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Abstract

The ability of the opportunistic fungal pathogen Cryptococcus neoformans to resist oxidative stress is one of its most
important virulence related traits. To cope with the deleterious effect of cellular damage caused by the oxidative burst
inside the macrophages, C. neoformans has developed multilayered redundant molecular responses to neutralize the stress,
to repair the damage and to eventually grow inside the hostile environment of the phagosome. We used microarray analysis
of cells treated with hydrogen peroxide (H2O2) at multiple time points in a nutrient defined medium to identify a
transcriptional signature associated with oxidative stress. We discovered that the composition of the medium in which
fungal cells were grown and treated had a profound effect on their capacity to degrade exogenous H2O2. We determined
the kinetics of H2O2 breakdown by growing yeast cells under different conditions and accordingly selected an appropriate
media composition and range of time points for isolating RNA for hybridization. Microarray analysis revealed a robust
transient transcriptional response and the intensity of the global response was consistent with the kinetics of H2O2

breakdown by treated cells. Gene ontology analysis of differentially expressed genes related to oxidation-reduction,
metabolic process and protein catabolic processes identified potential roles of mitochondrial function and protein
ubiquitination in oxidative stress resistance. Interestingly, the metabolic pathway adaptation of C. neoformans to H2O2

treatment was remarkably distinct from the response of other fungal organisms to oxidative stress. We also identified the
induction of an antifungal drug resistance response upon the treatment of C. neoformans with H2O2. These results highlight
the complexity of the oxidative stress response and offer possible new avenues for improving our understanding of
mechanisms of oxidative stress resistance in C. neoformans.
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Introduction

Cryptococcus neoformans is pathogenic basidiomycetous yeast with a

ubiquitous worldwide distribution. It exists primarily as an

environmental organism associated with soil and is known to

have a particular association with bird guano [1]. However, C.

neoformans is also an important opportunistic pathogen that causes

invasive fungal infections and is responsible for about 1 million

cases and 700,000 mortalities annually [2]. Most of the infections

have been reported in patients with immune deficiencies,

especially those with AIDS, but also in non-HIV immune

compromised patients. The respiratory tract is the main portal

of entry and the lung is the primary site of infection, though

serious infections involving the central nervous system are

common.

In the mammalian host, cell mediated immunity based on

phagocytic cells is crucial to counteract fungal infections.

Macrophages, neutrophils and other phagocytic cells generate

potent reactive oxygen (ROS) and nitrogen (RNS) species that are

toxic to most fungal and bacterial pathogens and cause damage to

their DNA, protein and lipids. ROS and RNS are implicated in

the killing of fungal pathogens such as Aspergillus fumigatus, Candida

albicans, and C. neoformans by host immune cells [3,4,5]. Most of

these conclusions are based on the positive correlation between

resistance of the wild type and sensitivity of a specific deletion

strain to oxidative stress in vitro and the corresponding respective

virulence and avirulence phenotypes of these strains in a murine

cryptococcosis model [6].

An important virulence related trait of C. neoformans is its ability

to survive inside phagocytic cells. It not only resists killing by

macrophages after phagocytosis, but can continue to replicate by

budding within this environment and subsequently exit the

macrophage without causing host cell lysis [7,8,9,10,11]. The

ability of C. neoformans to survive and thrive inside this harsh
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environment suggests it must have mechanisms not only to

neutralize the reactive molecular species to which it is exposed

within the macrophages but also to repair the cellular damages

caused by the oxidative and nitrosative stresses.

In C. neoformans, a number of genes coding for enzymes of

antioxidant defense systems have been shown to be important for

both in vitro oxidative stress resistance and also for in vivo

pathogenesis [12]. Foremost among these is the highly conserved

peroxiredoxin, Tsa1, which is induced under oxidative stress and

is essential for C. neoformans resistance to peroxide stress [6]. The

downstream components of the thioredoxin system, represented

by the thioredoxins Trx1 and Trx2 and thioredoxin reductase

Trr1, are involved in the reduction and recycling of the oxidized,

inactive form of peroxiredoxin [13]. In C. neoformans, deletion of

these genes renders them sensitive to oxidative stress, albeit with a

less severe phenotype than that of a tsa1D strain, and decreased

survival in macrophage culture conditions [14,15]. C. neoformans

also contains two glutathione peroxidases Gpx1 and Gpx2, both of

which respond differently to various stressors; with only Gpx2

induced in response to H2O2 generated oxidative stress. Further-

more, both GPX1 and GPX2 deletion mutants were only mildly

sensitive to oxidant killing by macrophages and exhibited no effect

on virulence in a murine model [16]. Other enzymes that have

been shown to play a role in oxidative stress resistance in C.

neoformans include a cytosolic copper-zinc superoxide dismutase

(Sod1) [17], the mitochondrial manganese superoxide dismutase

(Sod2) [18], cytochrome c peroxidase (Ccp1) [19] and the

alternative oxidase (Aox1) [20].

Whole genome microarray studies of C. neoformans experiencing

oxidative stress have been reported in which the authors either

used fungal cells engulfed by macrophages or grown in the

nutrient rich YPD medium and treated with exogenous H2O2

[21,22]. The magnitude of the transcriptional response was much

weaker in the cells residing inside the macrophages compared to

the robust transcriptional response observed in the cells treated

with exogenous H2O2 in YPD medium, suggesting that the

environment has a direct effect on the transcriptional response.

This may also be due to the differences in the concentration of

ROS released by the exogenous application of stress agent

compared to that released inside the macrophages. Gene

expression studies of oxidative stress resistance in a number of

other fungal organisms such as S. cerevisiae, Schizosaccharomyces pombe

and Candida sp have been published [23,24,25,26]. They indicate

that the sensitivity of the organisms to different concentrations of

H2O2 and the magnitude of the elicited cellular response was

highly dependent on the composition of the medium in which the

cells were grown and treated. For example, S. pombe triggered

different signaling networks mediated either by Pap1 or by Sty1

depending on the concentration of H2O2 used for the treatment

[27]. Pap1 was more sensitive to H2O2 than the Sty1-mediated

pathway and was responsible for inducing an adaptive response.

This was shown by an induction of Pap1 with an extracellular

concentration of 0.2 mM H2O2, whereas H2O2 concentrations

above 0.2 mM failed to trigger this activation.

In a study of oxidative stress and aging in S. cerevisiae, the authors

reported different degrees of sensitivity of yeast cells to external

H2O2 when grown in different media [28]. In this study, there was

a dramatic increase in the resistance of yeast cells growing in YNB

in the presence of galactose and required the use of 10 mM of

H2O2 for gene induction, even though the same strains grown in

the presence of glucose exhibited 70% death when treated with

1.5 mM H2O2. The pathogenic fungi C. glabrata has shown to be

resistant to up to 40 mM of H2O2, while C. albicans was found to

be sensitive at this concentration of H2O2 [29]. Another

pathogenic fungi, A. fumigatus, continued to grow during two-hour

incubations with 5 mM H2O2 and tolerated up to 30 mM H2O2

[30,31].

In the context of pathogenic fungi and phagocytosis, the

concentration of H2O2 inside the phagosome during the oxidative

burst is not precisely known, however multiple reports suggest that

the effective H2O2 concentration may reach hundreds of micro

molar [32,33]. Additionally, the usable nutrient composition of the

phagosome is essentially unknown, but it is likely to be a nutrient-

limited environment with the lumen of the phagosomes reported

to acidify to a final pH of , 4.8 during maturation [34]. To more

closely mimic in vivo conditions, we chose to treat C. neoformans cells

with H2O2 in a nutrient limited YNB medium at pH 4.0. To stress

the cells and avoid the induction of an overwhelming apoptotic

death response, cells were treated with a concentration of H2O2

that resulted in the killing of , 15% of initial cell population or

lethal dose (LD,15) which was determined via H2O2-generated

oxidative stress death curves. These curves dictated the use of

1 mM H2O2 for treatment. By quantitatively measuring the

concentration of H2O2 in the culture during the treatment, we

discovered that within 30 minutes of incubation, all of the H2O2 was

completely degraded from the medium. Therefore, we subjected RNA

samples isolated from the cells at 5, 15, 30, 45 and 60 minutes post

H2O2 treatment to microarray hybridization. We used a custom

designed C. neoformans serotype A array using the predicted ORFs in the

H99 (serotype A) C. neoformans genome identified by the Broad

Institute genome sequencing project (http://www.broadinstitute.org/

annotation/genome/cryptococcus_ neoformans/FeatureSearch.html).

