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Abstract

Recent studies have demonstrated developmental changes of functional brain networks derived from functional
connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization.
However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks
during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy
children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal
properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases
in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and
no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the
frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant
sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default
mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in
several brain regions related to the attention system, whereas negative correlations were found in various brain regions
primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of
the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the
understanding of brain maturation and cognitive development during childhood and adolescence.
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Introduction

Recent developments in generating a network map of the

human brain, known as the human connectome, provide new

insights into the organization of the brain’s structural connections

and their role in shaping functional dynamics [1,2]. The features

of the structural and functional networks in the human brain have

been well defined, such as small-world topology, highly connected

hubs, and modularity [3,4,5]. Great efforts in the study of the

human connectome have greatly expanded our knowledge of the

topological principles of brain network organization in the healthy,

developing, aging, and diseased brains [6,7]. Developmental

changes in the functional brain networks include two general

principles: 1) regional interactions change from being predomi-

nately anatomically local in children to interactions spanning

longer cortical distances in young adults and 2) this developmental

change in functional connectivity occurs via mechanisms of

segregation of local regions and integration of distant regions into

disparate subnetworks [8].

However, the sex- and intelligence-related differences in the

functional brain networks in children remain largely unknown.

Several previous studies have indicated significant sex differences

in the network properties of structural [9,10] and functional brain

networks [11,12,13,14] in adults. There is also evidence that

intelligence is associated with the topological organization of

structural [15] and functional brain networks [16] in adults.

Therefore, we hypothesized that 1) the developmental trajectories

of the functional brain networks might be affected by sex and 2)

intelligence quotient (IQ) might have a significant effect on

functional brain networks in healthy children.
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In this study, we used resting-state fMRI (rs-fMRI) to investigate

the effects of age, sex, and IQ on the organizational patterns of

functional brain networks in healthy children. Rs-fMRI has

emerged as a novel method to assess the spontaneous or intrinsic

activity of the brain and to study developmental changes in the

functional interactions between brain regions [17,18]. We

measured functional connectivity [19] by calculating the correla-

tions between the time series of any pair of the 90 regions in the

whole brain (defined by a prior atlas) during the resting state. A

correlation matrix was obtained in each of 51 healthy children

aged from 6 to 18 years and further thresholded into a binary,

undirected network underlying the topological organization of a

functional brain network. Finally, we investigated the effects of

age, sex, and IQ on the network properties at both the global and

regional levels.

Materials and Methods

Ethics Statement
Written informed consent was obtained from each subject and

his/her parent after the receipt of a full explanation of the purpose

and procedures of the study, according to the Declaration of

Helsinki (1991), prior to MR image scanning. Approval for these

experiments was obtained from the ethics committee of Tohoku

University School of Medicine.

Subjects
We collected brain MR images from 291 subjects (146 boys, 145

girls; age range, 5.6–18.4 years) who were recruited from various

kindergartens, elementary schools, junior high schools, and high

schools in Miyagi Prefecture in Japan [20,21,22,23,24]. Briefly, all

subjects were healthy children without any history of neurological

or psychiatric disorders. We announced that only right-handed

children can participate in this study in an advertisement used in

the subject recruitment and also confirmed that all subjects were

right-handed using the self-writing questionnaire ‘‘Edinburgh

Handedness Inventory’’ [25].

In this study, we acquired the rs-fMRI and IQ data from a

subset of all subjects, including 60 healthy Japanese children (24

boys, 36 girls; 5.7–18.4 years). Trained examiners collected IQs

from subjects over the age of 16 years by administering the

Japanese version of the Wechsler Adult Intelligence Scale (WAIS),

3rd edition [26]. For subjects younger than 16 years of age, the

Japanese version of the Wechsler Intelligence Scale for Children

(WISC), 3rd edition [27] was used. Full-scale IQs from the score of

the WAIS/WISC for each subject were calculated.

Image acquisition and preprocessing
All images were collected using a 3-T Philips Intera Achieva

scanner. A total of 34 transaxial gradient-echo images (64664

matrix, TR = 2000 msec, TE = 30 msec, flip angle = 70u,
FOV = 24 cm, 3.75 mm slice thickness-3.75*3.75*3.75 voxels)

covering the entire brain were acquired using an echo planar

sequence. For this scan, 160 functional volumes were obtained.

The subjects were instructed to keep their eyes closed, relax their

minds, and remain motionless as much as possible during the EPI

data acquisition.

For each subject, the first ten volumes were discarded to allow

for T1 equilibration effects and the adaptation of the subjects to

the circumstances, leaving 150 volumes for further analysis. Image

preprocessing was carried out using the SPM5 package (http://

www.fil.ion.ucl.ac.uk/spm) and Data Processing Assistant for

Resting-State fMRI (DPARSF) [28]. First, all functional images

were corrected for the acquisition time delay between the slices of

each volume using the sinc interpolation and for the geometrical

displacement due to head movement using a six-parameter (rigid

body) spatial transformation [29]. Nine subjects (6 boys/3 girls)

were excluded according to the criteria that head motion was less

than 3 mm of displacement or 3 degrees of rotation in any

direction. After the correction, the images of 51 subjects (18 boys/

33 girls) were normalized to the stereotaxic space [30] using an

optimum 12-parameter affine transformation and nonlinear

deformations [31] and then resampled to 3-mm isotropic voxels.

