetric Uncertainty Evaluator

1 One 11 19 19 19

2 Two 52 50 40 40

3 Three 35 417 417 417

4 Four 16 73 73 73

5 Five 154 154 154 154

doi:10.1371/journal.pone.0055401.t002

Prediction of P53 Mutants Transcriptional Activity
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least relevance to each other were chosen as the best subset of

attributes [42].

The attributes filtered by the CFS Subset Evaluator method

were added in an incremental manner to identify the optimal set of

features that contributed to prediction of p53 activity. This

methodology is reported below.

Incremental Feature Selection (IFS) Method
Utilizing the predictor attributes reported by the CFS Subset

Attribute Evaluator method, Incremental Feature Selection (IFS)

[43–51] was applied to determine the minimal and optimal set of

features. The predictors generated by the CFS Subset evaluator

were the feature set under consideration for Incremental Feature

Selection. On adding each feature, a new feature set was obtained

and the nth feature set could be stated as

FSn~ff1,f2,:::fng(1ZnZM) ð4Þ

Where M denoted the total number of predictor subsets. On

constructing each feature set, the predictor model was constructed

Figure 2. The IFS Curves for one-site, two-site, three-site, and four-site p53 mutants. In the IFS curve, the x-axis is the number of features
used for classification, and the y-axis is the Mathew’s correlation coefficients (MCC). (A) The IFS curve for one-site p53 mutants. The peak of MCC is
0.775 with 7 features. The top 7 features derived by the CFS Subset Evaluator approach form the optimal feature set for one-site p53 mutants. (B) The
IFS curve for two-site p53 mutants. The peak of MCC is 0.341 with 52 features. The top 52 features derived by the CFS Subset Evaluator approach
form the optimal feature set for two-site p53 mutants. (C) The IFS curve for three-site p53 mutants. The peak of MCC is 0.784 with 30 features. The top
30 features derived from the CFS Subset Evaluator approach form the optimal feature set for three-site p53 mutants. (D) The IFS curve for four-site
p53 mutants. The peak of MCC is 0.916 with 15 features. The top 15 features derived from the CFS Subset Evaluator approach form the optimal
feature set for four-site p53 mutants.
doi:10.1371/journal.pone.0055401.g002

Prediction of P53 Mutants Transcriptional Activity
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and tested through Jack-knife cross-validation method. The

MCC/Accuracy of cross-validation was measured, leading to the

formation of the IFS table with the number of features and their

performance. FSmo was the minimal and optimal feature set that

achieved the highest MCC for each site-specific mutation.

The novel predictor methods proposed for the site-wise

mutation activity prediction are detailed below.

Independent Predictor Method
The independent predictor method applied to detecting the

transcriptional activity of one-site mutations based on their 2D and

3D structural features. The method involved attribute evaluation

by CFS Subset evaluator method followed by Incremental Feature

Selection to determine the predictive accuracy of the classifier.

The Adaboost algorithm using the Decision Stump (ABDS)

prediction technique was utilized to categorize the functional

activity of p53 one-site mutations. The algorithm execution used

100 iterations to obtain the most reliable results. The algorithms

are briefed about in the following sections.

Decision Stump Algorithm
The Decision Stump algorithm was introduced by Wayne Iba

and Pat Langley in 1992 [52]. It was a machine learning model

that generated a single level decision tree that comprised of a single

node connected to the leaf nodes [52–53]. The decision stump

made a prediction based on the value of just a single input feature.

In the case of data that contained continuous values, a threshold

feature value was selected, and the stump contained two leaves,

one for values below and the other for values above the threshold.

Multiple thresholds when chosen lead to generation of more leaf

nodes. Decision stumps have been widely used as components

(weak learners/base learners) in machine learning ensemble

techniques like boosting [54–55].

Adaboost Ensemble Learning with Decision Stump
Method (ABDS)

Adaptive Boosting (AdaBoost), a machine learning algorithm,

was formulated by Yoav Freund and Robert Schapire [56–57].

AdaBoost, a meta-algorithm, was used in conjunction with many

other learning algorithms to improve their performance. AdaBoost

was adaptive such that subsequent classifiers built were modified in

favour of those instances misclassified by previous classifiers.

Adaboost, an ensemble method of prediction used a combination

of models [58]. Each combined a series of ‘k’ learned models with

the aim of creating a composite model. Initially, Adaboost assigned

each training instance an equal weight that equalled 1/number of

training instances [56]. Later ‘k’ classifiers were generated that

required ‘k’ rounds. In each round, instances from the dataset

were sampled by weight to form the training set [55–56]. A

classifier model was derived and its error rate was computed with

the training set that later served as the test set. The instance

weights were adjusted according to the error-rate. Records

correctly classified were weighed less while misclassified records

were made to weigh more [58]. Those weights were considered to

generate the training tuples for the subsequent round. The error-

rate of a generated model Mk, was computed as follows [56–58]:

Error( Mk )~
Xd

j

wj|Err( Xj ) ð5Þ

Where Err(Xj) was the misclassification rate of instance Xj. If it

was a misclassified instance the value was 1 else it was 0. If the

performance of the classifier Mk was very poor (.0.5), it was

abandoned and a new training set was generated to construct a

new classifier model. If an instance was correctly classified in

round ‘k’, its weight was updated by

Table 3. Optimal Performance of Novel Predictor Methods on Site-Wise P53 Mutants Transcriptional Activity.

Site Predictor Method Algorithms Employed Optimal no. of features <MCC <ACC <SEN <SPE

Site -1 Independent Predictor CFS+ADBS 7 0.775 95.2 0.952 0.78

Site -2 Imbalanced Predictor CFS+Random Committee 52 0.341 99.2 0.992 0.178

Site -3 Balanced Predictor CFS+Bayes Network 30 0.784 89.3 0.893 0.894

Site -4 Balanced Predictor CFS+Bayes Network 15 0.916 96.8 0.968 0.991

Site -5 Imbalanced Predictor CFS+RCRT 1–154 0.655 87.5 0.875 0.625

doi:10.1371/journal.pone.0055401.t003

Figure 3. Site-wise Feature Relevance Graph. The sites are represented in purple as solid diamonds. The optimal features for each site are
represented by directed edges from the site to the feature. Site-specific features are displayed in different colours.
doi:10.1371/journal.pone.0055401.g003
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Wc ~Error( Mk )=(1{Error( Mk ) ð6Þ

The weights of all the correctly classified instances were updated

likewise while the weights of the unclassified tuples were

normalized to restore their sums to the initial value. Normalization

was done by multiplying it by the sum of the old weights divided

by the sum of the new weights.