To facilitate the identification of underlying biological processes from

the gene expression dataset, we generated a new gene ontology gene

association file for C. neoformans genome. Herein, we report a global

time-resolved genomic expression pattern of C. neoformans and identified

over-represented biological processes which may point to potential

mechanisms by which the fungus detects and destroys the oxidative

stressor as well as repairs and recovers from the damage caused by the

oxidative stress.

Materials and Methods

Strains, Media and Reagents
C. neoformans serotype A strain KN99a was used throughout this

experiment. Cells were grown on rich medium, YPD (1% yeast

extract, 2% Bacto peptone, and 2% dextrose), or minimal

medium, YNB, pH 4.0 (6.7 g/liter yeast nitrogen base without

amino acids plus 20 g/liter dextrose and 25 mM sodium succinate

at pH 4.0). Solid media contained 2% Bacto agar. Antimycin-A

from Streptomyces sp. (Cat No A8674), Carbonyl cyanide 4-

(trifluoromethoxy) phenylhydrazone (FCCP) (Cat No -C2920),

Salicylhydroxamic acid (SHAM) (Cat No -S607) and hydrogen

peroxide solution (Cat No H1009) all were purchased from

SIGMA-ALDRICH, St Louis, MO, USA. Estimation of H2O2

was performed using OxiSelect H2O2 assay kit from Cell Biolabs,

San Diego, CA, USA following the protocol supplied with the

reagent. Three independent experiments were carried out to

calculate the standard error which is indicated by the error bars in

the figures.

Determination of Stressor Concentration by Survival
Curve

Exponentially growing cells (OD650 = 1.5) were treated with

various concentrations of H2O2 in a shaking 30uC incubator.

Aliquots were taken at various time points, cells pelleted by

centrifugation at 4uC. Cell pellet was washed two times with cold

PBS and finally resuspended in PBS for plating on solid YPD and
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incubated at 30uC. Colony forming units (CFU) were counted

after 2 days.

Hydrogen Peroxide Sensitivity Tests
Overnight cultures were diluted to OD650 = 1.0. Ten times

serially diluted cell suspension was spotted on various plates

containing either the individual stressor or their combinations.

Plates were incubated at 30uC and observed on different days.

Custom C. neoformans Serotype A Microarray
Development

Of the 7239 predicted ORFs in the H99 (serotype A)

C. neoformans genome identified through the Broad Institute

C. neoformans genome sequencing project, 6,932 probes were

designed. The remaining 307 genes were either identical paralogs

or had primarily low complexity sequences. Single 60-mer

oligonucleotide probes were designed for each of the open reading

frames and were duplicated on each microarray to provide an

estimate of intra array variance. The arrays were fabricated by

Agilent Technologies, Santa Clara, CA.

Cell Preparation and Treatment
Two-day-old cultures of C. neoformans KN99a were used to

inoculate three bioreplicates into YNB pH 4.0 media and

incubated at 30uC with shaking (200 rpm) until the cells were in

mid-log phase (OD650 ,1.5–2.0). Each biological replicate culture

was split into two cultures and H2O2 was added to one of each of

these two cultures to a final concentration of 1 mM. Cultures were

incubated for 60 minutes and sampled at 5, 15, 30, 45 and 60-

minute intervals. Sodium citrate (50 mM final concentration) was

added to control and test samples to rapidly halt the hydrogen

peroxide stress. Cells were collected by centrifugation at 1800 g for

5 minutes and washed once with sterile phosphate buffered saline.

The washed cell pellets were flash frozen and lyophilized.

Lyophilized cells were stored at –80uC.

Isolation of Total RNA
RNA was isolated using the Agilent Total RNA Isolation

(Protocol for Yeast) (Agilent Technologies, Palo Alto, CA.)

according to the manufacturer’s instructions with the following

modifications. The lyophilized pellet (approximately 16108 cells)

was vortexed with 0.5 g of 1 mm glass beads (Biospec, Inc.) for

5 min., followed by the addition of 600 uL lysis solution (kit

supplied) and vortexed for a further 5 min. Disrupted cells were

centrifuged at 16 000 g for 3 min. and the supernatant transferred

to a pre-filtration column. Rest of the procedures was carried out

as described in the Manufacturer’s protocol until the final step.

Isolated RNA was treated with RNase free DNase. RNA was

quantified using a Nanodrop ND-1000 (Nanodrop Technologies,

Wilmington, DE.). The quality of purified RNA was assessed on

an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA.).

Labeling of Total RNA
Total RNA was directly fluorescently labeled with Cy3 or Cy5

using the Micromax ASAP RNA labeling kit (Perkin Elmer, Inc,

Wellesley, MA.) according to manufacturer’s instructions with the

following modifications. All reaction component volumes were

doubled with the exception of RNA concentration resulting in a

final reaction mix volume of 40 uL. After the addition of Stop

buffer, to remove any unincorporated dye, the reaction mix

volume was brought up to 100 uL with nuclease-free water

followed by the addition of 3 volumes of 100% nuclease-free

ethanol. This 400 uL reaction volume was then applied to an

RNeasy Mini Kit column (Qiagen, Valencia, CA., USA) and

processed according to manufacturer’s instructions (Yeast RNA

isolation protocol, starting from RW1 wash). Dye incorporation

was quantitated using a Nanodrop ND-1000 (Nanodrop Tech-

nologies) by measuring emission wavelength at 570 nm (Cy3) and

670 nm (Cy5). Labeled-RNA concentration and dye incorporation

were used to determine the RNA labeling specific activity (pmol/

ug). Labeled and unlabeled RNA were combined to adjust the

sample specific activity to the empirically determined intensities of

40 and 45 pmol/ug for Cy3 and Cy5 labeled samples, respec-

tively. Unstressed Cy3-labeled and 1 mM H2O2 stressed Cy5-

labeled RNA were combined and brought to near-dryness in a

vacuum centrifuge before being resuspended in 19 uL nuclease-

free water and stored at –80uC.

Hybridization to Microarrays
Microarray hybridization and scanning were preformed ac-

cording to Agilent Microarray processing specifications (MO gene

LLC, St Louis, MO. USA).

Microarray Analysis
The LOESS balanced data from the Feature Extraction was

used to assess replication consistency across biological and process

replicates using a linear ANOVA model that considers all 13,864

probes on the array and data for all the replicates, to determine the

significance of differential expression [35]. yrijk = a+Ai+Gk+
(AG)ik+Dl+arijk; where yrijk is the logarithm of the rth replicate

model-based expression value of gene k at the ith time point with

the jth treatment (i = 1, 2, 3, 4; j = 1, 2; k = 1,..., 41, 174). This

model accounts for variance in genes (G), arrays (A), and array

plus gene; a term accounts for error.

Quantitative Real Time PCR
Archive RNA extracted for the microarray experiments was

used to make first-strand cDNA using the First-Strand cDNA

synthesis kit for reverse transcription-PCR (Roche). This cDNA

was used as template for real-time PCR analysis using SsoFast

SYBR green PCR reagents (Biorad) according to the manufac-

turer’s recommendations. A BioRad CFX96 thermal cycler was

programmed with the following two step PCR cycles: 5 s at 98uC,

5 s at 60uC, and a plate read was repeated in the second step for a

total of 40 cycles. A melting curve was performed at the end of the

reaction to confirm a single product. Standard curves were

performed for each primer set and efficiencies calculated. The

data were normalized to glucose-6-phosphate dehydrogenase

cDNA expression included with each experiment.

Gene Ontology Annotation
The predicted protein sequences of H99 serotype A from the

Broad assembly 2 (http://www.broadinstitute.org/annotation/

genome/cryptococcus_neoformans/Info.html) were submitted to

the GOAnno program of AgBase [36]. Each protein sequence was

searched against the UniProt database, restricted to fungal

sequences. The e-value cutoff for a significant hit was 10210.