Finally, the resulting data were further temporally band-pass

filtered (0.01–0.1 Hz) to reduce the effects of low-frequency drift

and high-frequency physiological noises.

Construction of functional brain networks
To construct a functional brain network, we employed an

automated anatomical labeling (AAL) atlas [32] to parcellate the

whole brain into 90 regions (45 in each hemisphere, N = 90). The

names of the 90 regions and their corresponding abbreviations are

listed in Table S1. The mean time series of each region was then

acquired by averaging the time series of all voxels within that

region. Several sources of spurious variances arising from the

estimated head-motion profiles, white matter signals, and whole

brain signals were further removed by multiple linear regression

analysis [33,34]. The residual of this regression was then used to

substitute for the raw mean time series of the corresponding

regions. The functional connectivity between a pair of regions was

defined as the Pearson’s correlation coefficient in the residual time

courses. Thus, a functional connectivity matrix (or correlation

matrix) (rij, N6N) can be obtained for each subject. Each functional

connectivity matrix can be converted to a binary, undirected

network G using a cost threshold (t, 0,t,1), which is equivalent to

the ratio between the number of edges and all possible edges [35].

G(i,j)~
1, rij

�� ��§rt

0, rij

�� ��vrt

(

In this study, we first applied a range of cost threshold

(0.05#t#0.5, step = 0.01) to investigate the network properties.

Such a thresholding approach can normalize all networks to have

the same number of edges or wiring cost and thus provide an

avenue to detect age-related changes in the topological organiza-

tion [36,37]. Finally, we adopted the following complementary

approaches to select the small-world regime as a range of cost

threshold (0.2#t#0.35): (1) the average of the number of

connections over all nodes is larger than the log of the number

of nodes (N = 90) ensuring that the small-world properties are

estimable [38] and (2) the resulting brain networks are sparse but

fully connected and have distinguishable properties in comparison

with the degree-matched random and regular networks, respec-

tively [39,40,41]. To confirm our results, we also repeated all

analyses using weighted, undirected network (see Text S1) and

found similar results in both global network properties and

regional nodal properties (see Text S2, Table S3, S4, S5, S6, S7,

S8, S9).

Network analysis
Five small-world parameters (clustering coefficient, characteris-

tic path length, normalized clustering coefficient, normalized

characteristic path length, and small-worldness) and two efficiency

parameters (local efficiency and global efficiency) were computed

to characterize the global topological organization of the

functional brain networks. Three regional nodal parameters (node

degree, node efficiency, and node betweenness) were used to

Functional Brain Networks in Healthy Children
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examine the properties of the 90 brain regions. Here, the global

network parameters and the regional nodal parameters were

briefly described as follows [42] and calculated using the Brain

Connectivity Toolbox (www.brain-connectivity-toolbox.net).

BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used

for visualization of regional nodal properties in anatomical space.

Global network parameters. For a graph G with N nodes

and K edges, the clustering coefficient, C, of the graph G is the

average of the clustering coefficient over all nodes [38]:

C(G)~
1

N

X
i[G

Ei

Di(Di{1)=2
,

where Di is the number of edges connected to the node i and Ei is

the number of edges in the subgraph including the neighbors of

node i. The characteristic path length, L, of the graph G is defined

as [43]:

L(G)~
1

1

N(N{1)

X
i=j[G

1

dij

 ! ,

where dij is the shortest path length between nodes i and j. The

normalized clustering coefficient, NC = C/Crand, and the normal-

ized characteristic path length, NL = L/Lrand, were also computed,

where Crand and Lrand are, respectively, the mean clustering

coefficient and the mean characteristic path length of 1000

matched random networks that preserve the same number of

nodes, edges, and degree distribution as the real networks [44].

The small-worldness, SW, of the graph G is computed as the ratio

between NC and NL, SW = NC/NL. The network topology may be

said to correspond to a ‘‘small world’’ if NC.1 and NL<1 [38] or

if SW.1 [45]. In addition to the conventional small-world

parameters (C and L), more biologically sensible properties of

the brain networks are the efficiency parameters (global efficiency

[GE] and local efficiency [LE]), which measure the capability of

the network with regard to information transmission at the global

and local levels, respectively [35]. The global efficiency of the

graph G can be computed as:

GE(G)~
1

N(N{1)

X
i=j[G

1

dij

,

where dij is the shortest path length between nodes i and j. The

local efficiency of the graph G is defined as:

LE(G)~
1

N

X
i[G

GE(Gi),

where GE(Gi) is the global efficiency of Gi, the subgraph of the

neighbors of node i.