After generation of the classifier ensemble, boosting assigned a

weight to each classifier’s vote based on its performance. The

weight of a classifier’s (Mk) vote [56] [58]was given by

VoteWeight( Mk )~ log
1{Error( Mk )

Error( Mk )
ð7Þ

For each class, the sum of the weights of each classifier that

assigned class c to an instance ‘X’ was determined. The class with

the highest sum was considered as the category of the instance X.

The predictor method for imbalanced set of mutant data is

discussed in the ensuing section.

Imbalanced Predictor Method
The imbalanced predictor method was applied to mutation data

that contained either too few or very large number of instances.

This prediction technique comprised of attribute evaluation via

CFS Subset evaluator followed by Incremental Feature Selection

with the Random Committee Ensemble classifier with Random

Tree (RCRT) algorithm. The algorithms are discussed below.

Random Tree Classifier
Random trees were first introduced by Leo Breiman and Adele

Cutler [59]. Random trees referred to a collection (ensemble) of

tree predictors [60].The input feature vector was given to the

classifier that classified it with every tree in the forest, and output

the class label that received the majority of votes (weights) [61]. All

the trees were trained with the same parameters, but on different

training sets, that were generated from the original training set

using the bootstrap procedure, i.e., for each training set vectors

were selected randomly that equalled the number in the original

set [62]. The vectors were chosen with replacement, i.e., some

vectors occurred more than once and some did not occur at all. At

each node of each tree trained, only a random subset of the nodes

was used to identify the best split [63–64]. With each node a new

subset was generated, whose size was fixed for all the nodes and all

the trees. This referred to the training parameter denoted by

!number of variables. In random trees the error was estimated

internally during the training phase [63].

Random Committee with Random Tree Classifier (RCRT)
The Random Committee generated an ensemble of classifiers

for any base classifier that executed the Randomnizable Interface

[35] [37]. We utilized the RCRT approach that constructed an

ensemble of classifiers with Random Tree as the base classifier

[64]. The random committee algorithm raised a diverse ensemble

of random tree classifiers [65]. The random committee algorithm

generated predictions by averaging probability estimates over the

generated classification trees.The final prediction was a straight

average of the predictions generated by the individual base

classifiers [64–66].The algorithm was implemented in WEKA [35]

with default parameters.

The prediction techniques that generated higher MCC for

prediction of balanced and acceptable number of mutant records

are given below.

Balanced Predictor Method
Our investigations revealed that the number of mutation

records and the class balance did play a pivotal role in deciding

classifier results. Hence we attempted to compare three bench-

mark classification techniques to identify the algorithms that

generated higher MCC and accuracy in prediction with the CFS

Subset Evaluator attributes on data that contained balanced

records. Our comparisons revealed that the Bayesian Network

algorithm generated a higher MCC and accuracy than previously

reported results on classification of site-3 and site-4 mutation data

with 112 and 31 records respectively, much higher that the site-5

data subset and much smaller than the site-2 data subset. This

predictor method employed the features returned by the CFS

Subset evaluator method with the Bayesian Network Learning

Algorithm.

Table 4. Performance Comparison of Site-1 P53 Mutants Transcriptional Activity.

S.No Attribute Evaluator Prediction techniques Features <MCC <ACC <SEN <SPE

1 CFS Adaboost (Decision Stump) 11 0.616 90.3 0.903 0.773

Bayesian Network Learning -0.087 82.3 0.823 0.122

Random Committee 0.416 88.7 0.887 0.451

2 Information Gain Adaboost (Decision Stump) 19 0.688 93.5 0.935 0.671

Bayesian Network Learning -0.087 82.3 0.823 0.122

Random Committee 0 87.1 0.871 0.129

3 Gain Ratio Adaboost (Decision Stump) 19 0.688 93.5 0.935 0.671

Bayesian Network Learning -0.087 82.3 0.823 0.122

Random Committee 0.333 88.7 0.887 0.238

4 Symmetric Uncertainty Adaboost (Decision Stump) 19 0.688 93.5 0.935 0.671

Bayesian Network Learning -0.087 82.3 0.823 0.122

Random Committee 0.333 88.7 0.887 0.238

doi:10.1371/journal.pone.0055401.t004
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Bayesian Belief Network Learning Algorithm
A Bayesian network was a probabilistic graphical model/

statistical model that represented a set of random variables and

their conditional dependencies via a directed acyclic graph (DAG)

whose nodes represented random variables [67–68]. The edges

represented conditional dependencies while unconnected nodes

represented variables that were conditionally independent of each

other. Each node was associated with a probability function that

took in as input a particular set of values for the node’s parent

variables and gave the probability of the variable represented by

the node [69–70]. In this research, we utilized the Bayesian

network to model the relationship between structural properties of

mutants and their functional activity. Given the structural details,

the network was used to compute the probabilities of the possible

functional activity (active/inactive).

The learning task consisted of finding an appropriate Bayesian

network given a data set D over U where U = {u1, un}, n $1 was

the set of input variables [67] [69]. The classification task consisted

of classifying a variable y = x0 called the class variable (active/

inactive) given a set of variables U = u1... un. A classifier C: u R y

was a function that mapped an instance of u to a value of y. The

classifier was learned from a dataset D that consisted of samples

over (u, y) [68]. A Bayesian network over a set of variables U was a

network structure Bs, a directed acyclic graph (DAG) over the set

of variables U and a set of probability tables given by

BP ~fp(uDpa(u))Du[Ug ð8Þ

Where pa(u) was the set of parents of u in BS and the network

represented a probability distribution given by

P(U)~Pu[U p(uDpa(u)) ð9Þ

The inference made from the Bayesian Network was to allocate

the category with the maximum probability [70–71]. The Simple

Estimator with the K2 local search method using Bayes Score

were utilized (default parameters) for the execution of the

algorithm in WEKA [35].