The sequences and annotations from the Uniprot database were

filtered to remove sequences that had only annotations with an

evidence code of IEA (Inferred from Electronic Annotation) or ND

(No biological Data available). Additional annotation was obtained

by submitting those proteins without a match in the UniProt

database to InterProScan [37]. Gene ontology assignments were

made for domains with matches that had a e-value of ,10220.

Gene ontology term enrichment was carried out using a

Global Oxidative Stress Response in C. neoformans
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hypergeometic test as implemented in the GOstats program, using

a p-value of #0.01 as a criteria for significance [38].

Ubiquitination Analysis
C. neoformans cells grown in YNB, pH 4.0 were treated with

varying concentrations of H2O2 (0–4 mM) for 30 min. At the end

of the incubation, cells were rapidly chilled and collected by

centrifugation. Cell pellet was lysed in 8 M urea containing buffer

and equal amounts of protein per sample were used for immune

blot analysis using antibodies specific to ubiquitin proteins (Rabbit

polyclonal to ubiquitin cat # ab19247 from abcam at 4 K

dilution). Uniform transfer of proteins across the membrane was

verified by staining the membrane with Swift Membrane Stain (cat

# 786-677, G BioSciences, MO, USA) before subjecting them to

immuno blot analysis.

Results

Cells Grown in YNB Medium Exhibited Reduced Capacity
to Breakdown Exogenous H2O2

To understand the fate of exogenous H2O2 once it has been

added to C. neoformans culture, actively growing yeast cells in YNB,

pH 4 medium were treated with 1 mM H2O2. At different time

intervals aliquot of the cell culture was removed, cells were

separated and the supernatant was used to measure the residual

H2O2 in the medium. A concentration of 1 mM H2O2 was rapidly

degraded by growing C. neoformans cells and was completely absent

in the medium after 30 minutes (Figure 1A). The incubation of

H2O2 either in the medium alone or in the spent medium did not

cause significant H2O2 breakdown over time (Figure 1A). Incu-

bation of heat killed C. neoformans cells did not affect the

concentration of H2O2 over time clearly suggesting that actively

growing cells are responsible for degradation of external H2O2.

C. neoformans cells are routinely grown in a nutrient rich YPD

medium or a nutrient defined YNB medium for laboratory

experiments. To investigate the influence of growth media on the

capacity of the cells to breakdown exogenous H2O2, we treated C.

neoformans cells either grown in YPD; a nutrient rich medium with

a pH of 6.2–6.5 or YNB; a nutrient limited defined medium

buffered to pH 4.0, at 30uC with various concentrations of H2O2.

The kinetics of H2O2 breakdown was followed by measuring the

residual H2O2 in the medium. When the cells were grown and

treated in YPD, a concentration of H2O2 up to 8 mM was

completely degraded in one hour at 30uC (Figure 1B). However,

the cells grown and treated in YNB, pH 4.0, showed decreased

capacity to breakdown exogenous H2O2, taking up to two hours to

completely degrade even 2 mM of H2O2 (Figure 1C). Higher

concentrations of H2O2 (4 and 8 mM) were decreased to ,40–

50% of the initial concentration by two hours, clearly indicating

that unlike the cells grown in YPD, cells grown in nutrient limited

YNB medium are much less efficient in degrading exogenous

H2O2.

When the cells were grown to different densities (OD650 = 1–8)

in either YPD or YNB medium and treated with various

concentrations of H2O2 (2–8 mM), the rate of H2O2 breakdown

increased as the culture density increased (data not shown). A cell

culture grown in YPD to a density of OD650 = 2.7 was able to

degrade 4 mM of H2O2 in just 20 min, while those with a density

of OD650 $ 4.0 took only 10 minutes (Figure S1A). On the other

hand cells grown in YNB, to a density of OD650 = 4.0 were unable

to completely degrade 4 mM H2O2 in 2 hrs (Figure S1B).

However, cell culture in YNB at a density of OD650 = 7.0

completely degraded 4 mM H2O2 in 10 minutes. Together these

data indicate that capacity to degrade exogenous H2O2 depends

not only on the medium but also on the density of the growing

culture.

Because C. neoformans encounters oxidative stress in a nutrient

limited environment inside the phagosome, we chose to use YNB,

at pH 4.0 for all of our experiments. We were interested in

inducing only oxidative stress response and supplemented YNB

medium with 2% glucose and grew the cells at 30uC to prevent the

non-specific induction of a transcriptional response due to either

carbon source starvation or heat shock respectively. To determine

the effect of exogenous H2O2 on the viability of C. neoformans cells,

yeast cells grown in YNB, pH 4.0 at an OD650 of 1.0 were treated

with various concentrations of H2O2. At various time points

samples were withdrawn, cells collected by centrifugation, washed

with cold PBS and serially diluted and plated onto YPD plates to

count the colony forming units (CFU). A concentration of 0.5 mM

H2O2 had no significant effect on cell viability at any time point

(Figure 1D). Treatment of the cells with 1 mM H2O2 for one hour

caused 15% cell death, but by two hours total number of viable

cells had recovered to 100% of the initial cell population.

Similarly, 1.5 mM H2O2 caused killing of ,50% of cells by one

hour, however by two hours, the fraction of viable cells increased

to 70% of the cell population and by the four hour time point total

viable cell population had reached 100%. This suggested that by

two hours after addition, the majority of H2O2 had been degraded

and the cell population had begun to recover from the H2O2

induced damage. Treatment of cells with 2 or 2.5 mM H2O2

caused a marked decrease in cell viability (Figure 1D) and

prolonged incubation in the same medium did not increase their

ability to degrade H2O2 and/or recover. From these results we

concluded that sampling 1 mM H2O2 treated cells across a one-

hour time-course should provide a detailed transcriptional

response profile of this yeast specific to H2O2 induced oxidative

stress.

C. neoformans Exhibited a Robust Transcriptional
Response to Exogenous H2O2 Treatment

To analyze the transcriptional response of C. neoformans to

H2O2, KN99a cells were treated with 1 mM H2O2 and samples

were collected at 5, 15, 30, 45 and 60 minutes. Custom C.

neoformans serotype A whole genome microarrays were used to

measure the differential transcriptional response of cryptococcal

cells to perturbation by 1 mM H2O2 relative to untreated cells.

Statistical assessment of differential expression was obtained by

fitting the balanced treated and untreated signal intensities to an

analysis of variance (ANOVA) model as previously described [39].

We identified 2,930 differentially expressed (DE) probes (P,0.01)

at one or more time points representing approximately 45% of the

transcriptome represented on the array, indicating a very robust

transcriptional response to H2O2 in C. neoformans (Tables 1 and

S1).

We measured the transcript changes across a one-hour time-

course and identified 605 probes differentially expressed (264 up-

regulated, 341down-regulated) at the five minute time point

(Table 1). At 15 minutes post-treatment, transcriptional activity

increased to a total of 1272 differentially expressed probes (661 up-

and 611 down-regulated). Differential expression peaked at the 30-

minute sampling, to 2521 probes (1009 up- and 1512 down-

regulated). Finally, at 45 and 60 minutes the number of

differentially expressed probes decreased to 1289 (592 up- and

697 down-regulated) and 835 probes (382 up- and 453 down-

regulated) respectively. Most extensive changes in gene expression

were observed between 15 and 45 min after the initiation of the

oxidative stress with a peak transcriptional response at 30 min post

H2O2 treatment. The kinetics of transcriptional response

Global Oxidative Stress Response in C. neoformans
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(Figure 2A) is consistent with rate of H2O2 removal from the

medium by actively growing yeast cells (Figure 1C).