Regional nodal parameters. The node degree, ND, of a

node is the number of connections that link it to the rest of the

network. It is the most fundamental network measure, and most

other measures are ultimately linked to it. The node efficiency, NE,

for a given node i is defined as the inverse of the mean harmonic

shortest path length between this node and all other nodes in the

network [35,36]:

NE(i)~
1

(N{1)

X
j[G

1

dij

:

It measures the ability of a node to propagate information with the

other nodes in a network. The node betweenness, NB, of a given

node i is defined as [46]:

NB(i)~
X

i=j=k[G

sj,k(i)

sj,k
,

where sj,k is the number of shortest geodesic paths between nodes j

and k, and sj,k(i) is the number of shortest geodesic paths between

nodes j and m, which pass through node i. It captures the influence

that one node has over the flow of information between all other

nodes in the network. In this study, we normalized the regional

nodal parameters of a node by the average value of all nodes. A

node with high value (.mean + SD) in any of the regional nodal

parameters was considered as a hub in the network [47,48].

Statistical analysis
With regard to the functional brain network in each subject, we

averaged the global network parameters and the regional nodal

parameters over the small-world regime (0.2#t#0.35) as the

summary network parameters [39]. We applied a general linear

model (GLM) to analyze the effects of age, sex, and their

interaction on the summary network parameters. To detect the

development trajectories of the linear and quadratic age-related

changes in each summary network parameter (indicated as Y in

the following equations), we used two multiple linear regressions

(Model I and II) that modeled mean value, age, and age2 as

predictors, with sex as a covariate. We then determined the best

model among the two regressions based on Akaike’s information

criterion (AIC) [49].

Y~meanza|agezb|sexze ðIÞ

Y~meanza1|ageza2|age2zb|sexze ðIIÞ

To detect the sex-related difference in each summary network

parameter and its development, we performed another multiple

linear regression analysis (Model III), which included age, sex, and

age-by-sex interaction, to examine both positive (male.female)

and negative (male,female) contrasts as well as positive and

negative age-by-sex interactions.

Y~meanza|agezb|sexzc|age|sexze ðIIIÞ

If a significant age-by-sex interaction were found, a Pearson’s

correlation analysis was further performed between age and the

summary network parameter in each sex group. For the analysis of

the IQ-related difference, we first applied a multiple linear

regression (Model III) on both IQ and each summary network

parameter to model the effects of age, sex, and age-by-sex

interaction; the residuals of the regression were then used to

calculate the Pearson’s correlation between IQ and the summary

network parameters [50]. For all the analysis, the significance

levels (p-values) were provided in two categories (p,0.05 and

p,0.01).

Functional Brain Networks in Healthy Children
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Results

Economic small-world organization
At a global level, some key organizational properties (e.g.,

clustering coefficient, characteristic path length, local efficiency,

and global efficiency) of the functional brain networks were

demonstrated as a function of the cost threshold (0.05#t#0.5)

(Figure 1). The functional brain networks in healthy children

showed a much higher clustering coefficient but similar charac-

teristic path length compared with the matched random networks

(Figure 1 A and B). The normalized clustering coefficient was

much larger than 1, whereas the normalized characteristic path

length was similar to 1 (Figure 1C). The small-worldness was

larger than 1.2 over the small-world regime (0.2#t#0.35)

(Figure 1D). Moreover, all functional brain networks demonstrated

a higher fault tolerance of local efficiency (Figure 1E) but an

approximately equivalent parallel information processing of global

efficiency (Figure 1F) compared with the matched random

networks.

At the regional level, we defined 21 global hubs as the brain

regions with higher values (.mean + SD) in any of the regional

nodal parameters across all subjects (Figure 2, see Table S2). In

particular, 14 of the 21 global hubs (the bilateral anterior cingulate

gyrus [ACG], bilateral superior temporal gyrus [STG], bilateral

angular gyrus [ANG], bilateral postcentral gyrus [PoCG], bilateral

insula [INS], left precuneus [PCUN], left medial superior frontal

gyrus [SFGmed], right superior occipital gyrus [SOG], and right

supramarginal gyrus [SMG]) were identified by all of the regional

nodal parameters. Five global hubs (the bilateral rolandic

operculum [ROL], left posterior cingulate gyrus [PCG], right

SFGmed, and right PCUN) were identified by both the node

degree and node efficiency. Two global hubs (the right middle

frontal gyrus [MFG] and right medial orbitofrontal cortex

[ORBmed]) were identified only by the node betweenness. These

global hubs were mainly composed of recently evolved association

and primitive paralimbic regions [51].

Effects of age and sex on global network properties
We analyzed the effects of age, sex, and age-by-sex interaction

on the summary global network parameters (Table 1). Linear

positive age-related changes (p,0.05) were found in the normal-

ized clustering coefficient, small-worldness, and local efficiency.

There was no significant age effect on the clustering coefficient,

characteristic path length, normalized characteristic path length,

and global efficiency. We also found significant sex differences

(p,0.05) in 3 global network parameters in which the girls showed

significantly higher values in the characteristic path length and

normalized characteristic path length but significantly lower values

in the global efficiency compared with the boys. There was no

significant age-by-sex interaction in all global network parameters.