The performance evaluation methods and parameters are

briefed about in the subsequent section.

Jack-knife Cross-Validation Method
Statistical prediction methods generally involved verification of

the predictor performance to estimate their effectiveness in

practical applications [72–73]. Cross-validation (rotation estima-

tion), was a technique that assessed how the results of a statistical

analysis could generalize to an independent data set. It was a way

to predict the fit of a model to a hypothetical validation set when

an explicit validation set was not available [72–73]. In k-fold cross-

validation, the original sample was randomly partitioned into k

equal size subsamples. Of the k subsamples, a single subsample was

retained as the validation data for testing the model, and the

remaining (k –1) subsamples were used as training data [73]. The

cross-validation process was then repeated k times with each of the

k subsamples used exactly once as the validation data. The k results

from the folds were later averaged to produce a single estimation.

In this study, the jack-knife cross validation method was used for

validation since previous reports have stated it to be least arbitrary

in nature and widely recognized by researchers to assess the

performance of predictors [20] [72–73]. In jack-knife cross-

validation, each one of the statistical samples in the training

dataset was in turn singled out as a tested sample and the predictor

was trained by the remaining samples. During the jack-knifing

process, both the training dataset and testing dataset were actually

open, and a statistical sample moved from one set to the other

[20]. However since the second site mutations held voluminous

records, in order to reduce the memory effects and computational

complexity we used the three-fold cross-validation technique to

rate and compare the performance of the prediction techniques.

Moreover the analysis of the second site p53 mutation dataset

exposed heavy imbalance of the active and inactive records. In

view of this, the following indexes were adopted to test our

proposed predictors.

<MCC ~
(TP|TN){(FP|FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p ð10Þ

Table 5. Performance Comparison of Site-2 P53 Mutants Transcriptional Activity.

S.No Attribute Evaluator Prediction techniques Features <MCC <ACC <SEN <SPE

1 CFS Adaboost (Decision Stump) 52 0 99.7 0.997 0.003

Bayesian Network Learning .162 97.2 0.972 0.475

Random Committee 0.341 99.2 0.992 0.178

2 Information Gain Adaboost (Decision Stump) 50 0 99.6 0.996 0.003

Bayesian Network Learning -0.001 96.5 .965 0.003

Random Committee 0 99.7 0.997 0.003

3 Gain Ratio Adaboost (Decision Stump) 40 0 99.7 0.997 0.003

Bayesian Network Learning 0.13 98.8 .989 0.213

Random Committee .146 99.6 .996 0.073

4 Symmetric Uncertainty Adaboost (Decision Stump) 40 0 99.7 0.997 0.003

Bayesian Network Learning .132 99.8 .998 0.231

Random Committee .159 99.6 .996 0.073

doi:10.1371/journal.pone.0055401.t005
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<ACC ~
TPzTN

TPzFPzTNzFN
ð11Þ

<SEN ~
TP

TPzFN
ð12Þ

<SPE ~
TN

TNzFP
ð13Þ

where <MCCreflected the Mathews Correlation Coefficient;

<ACCreflected the accuracy, i.e., the rate of correctly predicted

mutation activity; <SEN reflected the sensitivity, i.e., the rate of

inactive records correctly predicted; <SPE reflected the specificity,

i.e., the rate of active records that were correctly predicted.

TP, TN, FP and FN denoted the number of true positives, true

negatives, false positives and false negatives, respectively [20] [22].

However the MCC parameter was believed to estimate more

precisely the performance of a predictor model on heavily

imbalanced data and hence was given precedence.

Results

The results of the proposed predictor models are discussed in

three sections. The first section presents the performance of the

attribute evaluators. The second section portrays the optimal

performance of the three proposed predictor models. The third

section depicts the comparative performance of the attribute

evaluator and classification techniques analysed in this study.

CFS Subset Attribute Evaluation Results
The feature set size filtered by the attribute evaluator techniques

are tabulated in Table 2. The CFS Subset Evaluator, Information

Gain, Gain Ratio and Symmetric Uncertainty Attribute Evalua-

tors were compared in this work. It is evident from the results that

the minimal feature set was generated by the CFS Subset

Evaluator. Hence focus was placed on exploiting this technique

to build predictor models with the minimal set of predictive

features. Moreover the rank and score of the predictors generated

by the other predictor models were more often negligible and

hence their contribution to the prediction was questionable.

Combining the CFS Subset Evaluator with the feature ranking

methods was found to be very time-consuming and computation-

ally expensive since the data spanned large number of attributes.

On smaller datasets, the results showed only marginal variation. In

the case of the site –two mutation data, the CFS subset Evaluator

was applied on subsets of the mutation records with the 2D and

3D features being considered separately for analysis in order to

speed up the execution process. Since the evaluator method

filtered attributes with respect to its contribution to the target class

and relevance to the other attributes, the cumulative results of the

subset data were taken as the minimal feature set for the site-two

predictor model. The CFS Subset Attribute Evaluator results for

site-specific mutant data are provided as Table S2.

Incremental Feature Selection Results
The predictor attributes were used to build individual predictors

by inserting features in an incremental manner beginning at the

first filtered attribute and proceeding till the attribute that

generated the highest MCC was obtained. We tested each of the

individual predictors and obtained the IFS results for all the

filtered predictors. The Incremental Feature Selection for the site-

specific mutation data was given as Table S3. The IFS Curves for

the site-specific mutation data are portrayed in Figure 2A, 2B, 2C,

and 2D respectively. The MCC of the site-two mutation data was

compared using 3-fold cross –validation method. The optimal

performance of the proposed predictor models is tabulated in

Table 3.

Performance Comparison of Proposed Predictors with
Other Methods

We investigated the performance of Bayesian and Ensemble

learning methods and found that a single technique did not

generate optimal results on all site-specific mutation data with the

CFS Subset attribute evaluator methods. So we attempted to

identify the specific combination of attribute evaluator and

prediction algorithm that generated optimal results with minimal

features. The improved performance of our work was validated by

the results of the previous work on predicting site-specific p53

mutant activity by Huang et al. [20]. The comparative perfor-

mance of the classification algorithms on site-specific p53 mutation

data is given as Table 4, Table 5, Table 6, Table 7 and Table 8 for

Table 6. Performance Comparison of Site-3 P53 Mutants Transcriptional Activity.