We compared the sets of genes differentially expressed in

response to H2O2 treatment in our experiment (treatment in YNB

medium) to a previously published microarray dataset by Ko et al

in which authors employed YPD medium for growth and

treatment with H2O2. Consistent with our present findings on

the influence of media composition and treatment conditions on

the oxidative stress response we found considerable differences in

the gene sets, but a high level of concordance for those genes

identified as differentially expressed in both datasets [22]. We

compared the identity of the DE transcripts at 30 and 60 minutes

with the same two time points in KO et al., data. We observed

1582 DE transcripts compared to the 886 identified by Ko et al.

There were 336 transcripts exhibiting overlap at the 30-minute

time point on both arrays, with 306 (91%) of those showing the

same direction in expression difference. At the 60-minute time

point, we observed 836 differentially expressed transcripts

compared to 1591 differentially expressed transcripts by Ko et al.,

with 333 genes overlapping and 276 (83%) of those showing the

same direction in expression difference. The low percentage of

probes that overlap at the same time point most likely reflects a

combination of the differences in media conditions, the kinetics of

H2O2 degradation, array probe differences, strains used and the

intrinsic variation of experiments done in two different laborato-

ries. We believe the high degree of concordance between the

Figure 1. Kinetics of H2O2 degradation by actively growing C. neoformans cells and the effect of concentration of peroxide on fungal
viability. A: 1 mM H2O2 was added to KN99 cells growing in YNB, pH 4 at OD650 = 1.5 (%), YNB medium alone ( ), spent media (D) and to heat killed
C. neoformans cells (&). Various concentrations of H2O2 were added to the cells growing either in YPD (B) or in YNB (C) medium. At various time
points samples were withdrawn, cells were separated by centrifugation and the supernatant was used for the quantitative estimation of H2O2.
Percentage of residual H2O2 was plotted against treatment time. Error bars reflect standard error calculated from three independent experiments. D:
Exponentially growing cells at OD650 = 1.5 were incubated with various concentrations of H2O2. At various time points aliquots were withdrawn, cells
collected by centrifugation at 4uC, washed two times with cold PBS. Washed cells were serially diluted and plated on solid YPD media, then incubated
at 30uC. After 3 days colony forming units (CFU) were counted. Fraction of viable cells was plotted against H2O2 treatment time.
doi:10.1371/journal.pone.0055110.g001

Table 1. Differentially expressed probes at various time
points during H2O2 treatment.

5 min 15 min 30 min 45 min 60 min

Total (Differentially expressed) 605 1272 2521 1289 835

Up regulated 264 661 1009 592 382

Down regulated 341 611 1512 697 453

doi:10.1371/journal.pone.0055110.t001
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overlapping probes strongly validates both experimental ap-

proaches.

Quantitative Real Time PCR Experiments Confirmed the
Microarray Dataset

Microarray results were validated by performing qRT-PCR

analyses of six genes (CNAG_01211, CNAG_02132,

CNAG_02288, CNAG_03238, CNAG_04001 and

CNAG_06758) that encompassed a range of expression levels at

30 min time point. The mRNA abundance of these transcripts at

30 min after H2O2 treatment followed similar profile to micro-

array dataset validating the quality of our array. The linear

regression analysis of the microarray and qRT-PCR measure-

ments resulted in a correlation coefficient (R value) of 0.94,

suggesting that array dataset correlated positively and closely with

qRT quantification (data not shown).

A Large Number of Diverse Biological Processes are
Enriched in the Transcriptional Response

Gene ontology (GO) enrichment analysis was performed and

several biological processes were significantly enriched in our lists

at all time points (Tables S2 and S3). As the number of

differentially expressed genes increased at 30 and 45 minute time

points (Figure 2A) so did the number of biological processes

indicating that differentially expressed genes belong to diverse

biological processes. A large number of biological processes

perturbed at 30 and 45 minutes post H2O2 treatment and

recovery of the viable cells at two hour time point (Figure 1D)

emphasizes the potential importance and combined efforts of these

biological processes in combating the H2O2 induced oxidative

stress. The many GO process categories significantly affected by

H2O2 induced stress at all time points include transport, metabolic

process, oxidation-reduction, transmembrane transport, cellular

response to stress, response to drug, transcription: DNA-depen-

dent, ribosome biogenesis and assembly, pathogenesis, amino acid

biosynthetic process, phosphorylation, protein transport, transla-

tion, filamentous growth, electron transport chain, signal trans-

duction, cell cycle, ion transport, carbohydrate metabolic process,

protein amino acid phosphorylation, fungal-type cell wall organi-

zation and biogenesis, lipid biosynthetic process, cell division and

mRNA processing.

In addition to the above biological processes, a greater number

of unique cellular processes significantly affected only at 30 and

45 min time points were identified (Table S2). They include

response to DNA damage stimulus, proteosomal ubiquitin-

dependent protein catabolic process, hyphal growth, DNA repair,

RNA splicing, ER to Golgi vesicle-mediated transport, ion

transport, protein folding, meiosis, chromatin modification,

nuclear mRNA splicing via spliceosome, mitosis, tRNA process-

ing, endocytosis, protein amino acid dephosphorylation, electron

transport chain, small GTPase mediated signal transduction,

vacuolar acidification, DNA replication, GTP catabolic process,

carbohydrate metabolic process, sterol biosynthetic process,

regulation of translation, and ribosomal large subunit assembly

and maintenance. Identification of above GO terms clearly

suggests that H2O2 causes substantial perturbation of cellular

processes.

Oxidation and Reduction Processes are Over-represented
in the Transcriptional Response

As expected, our dataset identified oxidation-reduction process

as one of the top ten enriched categories affected by H2O2

treatment (Table S3). Moreover, the number of genes belonging to

oxidation and reduction category undergoing DE increased from

60 at the 5-minute time point to 80 at the 15-minute time point. At

30 and 45 minutes post-treatment, there were 112 genes with

altered RNA levels that decreased to 74 at the 60-minute time

point (Figure. 2B). Some of the genes identified in this category

involve those that have previously been demonstrated to be

important for oxidative stress resistance either in C. neoformans or in

other fungal species. These include TSA1 coding for thiol specific

antioxidase (CNAG_03482) [6], TRR1 coding for thioredoxin

reductase (CNAG_05847) [15], cytochrome C peroxidase (CCP1;

CNAG_01138) [19] and catalase genes CAT1 (CNAG_0498) and

Figure 2. Treatment of C. neoformans cells with 1 mM H2O2

elicited a robust transient transcriptional response. A: The
number of differentially expressed (DE) genes (up-regulated above X
axis and down regulated below X axis) were plotted at various time
points during exposure to exogenous H2O2. B: Expression response of
C. neoformans oxidation and reduction category to H2O2 treatment. C:
Transcriptional pattern of differentially expressed genes belonging to
metabolic process category during H2O2 stress.
doi:10.1371/journal.pone.0055110.g002
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CAT3 (CNAG_00575) [40]. These genes exhibited consistent up-

regulation at more than one time point (Table S4), suggesting their

prolonged involvement in combating the H2O2-induced stress and

further validating the quality of our array.

A more extensive analysis of the genes belonging to the

oxidation-reduction functional category revealed potential novel

mechanisms of oxidative stress resistance. Functional annotation of

the C. neoformans genome using our GO database assigned a total of

514 genes to the oxidation-reduction functional category. We

discovered that 205 genes exhibited differential expression at one

or more time point with a maximum of 124 genes showing altered

mRNA levels at 45 min post H2O2 treatment (Table S4).

Reciprocal BLAST search analysis against the S. cerevisiae protein

database identified potential orthologs for 145 genes (Table S4).

Notably, 25 genes showed consistent up-regulation in at least three

time points and 25 genes exhibited consistent down-regulation at a

minimum of three time points as shown in Table S5. Sustained

induction or repression of a gene may reflect its predominant role

in oxidative stress resistance. In support of this hypothesis, genes

such as CAT1, CAT3 and TRR1, known to be important for

oxidative stress either in C. neoformans or in other fungal species

were found to be up-regulated at three or more time points. The

C. neoformans homologs of the S. cerevisiae genes ALD5, ZTA1, SCS7

and CIR2 were also induced at a minimum of three time points

(Table S5) and deletion of these genes in S. cerevisiae has

demonstrated their increased sensitivity to oxidative stress

[41,42,43].