Effects of age and sex on regional nodal properties
The presence of linear and quadratic age-related changes in the

summary regional nodal parameters was examined using a GLM

analysis. We identified the brain regions showing significant age-

related changes (p,0.05 or p,0.01, uncorrected) in the regional

nodal parameters (Figure 3). Linear age-related increases in the

node degree were found in 5 brain regions, including the bilateral

supplementary motor area (SMA), left inferior occipital gyrus

(IOG), right ORBmed, and right superior temporal pole (TPOsup)

(Figure 3A, red regions). Linear age-related decreases in the node

degree were found in 6 brain regions, including the bilateral

paracentral lobule (PCL), left dorsal superior frontal gyrus

(SFGdor), right superior parietal gyrus (SPG), right heschl gyrus

(HES), and right hippocampus (HIP) (Figure 3A, green regions). A

positive quadratic (i.e., U-shaped) developmental trajectory of the

node degree was observed in the bilateral PCUN (Figure 3A,

yellow regions). A negative quadratic (i.e., inverted U-shaped)

correlation between age and the node degree was found in the left

pallidum (PAL) and left SPG (Figure 3A, blue regions). Similarly,

linear age-related increases in the node efficiency were found in 5

brain regions, including the bilateral SMA, left IOG, right

ORBmed, and right middle cingulate gyrus (MCG) (Figure 3B,

red regions). Linear age-related decreases in the node efficiency

were found in 4 brain regions, including the bilateral PCL, left

SFGdor, and right SPG (Figure 3B, green regions). A positive

quadratic developmental trajectory of node efficiency was

observed in the right PCUN (Figure 3B, yellow regions). A

negative quadratic correlation between age and the node efficiency

was found in the left PAL and left SPG (Figure 3B, blue regions).

Moreover, linear age-related increases in the node betweenness

were found in 3 brain regions, including the left PCG, right

ORBmed, and right SFGmed (Figure 3C, red regions). Linear

age-related decreases in the node betweenness were found in 4

brain regions, including the bilateral PCL, right PCUN, and right

calcarine cortex (CAL) (Figure 3C, green regions).

We also found significant sex-related differences (p,0.05 or

p,0.01, uncorrected) in the regional nodal parameters (Figure 4).

The girls showed higher values in the node degree of the bilateral

fusiform gyrus (FFG), bilateral lingual gyrus (LING), and right

SFGmed (Figure 4A, red regions). The boys showed higher values

in the node degree of the left superior orbitofrontal cortex

(ORBsup) and left inferior orbitofrontal cortex (ORBinf)

(Figure 4A, blue regions). The girls showed higher values in the

node efficiency of the right FFG, right LING, and right SFGmed

(Figure 4B, red regions). The boys showed higher values in the

node efficiency of the left putamen (PUT) and left ORBinf

(Figure 4B, blue regions). The girls showed higher values in the

node betweenness of the left triangular part of the inferior frontal

gyrus (IFGtriang) and right LING (Figure 4C, red regions),

whereas the boys showed higher values in the node efficiency in

the left rectus gyrus (REC) (Figure 4C, blue regions).

Significant age-by-sex interactions (p,0.05, uncorrected) were

also found in several brain regions (Figure 5). Further, the

Pearson’s correlation analysis revealed the correlations between

age and the regional nodal parameters in each sex group. A

significant negative correlation with age (p = 0.005) in the node

degree in the left SPG was found in the girls, whereas a positive

correlation with age (p = 0.537) was found in the boys (Figure 5A).

The girls showed positive correlation with age (p = 0.330) in the

node efficiency in the left cuneus (CUN), whereas the boys showed

negative correlation with age (p = 0.114) (Figure 5B, left). A

significant negative correlation with age (p = 0.002) in the node

efficiency in the left SPG was found in the girls, whereas the boys

showed positive correlation with age (p = 0.329) (Figure 5B, right).

A significant positive correlation with age (p = 0.034) in the node

betweenness in the left REC was found in the boys, whereas the

girls showed no change with age (p = 0.602) (Figure 5C, left). The

girls showed significant positive correlation with age (p = 0.010) in

the node efficiency in the right REC, whereas the boys showed

negative correlation with age (p = 0.162) (Figure 5C, right).

IQ-related differences
We found no significant IQ-related difference in the summary

global network parameters (Table 1). However, there were

significant correlations between IQ and the regional node

parameters after regressing out the effects of age, sex, and age-

by-sex interaction (Figure 6). A significant positive correlation

Functional Brain Networks in Healthy Children

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55347



between IQ and the node degree was found in the left inferior

parietal lobule (IPL), right MCG, right PAL, and ORBinf

(Figure 6A, red regions). A significant negative correlation between

IQ and node efficiency was found in the left PCUN, left HES, left

STG, left ORBinf, and left HIP (Figure 6A, blue regions). A

significant positive correlation between IQ and the node efficiency

was found in the bilateral IPL, right PAL, and ORBinf (Figure 6B,

red regions). A significant negative correlation between IQ and the

node efficiency was found in the left PCUN, left STG, left

ORBinf, left HIP, and left olfactory (OLF) (Figure 6B, blue

regions). A significant positive correlation between IQ and the

node betweenness was found in the left IPL, left MFG, left LING,

Figure 1. Global network properties. (A) The clustering coefficient and (B) the characteristic path length are shown as a function of cost
thresholds and compared to the matched random networks. (C) The normalized clustering coefficient, the normalized characteristic path length, and
(D) the small-worldness are shown as a function of cost thresholds. Note that the small-world regime of cost threshold adopted in this study was from
0.2 to 0.35. (E) The local efficiency and (F) the global efficiency are shown as a function of cost thresholds and compared to the matched random
networks. Error bars indicate standard error in all subjects.
doi:10.1371/journal.pone.0055347.g001

Functional Brain Networks in Healthy Children
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and right MCG (Figure 6C, red regions). A significant negative

correlation between IQ and the node betweenness was found in

the left REC, left ORBinf, left HIP, and left inferior temporal

gyrus (ITG) (Figure 6C, blue regions).