S.No Attribute Evaluator Prediction techniques Features <MCC <ACC <SEN <SPE

1 CFS Adaboost (Decision Stump) 35 0.498 75 0.75 0.751

Bayesian Network Learning 0.745 87.5 0.875 0.866

Random Committee 0.57 78.6 0.786 0.788

2 Information Gain Adaboost (Decision Stump) 417 0.451 73.2 0.732 0.705

Bayesian Network Learning 0.358 67 0.67 0.689

Random Committee 0.311 66.1 0.661 0.65

3 Gain Ratio Adaboost (Decision Stump) 417 0.469 74.1 0.741 0.717

Bayesian Network Learning 0.358 67 0.67 0.689

Random Committee 0.311 66.5 0.665 0.65

4 Symmetric Uncertainty Adaboost (Decision Stump) 417 0.469 74.1 0.741 0.717

Bayesian Network Learning 0.358 67 0.67 0.689

Random Committee 0.367 68.8 0.688 0.68

doi:10.1371/journal.pone.0055401.t006
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one-, two-, three-, and four- and five-site mutation data. The

Information Gain, Gain Ratio and Symmetric Uncertainty

Attribute Evaluators used the Ranking method to generate the

attribute evaluation results. With respect to the Independent and

Balanced Predictor models, we considered all the ranked values for

comparison. However for the two-site mutation data, since the

features spanned large dimensions we set the information gain

score to 0.02, gain ratio and symmetric uncertainty score to 0.05 to

select the ranked attributes and the comparison among the

methods was recorded accordingly. All the performance param-

eters were obtained by Jack-knife cross-validation approach for

one-site, three-site, four-site and five-site mutants. However in

order to reduce the memory effects and computational complexity,

we used the three-fold cross-validation approach to compare the

performance of two-site predictor models.

The Independent Predictor (IP) model utilized the CFS Subset

Evaluator followed by the ABDS algorithm to obtain the optimal

MCC. The algorithm was executed with default parameters with

the number of iterations set to 100 to avoid over fitting of the data

and obtain reliable results. Though the other attribute evaluator

methods also showed promising results, the size of the feature set

was taken into consideration to choose the most optimal approach.

However the proposed approach equalled or bettered the other

compared methods as depicted in Table S3 using Incremental

Feature Selection. The Imbalanced Mutation Predictor (IMP)

model utilized the CFS Subset Evaluator with RCRT algorithm to

obtain the optimal MCC. The algorithm was run with default

parameters and evaluated by 3-fold cross validation for two-site

mutation data on account of large number of instances and

increased computational complexity. The execution time of Jack-

knife cross validation on site-two mutation data with default

parameters was 24 hours and 17 minutes to validate the RCRT

approach and reported an MCC of 0.293 with 52 features. The

same predictor model was applied to five-site mutation data and

generated an MCC of 0.655 with the smallest feature set

comprising of 1 feature. However attributes generated by the

Information Gain, Gain Ratio and Symmetric Uncertainty

Attribute Evaluators generated a high MCC of 1 using ABDS

algorithm with default parameters on the five-site mutation data.

Since the results appeared to over fit the data on account of very

small number of instances, the imbalanced predictor model was

believed to be a more reliable technique. The Balanced Predictor

(BP) model utilized the CFS Subset Evaluator with Bayesian

Network Learning Algorithm and obtained an optimal MCC of

0.784 with 30 features on the three-site mutation data and an

optimal MCC of 0.916 with 15 features on the site-four mutation

data. The results were validated by Jack-knife cross-validation

method. The feature set analysis of site-specific mutants is

discussed below.

Site –Wise Feature Set Analysis
On analysis of the feature sets that generated optimal results, it

was concluded that the 2D features played a dominating role when

compared to the 3D features and hence an in-depth analysis of 2D

structural properties could provide novel insights into p53

functional mechanism. Site-1, Site-3 and Site-5 mutation data

attained the optimal MCC with the inclusion of 2D features alone.

However site-2 and site-4 mutation data attained the highest

MCC only on inclusion of the 3D predictor features. We also

attempted to explore the 2D and 3D features that were found

relevant for the different site-wise subsets representing p53

transcriptional activity using structural properties and identify if

there existed any common relevant features that deserved further

attention. Hence we made use of visualization tool NodeXL

available at [http://nodexl.codeplex.com/releases/view/96383]

that generated the site-wise feature-activity relevance graph

depicted in Figure 3 to represent the relevant features reported

for each site. The visualization of the p53 site-wise feature

relevance graph is shown in Figure 3. We used the top 10 features

for the site-5 mutation data. The graph clearly depicts that not a

single feature was commonly relevant to any of the sites. The

features were mutually exclusive and hence we believed it was

acceptable that any further investigations of the p53 functional

activity would certainly warrant a site-wise analysis of structure

and function.

Comparison to Previous Work
The most recent and previously reported results of predicting

p53 mutants transcriptional activity was stated by Huang et al., in

2011. The comparative performance to the previous work is

depicted in Table 9. One-site mutation was optimally predicted at

0.678 MCC with 8 features whereas the proposed predictor model

predicts at 0.775 MCC with 7 features while two-site mutation

data was predicted at an optimal 0.314 MCC with 50 features

Table 7. Performance Comparison of Site-4 P53 Mutants Transcriptional Activity.