In addition to the core antioxidant response, our microarray

data revealed the contribution of several additional gene products

in oxidative stress resistance that may provide clues to novel

mechanisms of stress resistance. The strong transcriptional

regulation of 50 genes for a significant period of time during

H2O2 treatment suggests an important role for these genes during

oxidative stress (Table S4). For example the gene represented by

CNAG_00654 was up-regulated at all time points after H2O2

treatment and is highly similar to sulfiredoxins (SRX1). The

sulfiredoxins are critical for oxidative stress resistance in yeast and

higher eukaryotes [44,45]. The majority of the remaining gene

products have not been characterized either in C. neoformans or in

other fungal species. A preliminary bioinformatic analysis of a few

select genes supported their potential roles during oxidative stress

in C. neoformans and these are discussed below.

One of the genes that are under persistent transcriptional

regulation in response to peroxide stress is CNAG_03238,

predicted to belong to dioxygenase subfamily. It is similar to a

putative dioxygenase gene from a saprophytic soil borne

filamentous bacteria, and shows significant repression at four of

the five time points post H2O2 treatment. Bacterial dioxygenases

are reported to have either iron-sulphur center or non-heme

mononuclear iron as cofactors. Importantly, these enzymes

catalyze oxidation of the substrates at the expense of reduced

NADPH [46]. Decreased expression of this gene in C. neoformans

after H2O2 treatment suggests that this may be a part of protective

mechanism of the yeast cells to inhibit NADPH-requiring

reactions while cells are coping with oxidative stress.

Another uncharacterized gene, CNAG_01542, is predicted to

have domains belonging to taurine catabolism dioxygenase super-

family and exhibits increased expression at 30, 45 and 60 minutes.

Proteins containing these domains have been demonstrated to be

important for sulfonate metabolism, in the synthesis of Fe-S cluster

protein family members and their expression in S. cerevisiae

provides increased resistance to menadione-induced stress [47].

A gene represented by CNAG_02580, with a conserved 2OG- Fe

(II) oxygenase superfamily domain also shows increased expression

at 15, 30 and 60 minutes. The 2OG- Fe (II) oxygenase domains

are found in enzymes belonging to prolyl hydroxylase (PHD)

family and these enzymes play a role in hypoxia and oxidative

stress response in Arabidopsis and other higher eukaryotes [48].

These preliminary results suggest that systematic characterization

of the genes identified in our experiment may reveal the presence

of novel mechanisms of oxidative stress resistance.

C. neoformans Elicits a Distinct Pattern of Transcriptional
Regulation of Metabolic Process Genes during Oxidative
Stress

Among the highly perturbed biological processes, we detected

expression changes in numerous genes assigned to the metabolic

process category. There are 608 genes assigned to the metabolic

process category in the C. neoformans genome, with 272 (,45%)

showing differential expression at one or more time points during

H2O2 treatment (Table S6). Of the differentially expressed genes,

98 were common with oxidation-reduction process. The extent of

metabolic process perturbation by H2O2 treatment varied at

different time points during the treatment. There were 70 genes

exhibiting differential expression at 5 minutes, out of which 31

showed induction and 39 exhibited repression of transcription.

The number of differentially expressed genes increased to 101 at

15 minutes with 57 showing repression (Figure 2C). The negative

regulation of genes related to metabolic process increased at 30

minutes with 92 genes showing decreased levels of transcripts.

However, samples at the 45-minute time point exhibited a

significant increase in the number of up-regulated genes,

suggesting that as the concentration of H2O2 in the medium

decreases, there is a shift in the metabolic flux and reprogramming

of metabolic processes. Interestingly even at the 60-minute (30

minutes after the complete absence of H2O2 from the medium) a

majority of the metabolic process related genes were still under

transcriptional regulation (Figure 2C). Out of the 272 metabolic

process related genes displaying altered transcription, we detected

33 genes exhibiting consistent up-regulation at three or more time

points and 45 genes had their transcript level decreased at three or

more time points after H2O2 treatment (Table S6).

A subset of genes showing distinct differential expression pattern

under metabolic process category are homologous to genes

involved in ergosterol metabolism and antifungal drug resistance

in other fungal species. Transient differential expression of a

particular set of genes (related to ergosterol metabolism and

antifungal drug resistance has been reported to contribute to the

complex mechanisms of anti-fungal drug resistance [49]. Over

expression of ERG11 has been reported in clinical isolates of drug

resistant C. albicans, implicating its role in fungal drug resistance

[50]. We observed persistent up-regulation of one of the identified

homologs of S. cerevisiae ERG11 after H2O2 treatment (CNAG_

05842, ERG110, and Figure S2). In S. cerevisiae ERG5 has been

reported to bind to azole drugs by a similar mechanism as ERG11

and we observed increased expression of C. neoformans ERG5

(CNAG_06644) as well. Sterol analysis of the flucanazole resistant

C. albicans showed defects in ERG2 and ERG3 [51]. Homologs of S.

cerevisiae ERG2 (CNAG_00854) and ERG3 (CNAG_00519) showed

altered expression levels in our microarray dataset (Figure S2). In

addition to the above, we have observed altered regulation of 12 C.

neoformans genes upon peroxide stress that are homologs of S.

cerevisiae ergosterol biosynthesis genes (Figure S2) clearly suggesting

a cross-talk between the mechanisms of oxidative stress and anti

fungal drug resistance. Several families of ABC transporters have

been characterized as efflux pumps in S. cerevisiae and C. albicans

and are important for drug resistance [52]. The over expression of

genes encoding two of the PDR5 family transporters in C. albicans
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CDR1 and CDR2 as well as that of a major facilitator CaMDR1 is

one of the signature characteristics of resistant isolates [49,53].

The C. neoformans genome contains two homologs of CDR1

(CNAG_04098, CNAG_04966) and a homolog of MDR1

(CNAG_00796). All three genes show differential transcriptional

regulation, with CDR11 showing consistent up regulation at 15, 30

and 45 minutes and MDR1 exhibiting increased levels at 30, 45

and 60 minutes (Figure S2).

Cytochrome C Peroxidase Mediated Respiratory Chain is
Essential for Oxidative Stress Resistance

The mitochondrion is the site of most oxidation-reduction

processes and we were particularly interested in the differential

expression pattern of CCP1, which codes for cytochrome C

peroxidase (CNAG_01138), and AOX1, encoding an alternative

oxidase (CNAG_00162). C. neoformans CCP1 is known to protect

against external oxidative stress inducing agents and consistent

with that role, its transcription was increased at 30 and 45 minutes

(Figure 3 and [19]). C. neoformans AOX1 is important for fungal

pathogenesis and this phenotype has been attributed to its role in

oxidative stress resistance [20]. However, transcription of AOX1

gene was not altered in our array after H2O2 treatment in the

same manner as CCP1 (Figure 3). H2O2 treatment caused an initial

repression of AOX1 mRNA levels with no further changes in its

expression at subsequent time points. Therefore we decided to

explore the potential functional consequences of the differential

expression of these two genes in response to H2O2 induced

oxidative stress.

During mitochondrial respiration, C. neoformans utilizes both

the classical electron transport chain, mediated by CCP1and an

alternative oxidase chain mediated by AOX1 for the synthesis of

ATP. These two pathways have been demonstrated to be

functionally redundant in C. neoformans using specific respiratory

chain inhibitors [20]. To elucidate the role of these two electron

transport chains during H2O2 treatment, we treated cells with

specific mitochondrial pathway inhibitors in conjunction with

H2O2. The growth of KN99 cells in the presence of either

antimycin, an inhibitor of the cytochrome c peroxidase pathway,

or SHAM, an inhibitor of the alternate oxidase pathway, was

found to be similar to that of the control plate (Figure 4A, A1–

A3 and C1–C3). However, addition of both antimycin and

SHAM resulted in severe impairment of growth of C. neoformans

cells (Figure 4A, A4 and C4). Treatment of the cells with H2O2

in the presence of antimycin caused complete loss of growth

when observed at 2 days (Figure 4A, B2) or at 6 days at 30uC
(Figure 4A, D2). When cells were subjected to H2O2 stress in the

presence of SHAM alone, slight growth was observed after two

days (Figure 4A, B3) however, significant growth was restored

after 6 days of incubation (Figure 4A, compare D1 to D3).

Exposure of the cells to H2O2 in the presence of both antimycin

and SHAM resulted in their complete loss of resistance to

exogenous H2O2 (Figure 4A, compare panels B1 with B4 and D1

with D4). This provides evidence for a major role of CCP1

during H2O2 induced stress with a more limited role for the

Aox1 protein, consistent with their differential expression pattern

(Figure 3).