Discussion

The present study examined the topological organization of the

functional brain networks derived from rs-fMRI in healthy

children and quantitatively analyzed the effects of age, sex, and

IQ on the network properties at both the global and regional

levels. The main findings were as follows: (1) an economical small-

world organization was found in the functional brain networks of

all healthy children; (2) the age-related increases in the local

efficiency of the whole networks contributed to the development of

modularized information processing of functional systems; (3) the

boys showed a higher global efficiency compared with the girls,

supporting a more optimal configuration in the boys for parallel

information transfer; (4) many brain regions primarily in the

frontal, parietal, and occipital lobes were profoundly affected by

age, sex, and their interaction, indicating that girls and boys

showed distinct developmental patterns of the functional brain

networks; and (5) the regional nodal parameters positively

correlated with IQ were found in several brain regions related to

the attention system, whereas those negatively correlated with IQ

were found in various brain regions primarily involved in the

default mode, emotion, and language systems.

Economic small-world organization
We demonstrated the key properties of economical small-world

organization in the functional brain networks in all healthy

children. An economical small-world network can provide a

topological substrate for both locally specialized or segregated

processing in the neighborhoods of highly clustered nodes and

globally distributed or integrated processing on a highly efficient

Figure 2. Global hubs in functional brain networks. Global hubs are defined as the brain regions with higher values (.Mean + SD) in any of (A)
node degree, (B) node efficiency, and (C) node betweenness. The global hubs are shown in red with node sizes that indicate the values in regional
nodal parameters. For a description of the abbreviations, see Table S1.
doi:10.1371/journal.pone.0055347.g002

Functional Brain Networks in Healthy Children
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network with a short characteristic path length [36,52,53,54].

Recent studies on structural and functional brain networks

indicate that the economical small-world organization is estab-

lished during a critical time period of brain development, from 2

or 3 weeks to 39 weeks of age [55,56,57,58]. Thus, our results

provided further support for the previous findings that the

functional brain networks display small-world properties in

children and young adults, indicating an efficient network

structure throughout the developmental process [59,60].

Moreover, we employed three parameters to examine the

regional nodal properties in 90 brain regions. We identified 21

global hubs with higher values in either regional nodal parameter

that play a vital role in the global information integration between

different parts of the network. The global hubs were predomi-

nately located in the prefrontal and parietal lobes, providing a

potential explanation for their well-documented activation by

many cognitive functions [3,48]. The global hubs identified in this

study have also been recognized as global hubs by previous studies

on structural and functional brain networks

[10,11,37,52,61,62,63,64,65]. Interestingly, several global hubs

(bilateral SFGmed and left PCUN) have been recently indicated as

the core of a rich-club organization, playing a central role in

information integration and in conferring robustness to its

structural core [66].

Effects of age and sex on global network properties
Recent advances in MRI technology have enabled precise

measurements of functional interactions between brain regions

and have provided significant insights into human brain develop-

ment [7,8,67]. In this study, we applied a graph theoretical

analysis on the functional connectivities in the whole brains of

healthy children and found that several global network parameters

(e.g., NC, SW, and LE) showed significant increases with age. The

age-related differences in the global network properties were

mainly attributed to the increases in the clustering or local

efficiency with development, whereas the global efficiency was not

significantly related to age. The higher local efficiency has been

suggested to be associated with the modularized information

processing among topologically nearby regions [1,3]. Functionally

specialized brain regions typically show high clustering due to an

abundance of connections to other areas with the same functional

specialization (e.g., visual processing) and in the same anatomical

neighborhood (e.g., the occipital cortex) [68]. Thus, our results

supported the notion that the functionally related regions or brain

systems (e.g., the default mode system and the control system)

emerge during development in childhood and adolescence

[69,70]. These results were also consistent with previous findings

that the organization of multiple functional networks shifts from a

local anatomical emphasis in children to a more distributed

architecture in young adults, indicating the maturation process of

the functional systems [59]. Our findings also provided some

implications for understanding the inverse trajectories with

advancing age (e.g., the decreased local efficiency) in functional

[36] and structural [10,37] brain networks. Moreover, the stable

global efficiency in children might be associated with the fact that

the path length of the functional brain networks in early childhood

was already as short as those of random networks, as previous

studies indicated [59,60]. Furthermore, our results of the age-

related increase in small-worldness indicated that the topological

organization of the functional brain networks developed in healthy

children to promote an optimal balance between segregation and

integration for robust and dynamic information processing in the

human brain [71]. Notably, statistical comparisons were not made

in the small-world properties by either Fair et al. (2009) or

Fransson et al. (2011), and Supekar et al. (2009) made comparisons

at a single edge density (cost threshold, t = 0.54). Thus, this study,

which statistically analyzed the summary global network param-

eters calculated from the small-world regime (0.2#t#0.35),

provided evidence for the age-related differences in the econom-

ical small-world properties of the whole-brain functional networks

in healthy children.