S.No Attribute Evaluator Prediction techniques Features <MCC <ACC <SEN <SPE

1 CFS Adaboost (Decision Stump) 16 0.812 93.5 0.935 0.779

Bayesian Network Learning 0.91 96.8 0.968 0.889

Random Committee 0.392 80.6 0.806 0.539

2 Information Gain Adaboost (Decision Stump) 73 0.812 93.5 .935 0.779

Bayesian Network Learning 0.321 .774 .774 0.529

Random Committee 0.354 80.6 0.806 0.438

3 Gain Ratio Adaboost (Decision Stump) 73 0.812 93.5 0.935 0.779

Bayesian Network Learning 0.321 .774 .774 0.529

Random Committee 0.483 83.9 .839 0.548

4 Symmetric Uncertainty Adaboost (Decision Stump) 73 0.812 93.5 0.935 0.779

Bayesian Network Learning 0.321 .774 .774 0.529

Random Committee 0.517 83.9 0.839 0.649

doi:10.1371/journal.pone.0055401.t007
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while our approach attained an optimal prediction of 0.341 with

52 features. However they have excluded the memory effects of

running Jack-knife cross validation on the 16376 records. Our

results were drawn with 3-fold cross-validation that is reported to

be a benchmark validation technique for large datasets [50–

51][73]. For the three-site mutation data, the proposed approach

generated an optimal MCC of 0.784 with 30 features while the

previous optimal MCC of 0.705 included 282 features. The four-

site mutation data was predicted at 0.916 by our proposed

approach with 15 features while the previous approach reported

an optimal MCC of 0.907 with 25 features. Our findings agree

with the previous results stating 2D features to be the major

contributory factors to p53 mutant transcriptional activity

prediction. The MCC and accuracy parameters of the predictor

methods were found to be highly irrelevant in estimation of

predictor performance of unbalanced datasets. Since this research

was oriented towards both balanced and unbalanced datasets,

MCC was utilized as the primary criterion for ranking the

predictor models.

Discussion

CFS Subset Vs mRMR Method
Previous work on prediction of p53 transcriptional activity made

use of the Maximum Relevance and Minimum Redundancy

(mRMR) approach in order to select the features most relevant to

the target class and least redundant to one another [20]. The

mRMR method ranked features based on the Mutual Information

criterion [77–79]. In this study however we chose to investigate

other possible feature selection algorithms for three main reasons:

(i) Performance of the mRMR method has already been discussed

in p53 transcriptional activity prediction [20]whereas this is the

first study on utilization of CFS Subset evaluator and the other

ranking methods (Information Gain, Gain Ratio and Symmetric

Uncertainty) in p53 activity prediction (ii) Human intervention is

required in deciding the feature subset size for the mRMR method

[21]whereas in the CFS Subset method, the default parameters of

Best First Search with a search termination threshold of five,

generated the appropriate and relevant feature subset [35] (iii) It is

evident from the work on p53 transcriptional activity prediction by

Huang et al. [20] where roughly 100 to 1000 ranked features from

the mRMR method were included for the Incremental Feature

Selection process to obtain optimal results whereas in this

investigation the feature subset size returned by the CFS Subset

Evaluator on the same datasets was of considerably smaller

dimension thus entailing less human effort and time while

generating improved results. Moreover we believed the CFS

Subset Evaluator would certainly prove to be an effective

algorithm in other biological data prediction also and hence

propose a reasonably acceptable alternative to the mRMR

method. Further extensions to this work would involve investigat-

ing the use of this novel methodology in DNA and protein

sequence analysis.

Influence of Structure on P53 Function
This research has clearly revealed the contribution of the

structural features in predicting p53 transcriptional activity.

Previous authors [20] [25–26] [30][44] have stated that structural

features played a dominant role in p53 status prediction. However

this study has clearly portrayed through the use of computational

techniques that 2D properties played the most contributing role in

P3 transcriptional activity prediction. A characteristic feature of

the p53 mutational map is the frequency of missense point

mutations [74–75]. Structural studies have revealed a higher

concentration of amino acid residues pertaining to the mutation

hot spots of p53 within the central region (residues 102–292),

encoding the central DNA binding domain of the protein, and a

trivial number of p53 mutations in the regulatory domains (N

terminus, residues 1–99; C terminus, residues 301–393) [74–76].

This drives research focus towards concluding that intense analysis

of p53 structure could reveal yet unknown facts on p53 activity

thus leading to novel therapeutic solutions.

Rewards of Computational Strategies
Previous work on p53 Mutants and related studies have brought

to light the hurdles encountered in in-vitro experimentation with

mutation data in view of the resources, labour and time involved,

but with irresolute rewards [2] [6] [13] [16] [20] [30–32]. On the

contrary, computational strategies and algorithms expend com-

paratively less time, resources and labour with a clear idea of

expected end results [19–21] [25–28]. The broad goal of this work

was to provide an influential assessment of the functional activity

of p53 cancer mutants and their secondary-site suppressor

mutations through the use of computational techniques. A

Table 8. Performance Comparison of Site-5 P53 Mutants Transcriptional Activity.

S.No Attribute Evaluator Prediction techniques Features <MCC <ACC <SEN <SPE

1 CFS Adaboost (Decision Stump) 154 0.655 87.5 0.875 0.625

Bayesian Network Learning 0 75 0.75 0.25

Random Committee 0.655 87.5 0.875 0.625

2 Information Gain Adaboost (Decision Stump) 154 1 1 1 1

Bayesian Network Learning 0 75 0.75 0.25

Random Committee 0.655 87.5 0.875 0.625

3 Gain Ratio Adaboost (Decision Stump) 154 1 1 1 1

Bayesian Network Learning 0 75 0.75 0.25

Random Committee 0.655 87.5 0.875 0.625

4 Symmetric Uncertainty Adaboost (Decision Stump) 154 1 1 1 1

Bayesian Network Learning 0 75 0.75 0.25

Random Committee 0.655 87.5 0.875 0.625

doi:10.1371/journal.pone.0055401.t008
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functional census of suppressor mutations for p53 cancer mutants

was believed to appreciably further existing knowledge of p53

rescue mechanisms [32] [74][76]. Knowledge of possible regions

of the p53 core domain that generated stability when altered

provided insights in detecting probable alteration sites for small

molecules. The methodology could be generalized to other

mutational systems where mutants needed to be classified as

functional/non-functional. Moreover computational classifiers

that predicted mutant function would allow experimentalists to

map structure/function relationships for proteins in other muta-

tion-related diseases.