The preferential role of CCP1 during H2O2 induced oxidative

stress was intriguing since the flow of electrons through the CCP1

mediated pathway generates more ROS than respiration through

the AOX1 pathway [54]. It is plausible that utilization of the AOX1

mediated pathway during H2O2 induced stress may provide an

additional benefit by minimizing the release of internal ROS.

However, a potential advantage of using the CCP1 mediated

pathway is its higher efficiency of ATP synthesis due to more

proton pumping sites along the path of electron flow compared to

the AOX1 mediated route. Therefore, we hypothesized that C.

neoformans preferentially utilizes the CCP1 mediated electron

transport chain to generate more ATP with which to carry out

energy dependent processes including the repair of damage caused

by H2O2 induced oxidative stress.

Functional Mitochondria are Essential for Protection
Against Oxidative Stress

Additional roles for mitochondrial function during H2O2-

induced oxidative stress were revealed by further analysis of the

differential expression pattern of genes related to oxidation-

reduction process. We identified 50 genes whose expression was

either induced or repressed at a minimum of three time points

during H2O2 (Table S5). Of the 50 oxidation-reduction genes

altered at a minimum of three time points, 39 had potential

homologs in S. cerevisiae. Out of those 39 genes, 22 are known or

predicted to be located in the mitochondria (Table S5) according

to their annotation in the Saccharomyces genome database [55].

The involvement of C. neoformans mitochondria during in vitro

oxidative stress or while they are being phagocytosed is not well

understood, though functional mitochondria are indispensable for

growth inside the host [56]. The global transcriptome profile of

C. neoformans at the site of central nervous system infection

revealed higher expression of several respiratory genes demon-

strating the importance of mitochondrial function for growth

inside the host [57,58]. Most fungal pathogens exhibit a distinct

arrangement of electron transport chain compared to their host

and a more flexible and complex pathways of electron flow that

have not yet been fully elucidated [59]. The recent character-

ization of the hyper-virulent C. gatti responsible for the recent

fatal fungal outbreak in Vancouver Island provides evidence for

the potential role of mitochondria during oxidative stress [60]. In

these studies the authors attributed the hyper-virulence to an

increased intercellular proliferation rate of the fungal cells. In a

phenotypic screen to identify fungal factors responsible for

enhanced intracellular proliferation rate inside the host macro-

phage cell lines, Ma et al, identified a unique tubular mitochon-

drial morphology of yeast cells that positively correlated with

enhanced intracellular parasitism, demonstrating a strong link

between mitochondrial regulation and growth inside the macro-

Figure 3. Transcript abundance of C. neoformans CCP1 and AOX1
at various time points during H2O2 treatment.
doi:10.1371/journal.pone.0055110.g003
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phages [60]. Therefore we decided to explore the role of

mitochondrial function in H2O2 induced oxidative stress.

To test the importance of mitochondrial function during H2O2

induced stress, we treated cells with a protonophore FCCP,

known to disrupt mitochondrial function in other fungal

organisms [61,62]. C. neoformans cells were very sensitive to

FCCP, with concentrations as low as 0.5 ug/ml affecting their

growth in liquid culture (data not shown). By contrast, yeasts

such as C. albicans and S. cerevisiae cells were able to grow

normally in the presence of 2.5–5 ug/ml of FCCP [61,62].

Because of this sensitivity, we used concentrations of 0.25 and

0.5 ug/ml of FCCP for our studies. Two independent cultures of

KN99 cells were spotted on plates containing 1 mM H2O2 in the

presence and absence of FCCP and incubated at 30uC. The

capacity to withstand oxidative stress triggered by H2O2

challenge was markedly decreased by FCCP in a concentration

dependent manner (Figure 4B), providing further support for the

important role of functional mitochondria in oxidative stress

resistance in C. neoformans.

Figure 4. The affect of inhibitors of electron transport chain and mitochondrial function on C. neoformans oxidative stress
resistance. A: Logarithmically growing KN99 cells in YNB were 10 fold serially diluted and 5 ul of the cell suspension was spotted onto YNB agar
containing either 0.5 ug/ml of antimycin (2) or 2 mM SHAM (3) or mixture of antimycin and SHAM (4) either in the absence (A and C) or in the
presence (B and D) of 1 mM H2O2.B: Two independent cultures of C. neoformans cells were grown in YNB. At OD650 = 1.5, cells were collected, 10 fold
serially diluted and 5 ul of the cell suspension was spotted onto solid YNB agar plates containing either 0.25 ug/ml or 0.5 ug/ml of FCCP in the
presence or absence of 1 mM H2O2. Plates were incubated at 30uC for various days and photographed.
doi:10.1371/journal.pone.0055110.g004
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Ubiquitin-dependent Protein Catabolic Genes are
Sensitive to Oxidative Stress

The ubiquitin dependent proteosome pathway is one of the

several cellular processes requiring ATP and is critical for

maintaining cellular homeostasis. Protein ubiquitination is impor-

tant during various stress conditions in yeast and higher eukaryotes

and, more recently, protein ubiquitination has been shown to be

important for stress resistance, adaptation and virulence of the

human fungal pathogen C. albicans [63]. Moreover a previous

microarray study on the oxidative stress resistance of C. neoformans

found that a ubc8 deletion strain is more sensitive to H2O2 in vitro,

demonstrating the importance of ubiquitin related processes for

oxidative stress resistance [22].

We identified 186 genes that were assigned the ubiquitin related

biological process terms protein polyubiquitinylation (GO:

0000209), deubiquitinating enzyme (GO: 0004843), ubiquitin-

dependent protein catabolism (GO: 0006511), protein ubiquitiny-

lation (GO: 0016567), and proteosomal ubiquitin-dependent

protein catabolism (GO: 0043161) in the C. neoformans genome

(Table S7). Of the 186 genes, 91 (49%) exhibited significant

differential expression at one or more time points during H2O2

treatment (Table S7). In S. cerevisiae, proteins encoded by the

ubiquitin conjugating (UBC) gene family have been implicated in a

wide variety of cellular functions including those closely connected

with oxidative stress resistance such as respiratory growth,

glutathione homeostasis, UV and metal ion resistance and double

strand DNA repair [64,65]. Accordingly individual UBC gene

deletion strains exhibit varying degree of sensitivities to diverse

external stress conditions indicating the functional overlap

between different UBC gene products [64,66]. As it is likely that

single ubiquitin related gene products are involved in multiple

cellular stress conditions, we employed a biochemical strategy to

directly address the role of ubiquitination during oxidative stress.

One of the affects of H2O2 induced oxidative stress involves

protein damage by irreversible oxidation and these oxidized

proteins are recycled through the ubiquitin dependent proteaso-

mal pathway in other systems [67]. To verify whether similar

mechanisms operate in C. neoformans, we treated fungal cells with

increasing concentration of H2O2 and subjected the cell lysates to

immuno-blot analysis. The blots were probed with ubiquitin

specific antibody to quantify the amount of ubiquitin tagged

proteins in treated cells to their untreated counterpart. We

observed an H2O2 concentration dependent increase in the

amount of ubiquitin conjugated proteins in the total cell lysate

(Figure 5A). Densitometric analysis of the immuno blot clearly

showed direct correlation between the effective concentration of

H2O2 used in the treatment and the number and intensity of

ubiquitinated proteins in total cell lysate (Figure 5B).

Discussion

The transcriptional regulation of protective mechanisms against

oxidative stress is critical for C. neoformans both for establishing an

infection in the host and also for surviving extended periods of

time in the environment. The kinetics of H2O2 degradation by

cells growing in YNB indicates that actively growing C. neoformans

cells have an efficient mechanism to degrade exogenous H2O2.