The functional connectivity derived from functional MRI is also

modulated by gender [72]. In this study, we observed sex-related

differences in the functional brain networks constructed from

functional connectivity in healthy children. The boys showed

significantly higher values in the global efficiency (p = 0.027),

whereas the girls showed marginally significantly higher values in

the clustering coefficient (p = 0.055). A recent study on functional

brain networks in young adults showed a gender-by-hemisphere

interaction that men had a higher normalized clustering coefficient

Table 1. The effects of age, sex, and IQ on global network properties.

Age effecta Sex effectb Age-sex interactionb IQ effectc

T-score p-value Model T-score p-value Model T-score p-value r p-value

C 1.491 0.142 21.970 0.055 20.484 0.630 20.126 0.380

L 0.365 0.717 22.295 0.026 F.M 20.106 0.916 20.100 0.487

NC 2.254 0.029 L+ 0.037 0.971 1.259 0.214 0.064 0.657

NL 0.459 0.648 22.194 0.033 F.M 0.112 0.911 20.106 0.458

SW 2.170 0.035 L+ 0.180 0.858 1.230 0.225 0.069 0.630

LE 2.297 0.026 L+ 21.734 0.089 20.421 0.676 20.093 0.516

GE 20.355 0.724 2.285 0.027 F,M 0.110 0.913 0.075 0.602

aTwo multiply linear regressions that modeled age and age2 as predictors, along with sex as a covariate; the best model was determined by AIC.
bA multiply linear regression that modeled age, sex, and age-sex interaction.
cPearson’s correlation analysis between IQ and global network properties, each of which was regressed by a multiply linear regression that modeled age, sex, and age-
sex interaction.
L+: Linear regression model showing significant positive correlation. F.M: female shows significantly higher values than male; F,M: female shows significantly lower
values than male. Significances are set at p,0.05 and shown by bold characters.
C, clustering coefficient; L, characteristic path length; NC, normalized clustering coefficient; NL, normalized characteristic path length; SW, small-worldness; LE, local
efficiency; GE, global efficiency.
doi:10.1371/journal.pone.0055347.t001
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in the right hemispheric network but a lower clustering coefficient

in the left hemispheric network, indicating a finding different from

this study, most likely due to the lack of inter-hemisphere

connections [11]. However, our results were consistent with a

previous study on the structural brain networks constructed from

DTI with young adults in which females have higher local

efficiencies than males [9]. Thus, we speculated that the functional

brain networks in the boys showed a more optimal configuration

for globally distributed processing, whereas those in the girls took

an advantage of locally specialized processing. Integrated process-

es (e.g., the executive functions) would benefit from the global

efficiency of information transfer across the network as a whole,

whereas segregated processes (e.g., aspects of visual-input analysis)

would benefit from highly clustered connections between topo-

logical neighbors [68]. Moreover, a high global efficiency assures

effective integrity or rapid transfers of information between and

across remote regions that are believed to constitute the basis of

cognitive process [54]. Sex differences in the cognitive functions

Figure 3. Effect of age on regional nodal properties. Significant
linear positive, linear negative, quadratic positive, and quadratic
negative correlations are indicated by red, green, yellow, and blue
spheres, respectively. The significances of p,0.05 and p,0.01(uncor-

rected) are shown by spheres in small and big size, respectively. For a
description of the abbreviations, see Table S1.
doi:10.1371/journal.pone.0055347.g003

Figure 4. Effect of sex on regional nodal properties. The
significant higher values of regional nodal parameters in female and
male groups are shown in red and blue, respectively. The significances
of p,0.05 and p,0.01 (uncorrected) are indicated by spheres in small
and big size, respectively. For a description of the abbreviations, see
Table S1.
doi:10.1371/journal.pone.0055347.g004
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Figure 5. Age-by-sex interaction on regional nodal properties. The significant age-by-sex interactions on regional nodal parameters are
shown. The correlation between age and regional nodal parameters are shown in female and male groups, respectively. For a description of the
abbreviations, see Table S1.
doi:10.1371/journal.pone.0055347.g005
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are well-known to become more pronounced during childhood

and adolescence [73]. Therefore, our findings of a sex difference in

the functional brain networks possibly underlied the sex-related

cognitive differences in children.

Effects of age and sex on regional nodal properties
The age-related changes in the regional nodal properties were

predominately found in the frontal and parietal lobes. Age-related

increases were found in several frontal brain regions (e.g.,

SFGmed.R, ORBmed.R, SMA.L, SMA.R, and MCG.R), which

appear to be those of the last brain regions to mature and related

to the increasing cognitive capacity during childhood [74].