With the advances in technology and their applications in the

field of biology and medicine influencing the focus of research in

remarkable ways, we believed research and analysis of the effects

of computational methods on biological data analysis was certainly

an essential breakthrough. However a limiting factor in compu-

tational analysis was the measure of time spent on preparing

biological data for process on software tools. Efficient data pre-

processing techniques specific to biological data could spur great

opportunities for further investigation in the field of Bioinformatics

and Computer Science.

Conclusion
Intense research on p53, its structure, function and therapeutic

strengths has drawn the attention of researchers from varied

domains that include medical science, technology and informatics.

This research was focused on revealing the significance of

computational techniques in predicting the most optimal set of

structural features that contributed predominantly to designating

the nature of p53 transcriptional activity. We compared the

performance of four feature evaluator and three classification

techniques to determine the optimal set of features that predicted

p53 activity with higher MCC. Our findings revealed the optimal

MCC in prediction of p53 transcriptional activity with the most

predictive feature set for each site-specific mutation subsets.

Moreover visualization of the site-specific relevant features

indicated that the contributing features were mutually exclusive

for each site and appeared only on a section of the mutation sites.

This could be attributed to the fact that unselected mutations

contributed nothing to the p53 activity while selected features

played the crucial role in regulation of p53 activity. We also

warrant the fact that the 2D structural properties deserved more

attention and further analysis of their influence on p53 mutations

could reveal latent facts on the underlying mechanism of p53 and

provide novel and informative insights into p53 transcriptional

activity and their restoration.
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TP53 Mutations detected in familial and bilateral testicular cancer. Genes

Chromosomes Cancer 6, 92–7.

4. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, et al.(2007) Impact of

mutant p53 functional properties on TP53 mutation patterns and tumour

phenotype: lessons from recent developments in the IARC TP53 database.

Human Mutation, 28: 622–629. doi: 10.1002/humu.20495.

5. Harris CC (1996) Structure and function of the P53 tumour suppressor gene:

clues for rational cancer therapeutic strategies. Journal of the National Cancer

Institute 88, 1442–1454.

6. Harris CC (1996) P53 tumour suppressor gene: from the basic research

laboratory to the clinic-an abridged historical perspective. Carcinogenesis 17,

1187–98.

7. Harris CC, Hollstein M(1993) Clinical implications of the P53 tumor-suppressor

gene. N Engl Journal of Medicine 329, 1318–27.

8. International Agency for Research on Cancer. Available: http://www.iarc.fr.
Accessed 10 November 2012.

9. Hock AK, Vigneron AM, Carter S, Ludwig RL, Vousden KH (2011) Regulation
of p53 stability and function by the deubiquitinating enzyme USP42. EMBO J,

30: 4921–30.

10. Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, et al. (April 2002)

Dissecting p53 tumour suppressor functions in vivo. Cancer Cell 1 (3): 289–298.
Doi : 10.1016/S1535-6108(02)00047-8. PMID 12086865.

11. Bioinformatics Organisation http://www.bioinformatics.org/p53/introduction.
html Accessed 2012 Nov 18.

12. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, et al. (June 1991)
Identification of p53 as a sequence-specific DNA-binding protein. Science 252

(5013): 1708–11. Doi: 10.1126/science.2047879. PMID 2047879.

13. Soussi T, Dehouche K, Béroud C (2000) p53 Website and Analysis of p53 Gene

Mutations in Human Cancer: Forging a Link Between Epidemiology and
Carcinogenesis. MIDI Special Article, Human Mutation 15: 105.113.

14. Baroni TE, Wang T, Qian H, Dearth LR, Truong LN, et al. (2004) Global
Supressor Motif for P53 Cancer Mutants. PNAS, 4930–4935, vol. 101 no.14.

15. P Hainaut, T Hernandez, A Robinson, P Rodriguez-Tome, T Flores, M
Hollstein, et al. (1998) IARC Database of P53 Gene Mutations in Human

Tumors and Cell lines: updated compilation, revised formats and new

visualization tools. Nucleic Acids Research 26, 205–13.

Table 9. Comparison to Previous Work on P53 Mutants
Transcriptional Activity Prediction.

S.No Site Previously Reported Currently Reported

Optimal
features Optimal MCC

Optimal
feature(s) Optimal MCC

1 One 8 0.678 7 0.775

2 Two 50 0.314 52 0.341

3 Three 282 0.705 30 0.784

4 Four 25 0.907 15 0.916

5 Five Not Reported 1 0.655

doi:10.1371/journal.pone.0055401.t009

Prediction of P53 Mutants Transcriptional Activity

PLOS ONE | www.plosone.org 12 February 2013 | Volume 8 | Issue 2 | e55401



16. Hainaut P, Hollenstein M (2000) P53 and Human Cancer: the first ten thousand

mutations. Adv. Cancer Research, 77, 81–137.

17. Gasco M, Shami S, Crook T (2002) The p53 pathway in breast cancer, Breast

Cancer Res 4: 70–76, � 2002 BioMed Central Ltd, (Print ISSN 1465–5411;

Online ISSN 1465–542X).

18. The P53 Website, update July 2010, http://p53.free.fr/Accessed 2012 Nov 15.

19. Mathe E, Olivier M, Kato S, Ishioka C, Vaisman I, et al. (2006) Predicting the

Transactivation Activity of p53 Missense Mutants Using a Four-Body Potential

Score Derived From Delaunay Tessellations. Human Mutation 0, 1–10.

20. Huang T, Niu S, Xu Z, Huang Y, Kong X, et al. (2011) Predicting

Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid

Properties. PLoS ONE 6(8): e22940. doi:10.1371/journal.pone.0022940.

21. Peng H, Long F, Ding C (2005) Feature selection based on mutual information:

criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans

Pattern Anal Mach Intell 27: 1226–1238.

22. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the

accuracy of prediction algorithms for classification: an overview. Bioinformatics

16: 412–424.

23. Jacob SG, Geetha Ramani R (2011) Discovery of Knowledge Patterns in

Clinical Data through Data Mining Algorithms: Multi-class Categorization of

Breast Tissue Data, International Journal of Computer Applications (IJCA),

32(7): 46–53, DOI: 10.5120/3920-5521. Published by Foundation of Computer

Science, New York, USA.