This may involve the activity of functional catalase enzymes

reported to be present in C. neoformans [40]. The absence of H2O2

degrading activity in the culture supernatant is consistent with an

earlier study reporting the absence of secreted catalase family

proteins in C. neoformans genome [40]. The higher capacity of

H2O2 breakdown by cells growing in YPD compared to those

grown in YNB was rather surprising and clearly suggests that

growth media composition may significantly affects cell’s consti-

tutive redox potential. Moreover, we also demonstrated that cells

grown to a higher optical density were able to degrade exogenous

H2O2 more rapidly compared to the culture at lower optical

density, again emphasizing that the cell culture and treatment

conditions may significantly influence the magnitude and intensity

of the induced cellular transcriptional response to oxidative stress.

Therefore these important experimental parameters need to be

considered when comparing different datasets generated for H2O2

mediated stress induced either in the same organism or between

different organisms.

At every time point, both induced and repressed genes displayed

reciprocal transient profiles with negative regulation of transcrip-

tion more predominant at all 4 of the 5 time points post H2O2

treatment (Figure 2A and Table 1). It took almost 30 minutes for

the cells to exhibit maximum differential expression, even though

the vast majority of the H2O2 is degraded by that time. The

amount of time it takes for cells to maximally respond

transcriptionally may depend on the growth history of the cells

prior to H2O2 challenge. During the initial stages of encounter

with H2O2 cells may use their preexisting pool of antioxidant

defenses to neutralize H2O2, and the concentration of cellular

antioxidant molecules may likely vary depending on the environ-

ment in which cells are grown and treated. Accordingly, the

duration, intensity and the complexity of the elicited transcrip-

tional response will differ depending on the environment in which

C. neoformans exist prior to H2O2 treatment. It is plausible that the

antioxidant capacity of the cells in YPD is significantly higher than

those grown in YNB and thus cells grown in YPD may require a

higher concentration of H2O2 to exhibit similar magnitude of

transcriptional response at 30 min after treatment, compared to

those grown in YNB. This observed influence of growth conditions

on the sensitivity of yeast cells to peroxide stress may be of special

importance in C. neoformans pathogenesis since various species of

Cryptococcus has been discovered to be associated with diverse

ecological niches such as avian guano, vegetables, wood, dairy

products, and soil [68,69]. The composition of these environmen-

tal conditions may therefore determine the level of yeast cells’

constitutive redox potential. The ability to cause infection in a

mammalian host will depend on their capacity to resist initial

oxidative burst inside the macrophages. Therefore, increased

resistance to oxidative stress as a result of environmental factors

may play a role in enhanced virulence during infection.

In the oxidation-reduction category we found interesting gene

regulation patterns of thioredoxin family genes. Among the genes

of thioredoxin family, we found increased expression of TSA1

(CNAG_03482) at the 15 and 30 minute time points consistent

with its established role in oxidative stress and virulence [6]. C.

neoformans TSA1 is a typical 2-cys peroxiredoxin and its homolog in

S. cerevisiae is located in the cytoplasm [70]. C. neoformans TSA3

(CNAG_06917) and DOT5 (CNAG_02854) belong to 1-cys

peroxidase family and have shown increased expression at both

protein and mRNA levels in response to oxidative stress in a

previous study [6]. The homolog of C. neoformans TSA3 and DOT5

in S. cerevisiae are located to mitochondria and nucleus respectively

and are known to play a major role in oxidative stress resistance

[70]. The sub-cellular location of Tsa3 and Dot5 in C. neoformans is

not known and their deletion in C. neoformans did not affect

oxidative stress resistance in either in vitro or in vivo conditions [6].

The strong negative regulation of both TSA3 and DOT5 shown in

our dataset is similar to the pattern of expression of the majority of

genes of potential mitochondrial origin suggesting that both TSA3

and DOT5 may contribute additionally to oxidative stress

resistance in C. neoformans by unknown mechanisms.
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Three of the four known catalase genes in C. neoformans showed

differential expression. Increased expression of CAT1 is consistent

it being the only functional catalase as determined by the in-gel

activity staining of C. neoformans cell extracts [40]. The similar

profile of CAT1 and CAT3 suggests these genes may be regulated

by similar factors, consistent with both belonging to the same

phylogenetic clade [40]. However, computational analysis of the

promoter regions of these two genes in the past has not identified

any conserved cis-acting elements [40]. Interestingly both these

genes show increased amounts of mRNA even at 60 minutes while

by 30 minutes all the H2O2 in the medium had been degraded.

This suggests that the CAT1 and CAT3 gene products may have

additional novel roles during in vitro oxidative stress induced by

H2O2.

In addition to their initial exposure to oxidative stress inside

the macrophages, C. neoformans undergoes major metabolic

adaptation during growth inside the host [57,71]. The majority

of the metabolic changes discovered during infection so far have

been attributed to the task of growing in a limited nutrient

environment. We observed significant differential expression of

genes assigned to the metabolic process functional category,

despite the presence of 2% glucose in our study (Table S6).

Widespread differential expression of the genes related to

metabolic processes was also observed during nitrosative stress

in the presence of 2% glucose, suggesting the presence of

overlapping mechanisms of oxidative and nitrosative stress

protection [72]. A unique feature of the metabolic process

genes induced by H2O2 involves the genes encoding pentose

phosphate pathway (PPP) enzymes. A major product of PPP is

the production of NADPH that is critical for the function of

proteins required for repairing oxidative protein damage.

Accordingly the components and function of PPP have been

shown to be important for resistance and adaptation to

oxidative stress in yeast and higher eukaryotes. In both S.

cerevisiae and C. glabrata, H2O2 treatment increased the

expression of genes belonging to the pentose phosphate pathway

[73,74]. Moreover, expression of glucose 6-phosphate dehydro-

genase (ZWF1) is increased during exposure of C. albicans to

nitrosative stress [75]. In S. cerevisiae, independent deletion

strains of pentose phosphate pathway genes such as 6-phospho

gluconate dehydrogenase (GND1), D-ribulose-5-phosphate 3-

epimerase (RPE1), transketolase 1 and transketolase 2 (TKL1and

TKL2), glucose-6 phosphate dehydrogenase (ZWF1) and trans-

aldolase (TAL1) all exhibit increased sensitivity to oxidative stress

[76]. Interestingly, we observed no differential expression of

PPP genes, suggesting a more limited role of this metabolic

pathway during oxidative stress in C. neoformans. Previous studies

demonstrated that neither the ZWF1 mRNA nor protein levels

were altered during nitrosative stress in C. neoformans. Consistent

with this deletion of ZWF1 gene in C. neoformans did not

increase their sensitivity to either oxidative or nitrosative stress

[72,77]. These are consistent with our present observations that

pentose phosphate pathway does not participate in peroxide

induced oxidative stress resistance in C. neoformans.

A major mechanism of adaptation to carbon source limitation

during growth inside the host is increased expression of genes

belonging to carbon metabolism [71]. We observed increased

expression of three genes from the TCA cycle, aconitase, succinate

dehdrogenase and malic enzyme (Table S6). Increased TCA cycle

activity may drive the rate of electron flow through the CCP1-

mediated mitochondrial electron transport chain to meet the

sudden increase in demand for ATP necessary for repairing

damaged proteins. Previous serial analysis of gene expression

(SAGE) revealed a high abundance of tags corresponding to

phopsphophenol pyruvate carboxykinase (PCK1), a main control

enzyme for the regulation of gluconeogenesis in the lung-exposed

cryptococcal library suggesting that gluconeogenesis is important

for fungal survival in the host lung due to the limited availability of

glucose [71]. Interestingly, in spite of exposing C. neoformans cells to

H2O2 in the presence of glucose we also observed significant and

consistent up-regulation of PCK1 (CNAG_04217) after H2O2

treatment (Table S6). The genes encoding glycolytic functions

including glucose 6-phosphate isomerase (CNAG_03916) and

phosphoglycerate mutase (CNAG_05892) showed decreased

expression in our dataset similar to their low abundance in the

lung-exposed cryptococcal SAGE library [71]. Decreased glycol-

ysis with concomitant increase in gluconeogenesis may be critical

for the regeneration of sugar phosphates that are the substrates of

nucleotide biosynthesis, glycosylation and cell wall biosynthesis

processes. The role of these processes during peroxide stress is

supported by their identification after the GO analysis of the

differentially expressed genes (Table S3). Further, the importance

of C. neoformans cell wall biogenesis during oxidative stress through

protein kinase C mediated cell integrity pathway has already been

documented [78].