Moreover, several key brain regions (e.g., PCG.L, SFGmed.R,

and ORBmed.R) of the default mode network (DMN) [75,76]

showed age-related increases. These findings were consistent with

evidence that the DMN is only sparsely connected (i.e.,

fragmented) and becomes significantly more integrated during

development [70]. However, two of the key DMN regions

(bilateral PCUN) showed a positive quadratic (e.g., U-shaped)

developmental trajectory or a linear age-related decrease in the

regional nodal properties. A previous study on the structural brain

networks in healthy pediatric subjects during the first years of life

indicated that the right precuneus shows a quite high value in the

node betweenness among all brain regions [57]. In this study, the

bilateral precuneus also showed high values in the regional node

parameters (identified as a global hub) across all subjects. Thus,

regarding the functional connectivity, we assumed that the

bilateral precuneus was likely to be developed early, preserving

the high values with a slight decrease during childhood. We also

found several brain regions showing a linear age-related decrease

(e.g., bilateral PCL, SPG.R, SFGdor.L, HES.R, HIP.R, and

CAL.R) and a negative quadratic (e.g., inverted U-shape)

developmental trajectory (e.g., SPG.L and PAL.L), which are

primarily related to motor, somatosensory, auditory, and visual

functions. Recent studies demonstrate that the global hubs in

functional brain networks are largely confined to primary sensory

and motor brain regions in the infant brain [56,58]. However, the

global hubs identified in the adult brain are mainly composed of

heteromodal association cortices [51], as indicated by recent

studies on structural [10,37,63,64,77,78] and functional [52,62]

brain networks. Therefore, our results suggested that the frontal

brain regions associated with the higher-order cognitive functions

developed during childhood, whereas the parietal, temporal, and

occipital brain regions related to the primary motor/somatosen-

sory, auditory, and visual functions tended to play a less important

role in the whole brain due to their early development.

Significant sex-related differences in the regional nodal param-

eters were also found in various brain regions, which were

primarily related to the default mode system (e.g., SFMmed.R),

the language system (e.g., IFGtriang.L, REC.L, ORBinf.L, and

PUT.L), and the vision system (e.g., bilateral LING and FFG).

Our results were consistent with the notion that cognitive and

emotional development differs between females and males,

particularly in visuospatial, language, and emotion processing

[73,79,80]. Interestingly, the identified brain regions involved in

the language system were all from the left hemisphere, whereas

those related to the visuospatial processing were from the right

hemisphere. These findings supporting the notion that differences

in laterality between males and females when processing language

versus visuospatial information [81,82].

We also identified age-by-sex interactions in several brain

regions associated with the visuospatial function (e.g., CUN.L and

SPG.L) [81,83] and emotion processing (e.g., bilateral REC)

[84,85,86]. These sex-dimorphic patterns of developmental

trajectories in the brain regions may be the result of underlying

sex differences in the functional maturation of these regions.

Furthermore, sex differences in brain development have been well

documented to potentially be related to the prevalence, course,

and treatment of several neuropsychiatric disorders, such as

autism, attention deficit hyperactivity disorder (ADHD), and

schizophrenia [87,88]. Recent studies on functional and structural

brain networks have indicated significant changes in the regional

node properties in autism [89], ADHD [41], and schizophrenia

[39,40,90,91]. For example, two brain regions (e.g., IFGtriang.L

and REC.L) showing significant sex-related differences in this

study were found to be altered in the ADHD group [41].

Therefore, investigating the sex-specific brain networks in health

and neurodevelopmental disorders will be interesting to study in

the future.

IQ-related differences
Previous studies of fMRI on working memory tasks [92], verbal

and non-verbal reasoning tasks [93,94,95], and at rest [96] have

indicated that the functional interactions between multiple brain

regions are strongly related to the neural basis of intelligence. In

this study, we investigated the correlation between IQ and the

topological properties of functional brain networks. We found no

IQ-related change in the global network properties. However,

recent studies showed that intelligence is highly correlated with

Figure 6. Effect of IQ on regional nodal properties. The
significant positive and negative correlation between IQ and regional
nodal parameters are shown in red and blue, respectively. The
significances of p,0.05 and p,0.01 (uncorrected) are indicated by
spheres in small and big size, respectively. For a description of the
abbreviations, see Table S1.
doi:10.1371/journal.pone.0055347.g006
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both the global and local efficiencies of structural and functional

brain networks [15,16,91]. Several factors might contribute to the

discrepancies between the present study and previous studies.

First, the subjects included in this study were healthy children,

whereas the previous studies all involved adults. The IQ-related

differences in the network properties would be affected by the

developmental trajectories of the functional connectivity between

sexes [97]. Therefore, separating age- and sex-specific groups to

investigate the correlation between brain network properties and

intelligence would be useful. Second, although the similar

parcellation of the whole brain used in this study and the previous

studies on the structural brain networks derived from DTI [15,91],

different MRI modalities may affect the organization of brain

networks. Third, the previous studies on the functional brain

network using rs-fMRI [16] is a voxel-wise network study

including approximately 9500 voxels, which may result in the

differences in network properties due to the different network size

[91,98,99]. Finally, we investigated the global network parameters

using the average value across the small-world regime, which

might rule out some significances at a certain cost threshold as

observed in the previous studies.