24. Jacob SG, Geetha Ramani R, Nancy P (2011) Feature Selection and

Classification in Breast Cancer Datasets through Data Mining Algorithms.

Proceedings of the IEEE International Conference on Computational

Intelligence and Computing Research (ICCIC’2011), Kanyakumari, India,

IEEE Catalog Number: CFP1120J-PRT, ISBN: 978-1-61284-766-5. Pp. 661–

667.

25. Wang P, Hu L, Liu G, Jiang N, Chen X, et al. (2011) Prediction of antimicrobial

peptides based on sequence alignment and feature selection methods. PLoS One

6: e18476.

26. Chou KC, Zhang CT (1995) Review: Prediction of protein structural classes.

Critical Reviews in Biochemistry and Molecular Biology 30: 275–349.

27. Chou KC, Shen HB (2010) Cell-PLoc 2.0: An improved package of web-servers

for predicting sub cellular localization of proteins in various organisms. Natural

Science 2: 1090–1103. (Openly accessible at http://www.scirp.org/journal/NS/).

28. Chou KC (2011) Some remarks on protein attribute prediction and pseudo

amino acid composition (50th Anniversary Year Review). Journal of Theoretical

Biology 273: 236–247.

29. University of California, Irvine (UCI, Irvine) Machine Learning Repository.

Available: http://archive.ics.uci.edu/ml/datasets/p53+Mutants. Accessed Oc-

tober 10 2012.

30. Danziger SA, Baronio R, Ho L, Hall L, Salmon K, et al. (2009) Predicting

positive p53 cancer rescue regions using Most Informative Positive (MIP) active

learning. PLoS Comput Biol 5: e1000498.

31. Danziger SA, Zeng J, Wang Y, Brachmann RK, Lathrop RH (2007) Choosing

where to look next in a mutation sequence space: Active Learning of informative

p53 cancer rescue mutants. Bioinformatics 23: i104–114.

32. Danziger SA, Swamidass SJ, Zeng J, Dearth LR, Lu Q, et al. (2006) Functional

census of mutation sequence spaces: the example of p53 cancer rescue mutants.

IEEE/ACM Trans Comput Biol Bioinform 3: 114–125.

33. Luo R, David L, Gilson MK (2002) Accelerated Poisson-Boltzmann Calcula-

tions for Static and Dynamic Systems. J. Computational Chemistry, vol. 23,

pp.1244–1253, 2002.

34. Predictive Analytics Software (SPSS), www.ibm.com/software/analytics/

spss.Accessed 2012 Nov 2.

35. Waikato Environment for Knowledge Analysis (WEKA) Machine Learning

Tool, http://www.cs.waikato.ac.nz/ml/weka/.Accessed 2012 Nov 5.

36. Picard R, Cook D (1984) Cross-Validation of Regression Models. Journal of the

American Statistical Association 79 (387): 575–583.

37. Mitchell T (1997) Machine Learning. Tata Mc-Graw Hill. 414 pages. ISBN

0070428077.

38. Tanagra Data Mining tutorials, http://data-mining-tutorials.blogspot.com/

.Accessed 2012 Nov 15 This website provides detailed information on the

basics of Data Mining Algorithms.

39. CMP: Data Mining and Statistics within the Health Services, Dr. Wenjia Wang:

Tutorial for DM tool Weka Information Gain Criterion, https://blog.itu.dk/

SPVC-E2010/files/2010/11/wekatutorial.pdf. Accessed 2012 Nov 1.

40. Hall M (1999) Correlation-based Feature Selection for Machine Learning. PhD

Thesis.

41. Deng H, Runger G, Tuv E (2011) Bias of importance measures for multi-valued

attributes and solutions. Proceedings of the 21st International Conference on

Artificial Neural Networks (ICANN2011). pp.293–300.

42. Selvakuberan K, Indradevi M, Rajaram R (2008) Combined Feature Selection

and classification – A novel approach for the categorization of web pages.

Journal of Information and Computing Science Vol. 3, No. 2, 083–089.

43. Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo

amino acid composition and support vector machine for prediction of enzyme

subfamily classes. Journal of Theoretical Biology 248: 546–551.

44. Zakeri P, Moshiri B, Sadeghi M (2011) Prediction of protein sub mitochondria

locations based on data fusion of various features of sequences. Journal of

Theoretical Biology 269: 208–216.

45. Mohabatkar H (2010) Prediction of cyclin proteins using Chou’s pseudo amino

acid composition. Protein & Peptide Letters 17: 1207–1214.

46. Gu Q, Ding YS, Zhang TL (2010) Prediction of G-Protein-Coupled Receptor

Classes in Low Homology Using Chou’s Pseudo Amino Acid Composition with

Approximate Entropy and Hydrophobicity Patterns. Protein & Peptide Letters

17: 559–567.

47. Joshi RR, Sekharan S (2010) Characteristic peptides of protein secondary

structural motifs. Protein & Peptide Letters 17: 1198–1206.

48. Hayat M, Khan A (2011) Predicting membrane protein types by fusing

composite protein sequence features into pseudo amino acid composition.

Journal of Theoretical Biology 271: 10–17.

49. Kandaswamy KK, Chou KC, Martinetz T, Moller S, Suganthan PN, et al.

(2011) AFP-Pred: A random forest approach for predicting antifreeze proteins

from sequence-derived properties. Journal of Theoretical Biology 270: 56–62.

50. Jaynes ET (May 1957) Information Theory and Statistical Mechanics. Physical

Review106 (4): 620–630. Bibcode 1957PhRv…106…620J. doi:10.1103/

PhysRev.106.620.

51. Kotsiantis SB (2007) Supervised Machine Learning: A Review of Classification

Techniques. Informatica 31249–268.

52. Wayne I, Pat L (1992) Induction of One-Level Decision Trees, in ML92.

Proceedings of the Ninth International Conference on Machine Learning,

Aberdeen, Scotland, 1–3 July 1992, San Francisco, CA: Morgan Kaufmann,

233–240.

53. Oliver JJ, Hand D (1994) Averaging Over Decision Stumps in Machine

Learning. ECML-94, European Conference on Machine Learning, Catania,

Italy. Proceedings, Lecture Notes in Computer Science (LNCS) 784, Springer,

231–241 ISBN 3-540-57868-4 doi:10.1007/3-540-57868-4-61.

54. Freund Y, Schapire RE (1995) A Decision-Theoretic Generalization of on-Line

Learning and Application to Boosting. CiteSeerX: 10.1.1.56.9855.

55. Zhang T (2004) Statistical behaviour and consistency of classification methods

based on convex risk minimization. Annals of Statistics 32 (1), 56–85.

56. Polikar R (2006) A tutorial article on ensemble systems including pseudocode,

block diagrams and implementation issues for AdaBoost and other ensemble

learning algorithms. IEEE Circuits and Systems Magazine. 6. 21–45:

57. Freund Y, Schapire RE (1999) A Short Introduction to Boosting. Journal of

Japanese Society for Artificial Intelligence, 14(5): 771–780.

58. Friedman J, Hastie T, Tibshirani R (1998) Additive logistic regression: a

statistical view of boosting. CiteSeerX: 10.1.1.51.9525.

59. Leo Breiman, Adele Cuttler, Random Trees, http://www.stat.berkeley.edu/

users/breiman/RandomForests/.Accessed 2012 Nov 10.

60. Jacob SG, Geetha Ramani R, Nancy P (2012) Efficient Classifier for

Classification of Hepatitis C Virus Clinical Data through Data Mining

Algorithms and Techniques. Proceedings of the International Conference on

Computer Applications, Pondicherry, India, Techno Forum Group, India.

ISBN: 978-81-920575-8-3: DOI: 10.73445/ISBN-0768, ACM#.dber.i-

.dber.imera.10.73445.

61. Jacob SG, Geetha Ramani R (2012) Mining of Classification Patterns in Clinical

Data through Data Mining Algorithms. Proceedings of the International

Conference on Advances in Computing, Communications and Informatics,

Pages 997–1003 ACM New York, NY, USA �2012 table of contents ISBN:

978-1-4503-1196-0 doi.10.1145/2345396.2345557.

62. Jacob SG, Geetha Ramani R (2012) Evolving Efficient Classification Rules from

Cardiotocography Data through Data Mining Methods and Techniques.

European Journal of Scientific Research, Vol.78 No.3, 468–480.

63. Le Gall J-F (2005) Random Trees and Applications.Notes prepared for the

Cornell Summer School in Probability, July 11 - July 22, 2005.

64. Rachel Aires, Aline Manfrin, Sandra Aluı́sio, Diana Santos(2009) Which

classification algorithm works best with stylistic features of Portuguese in order to

classify web texts according to users’ needs? Technical Report, NILC-TR-04-09.

65. Ray A, Kumar V, Ravindran B, Gopal L, Verma A (2008) Machine Learning to

predict the incidence of Retinopathy of Prematurity. Association for the

advancement of artificial intelligence, Coconut Grove, Florida. May 15–17,

2008. Published by The AAAI Press, Menlo Park, California.

66. Bazzan AL, Engel PM, Schroeder LF, da Silva SC (2002) Automated annotation

of keywords for proteins related to mycoplas-mataceae using machine learning

techniques. Bioinformatics, 18: 35S–43S.

67. Uebersax J (2004) Genetic Counselling and Cancer Risk Modelling: An

Application of Bayes Nets. Marbella, Spain: Ravenpack International.

68. Heckerman D (1995) A Tutorial on Learning with Bayesian Networks.

Technical Report, March, 1995, Microsoft.

69. O Pourret, Naim P, Marcot B (2008) Bayesian Networks: A Practical Guide to

Applications. Chichester, UK: Wiley. ISBN 978-0-470-06030-8.

70. Friedman N, Linial M, Nachman I, Pe’er D (August 2000) Using Bayesian

Networks to Analyze Expression Data. Journal of Computational Biology

(Larchmont, New York: Mary Ann Liebert, Inc.) 7 (3/4): 601–620. doi:

10.1089/106652700750050961. ISSN 1066-5277.PMID 11108481.

71. Jiang X, Neapolitan RE, Barmada MM, Visweswaran S (2011) Learning

Genetic Epistasis using Bayesian Network Scoring Criteria. BMC Bioinformatics

12: 89.doi:10.1186/1471-2105-12-89. PMC 3080825. PMID 21453508.

72. Geisser S (1993) Predictive Inference. New York, NY: Chapman and Hall. ISBN

0-412-03471-9.

73. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy

estimation and model selection. Proceedings of the Fourteenth International

Prediction of P53 Mutants Transcriptional Activity

PLOS ONE | www.plosone.org 13 February 2013 | Volume 8 | Issue 2 | e55401



Joint Conference on Artificial Intelligence 2 (12): 1137–1143.(Morgan

Kaufmann, San Mateo, CA).
74. Joerger AC, Fersht AR (2008) Structural Biology of the Tumor Suppressor p53.

Annu. Rev. Biochem.77: 557–82.

75. Kato S, Han SY, Liu W, Otsuka K, Shibata H, et al. (2003) Understanding the
function-structure and function-mutation relationships of p53 tumor suppressor

protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A
100: 8424–8429.

76. Bai L, Zhu W-G (2006) p53: Structure, Function and Therapeutic Applications.

Journal of Cancer Molecules 2(4): 141–153.

77. Huang T, Shi XH, Wang P, He Z, Feng KY, et al. (2010) Analysis and

prediction of the metabolic stability of proteins based on their sequential
features, sub cellular locations and interaction networks. PLoS ONE 5(6):

e10972.

78. Huang T, Wang P, Ye ZQ, Xu H, He Z, et al. (2010) Prediction of Deleterious
Non-Synonymous SNPs Based on Protein Interaction Network and Hybrid

Properties. PLoS ONE, 5(7): e11900.
79. Huang T, Wan S, Xu Z, Zheng Y, Feng KY, et al. (2011) Analysis and

prediction of translation rate based on sequence and functional features of the

mRNA. PLoS ONE 2011, 6(1): e16036.

Prediction of P53 Mutants Transcriptional Activity

PLOS ONE | www.plosone.org 14 February 2013 | Volume 8 | Issue 2 | e55401