The IQ-related differences in the regional nodal parameters

were found in the brain regions predominately in the frontal,

parietal, and temporal lobes. Consistent with the parieto-frontal

integration theory (P-FIT) [100], several brain regions identified in

this study (e.g., STG.L, ITG.L, HIP.L, and LING.L) were related

to the basic sensory/perceptual processing of cognitively salient

information predominantly through the combination of auditory

and visual means; the interaction of parieto-frontal brain regions

(e.g., bilateral IPL, bilateral ORBinf, PCUN.L, MFG.L, MCG.R,

REC.L, OLF.L) underpins higher cognitive functions. Thus, our

results provided further evidence for the notion proposed by the P-

FIT model that variations in a distributed brain network predict

individual differences in intelligence. The distributed brain

network closely related to intelligence was also indicated by

previous studies on functional connectivity [96], anatomical brain

networks [15], and functional brain networks [16]. Moreover,

several brain regions mainly involved in the attention system (e.g.,

the bilateral IPL, MFG.L, MCG.R, and ORBinf.R) showed a

positive correlation with IQ, whereas the brain regions negatively

correlated with IQ were primarily associated with the default

mode system (e.g., PCUN.L), emotion system (e.g., ORBinf.L,

OLF.L, REC.L, and HIP.L), and language system (e.g., STG.L,

HES.L, and ITG.L). One interpretation of the opposed correla-

tion with IQ between the attention system and the default mode

system might be recent findings of anticorrelations between the

default and attention subsystems [34,101]. However, a previous

study revealed that several key brain regions involved in the

default mode system (e.g., medial prefrontal cortex, bilateral

inferior parietal cortex, and precuneus/posterior cingulate regions)

showed strong negative correlation between the full-scale IQ and

individual normalized path length, indicating high node efficiency

[16]. Several issues might contribute to the different findings of this

study, such as preprocessing methods of rs-fMRI (see the

discussion in the methodology issues) and the factors that we

discussed before (e.g., subjects, network size, and threshold

strategy). Together, our findings indicated that the brain regions

related to the attention, default mode, emotion, and language

systems were important predictors for the differences in intelli-

gence in children with normal development.

Methodological issue
There are several issues that should be addressed. Two recent

studies indicate that head motion produces substantial changes in

rs-fMRI analysis despite compensatory spatial registration and

regression of motion estimates; these changes had significant and

systematic effects on functional network measures [102,103]. To

evaluate that the main results of this study were not greatly

affected by head motion, we (1) calculated 2 indices of data quality

introduced by [102]: Frame-wise displacement (FD) and the RMS

variance of the temporal derivative of time courses (DVARS); (2)

interpolated time points where FD .0.5 mm and DVARS .0.5

with nearest neighbor using cubic spline interpolation [104]; (3)

analyzed all global and regional properties of functional brain

networks. With and without interpolation of motion artifact, the

analysis of global network properties showed same results (e.g.,

significant age-related increase on local efficiency; higher local

efficiency but lower global efficiency in girl). Moreover, regional

nodal properties calculated from functional connectivity before

and after interpolation also showed high correlations (node degree,

r = 0.9857; node efficiency, r = 0.9776; node betweenness,

r = 0.8903). Together, the main results reported are likely not

attributable to the effects of head motion.

The effects of age, sex, and IQ on the topological organization of

brain networks in healthy children should be examined carefully

and precisely. Significant interactions of age-by-sex, sex-by-IQ, or

age-by-sex-by-IQ have been identified in previous studies of

children on functional connectivity [97,105,106], anatomical

connectivity [107], brain perfusion [23], and brain structure

[50,108,109,110,111,112]. Moreover, the significances in the

regional node properties found in this study were at the level of

p,0.05 without multiple comparisons correction; an even higher

level of significance might be able to be achieved by including more

subjects. Therefore, a large number of subjects will be useful for the

investigation of the effects of age, sex, and IQ on brain network

properties in future studies. Furthermore, sexually dimorphic

trajectories in the brain structure [108], IQ-related trajectories of

cortical development [110], and the established topological

organization of brain anatomical networks in early brain develop-

ment [55] have been confirmed by longitudinal designs. Therefore,

although this study was a cross-sectional study, a longitudinal

analysis would also be helpful to examine the developmental

trajectory of brain networks in healthy children and its relationships

with sex and IQ. Finally, investigating the topological organization

of the human brain networks during development in combination

with functional and structural studies using multi-modality MRI,

such as DTI, structural MRI, and rs-fMRI, is also important.

Conclusions

In conclusion, we observed an economical small-world organi-

zation in the functional brain networks derived from rs-fMRI in

healthy children. Our results indicated significant effects of age,

sex, and IQ on both global and regional nodal properties. These

findings may help elucidate normal brain maturation, which

merits further investigations that include a larger number of

subjects, apply a longitudinal design, and combine multimodality

MRI data. Our study provided insights into the maturation

mechanism of the functional brain systems in healthy children

from a network perspective.
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