Figure 5. H2O2 induced oxidative stress stimulates increased ubiquitination of C. neoformans proteins. (A): Immuno blot analysis of the
proteins from C. neoformans cells growing in YNB, pH 4 at OD650 = 1.5 and treated with various concentrations (0, 1, 2 and 4 mM) of H2O2. Cell lysates
were prepared in urea containing denaturing buffer. Equal amount of protein was electrophoresed on SDS-polyacrylamide gel, transferred to
nitrocellulose and ubiquitin conjugates were probed with polyclonal anti-ubiquitin antiserum. (B): Densitometric quantification of the signal from
immunoblot A.
doi:10.1371/journal.pone.0055110.g005
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Unlike the response of the TCA cycle and the gluconeogenic

pathway, genes of the glyoxylate cycle that converts acetyl-CoA to

succinate for the synthesis of carbohydrates responded completely

differently in our dataset compared to the previously published

lung exposed cryptococcal SAGE library [71]. We observed no

elevated expression of acetyl-CoA synthase (ACS1), malate

synthase (MLS1), pyruvate decarboxylase (PDC1) or alcohol

dehydrogenase (ADH1) during oxidative stress in contrast to their

increased expression during growth conditions in the host lung.

The up-regulation of the glyoxylate pathway during pulmonary

infection conditions has been attributed to the higher amount of

acetate present in lung tissues [71]. This is consistent with the

absence of the differential expression of genes related to glyoxylate

pathway in our treatment conditions and also confirms the

specificity of the differential expression response we obtained to

the oxidative stress induced by H2O2.

Peroxide-induced oxidative stress also caused significant per-

turbation of genes of amino acid biosynthesis pathway (Table S6).

Increased amino acid biosynthetic gene expression has also been

reported in C. neoformans during nitrosative stress [72]. It is possible

that amino acid biosynthesis pathway has important overlapping

functions in oxidative and nitrosative stress resistance.

In S. cerevisiae transcriptional up-regulation of CCP1 after H2O2

treatment and its role in stress signaling has been reported to

contribute to oxidative stress resistance [79,80]. While C. neoformans

CCP1 was initially identified by bioinformatic analysis, the

AOX1gene was identified by its significant up-regulation in C.

neoformans in response to exposure to 37uC temperature [19,20].

However, in a separate study employing SAGE during early

murine pulmonary infection studies, authors identified tags for

AOX1 as being enriched in the mouse lung library, but not CCP1

[71]. These results indicate that transcriptional regulation of C.

neoformans CCP1 and AOX1are potentially subject to different

mechanisms. Moreover, the AOX1 deleted strains exhibited a slight

virulence phenotype in a mouse model while CCP1 deleted strains

were avirulent. However, both CCP1 and AOX1 independent gene

deletion strains exhibited in vitro oxidative stress sensitivity towards

H2O2 and tert-butyl hydroperoxide respectively [20,58]. The

differential expression pattern of CCP1 and AOX1 observed in our

dataset in response to peroxide stress further supports that their

transcription is under the control of different signaling mecha-

nisms. The absence of AOX1 up regulation seen in our dataset is

similar to the one reported in the previously published microarray

analysis [22]. Moreover transcriptional response of AOX1observed

in our microarray analysis was in agreement with the results

obtained in our laboratory when we subjected RNA samples to

RNA seq analysis (unpublished results). The functional conse-

quence of differential expression of CCP1 during H2O2 treatment

is dramatic and is reflected in the ability of its specific inhibitor

antimycin to completely abolish oxidative stress resistance to

H2O2, whereas specific inhibition of AOX1 had little effect on

oxidative stress resistance.

The different arrangement of fungal proteins in the electron

transport chain compared to their hosts points to the special

importance of mitochondrial function in pathogenesis. This is

supported by recent reports showing an active role for functional

mitochondria in fungal virulence and drug resistance [81]. The

significant perturbation of expression of genes related to

mitochondrial function in our microarray is not surprising since

earlier gene expression studies in C. neoformans in the presence of

various stress conditions such as nitrosative stress, heat shock and

growth inside the host, all identified genes related to the

mitochondria and respiratory chain to be differentially expressed

[57,72]. FCCP has previously been used to investigate mitochon-

drial function in other yeasts such as S. cerevisiae and C. albicans

[62,82]. The inhibition of ATP synthesis by FCCP and the

subsequent increased sensitivity of yeast cells to H2O2 provides

evidence that C. neoformans cells undergoes substantial damage by

H2O2 and energy dependent repair mechanisms are critical for

recovering from oxidative stress. The increased concentration of

ubiquitin tagged proteins observed by us during H2O2 treatment

(Figure 5) further supports the requirement of ATP for damage

repair after oxidative stress exposure.

Permanent oxidation of proteins disrupts their structure and

debilitates their function. The ubiquitin-dependent proteasomal

system is part of the protein degrading mechanism that helps

maintain cellular homeostasis. The covalent attachment of

ubiquitin to proteins as a selection for degradation is the hallmark

of the ubiquitin-dependent pathway. ATP-dependent degradation

of ubiquitinated proteins is catalysed by the 26S proteasome

complex that is composed of a 20S core particle and a 19S

regulatory particle. The observation that exposure of C. neoformans

to H2O2 causes increased ubiquitination of cellular proteins

(Figure 5) is consistent with the significant induction of UBI4

(CNAG_01920). UBI4 dependent ubiquitination has been shown

to play a major role in the ubiquitin dependent protein

degradation pathway during thermal, cell wall and oxidative

stress conditions in S. cerevisiae and C. albicans [63,83]. We observed

up-regulation of homologs of S. cerevisiae RSP5 (CNAG_05355)

(Table S7). RSP5 encodes an essential E3 ubiquitin ligase in S.

cerevisiae, and its transcription pattern is similar to UBI4, indicating

that it may be required for ligating potential substrates with

ubiquitin.

Deletion mutants of ubiquitin conjugating enzymes UBC4 and

UBC5 in S. cerevisiae were exceedingly sensitive to stress conditions

[66]. The increased interaction of Ubc4p with 26S proteasome has

been shown in S. cerevisae upon heat stress [84]. The homolog of S.

cerevisiae UBC4 in C. neoformans (CNAG_01084, Table S7) exhibits

persistent expression at four time points, suggesting its major role in

recognizing oxidatively damaged substrates. A slight induction of (at

only one time point, Table S7) homologs of S. cerevisiae UBC6 and

UBC8 in C. neoformans suggests that they may have a weaker affinity

towards the oxidized protein substrates. Proteins encoded by

homologs of S. cerevisiae UBC1, UBC2, UBC13, UBC5, and UBC12

all showed decreased expression, further supporting the major role

of only Ubc4 enzyme in recognizing and diverting damaged

proteins to proteasome pathway for their degradation during

oxidative stress. C. neoformans RAD4, RAD16 and RAD7 were

continuously induced for the majority of H2O2 treatment time

(Table S7). S. cerevisiae Rad7p has a functional ubiquitin ligase

activity and its interaction with Rad16p and Rad4p are critical for

the proteasome dependent nucleotide excision repair [85].

Increased amount of C. neoformans Rad4, Rad16 and Rad7 suggests

that they may be involved in the proteasomal dependent repair of

DNA damage caused by H2O2 induced oxidative stress. We

observed repression of the majority of genes coding for the 19S

regulatory particle of the proteasome RPN1, RPN2, RPN5, RPN6,

RPN7, RPN8, RPN9, RPN11 and RPN12) and RPT gene (RPT3,

RPT4, RPT5 and RPT6) families. Several recent reports in yeast (S.

cerevisiae) and mammalian systems indicate that degradation of

oxidized proteins may occur either by ubiquitin/ATP-dependent

(catalysed by 26S) or ubiquitin/ATP-independent (catalysed by

20S) mechanisms [67,86,87]. Moreover the 20S proteasome

complex alone has been shown to possess the capacity to recognize

and degrade oxidatively damaged proteins in vitro [67,86,87]. This

was also supported by observations that oxidative stress stimulates

the separation of the 19S regulatory particle from the 26S core

particle to yield the 20S proteasome complex [88]. The RPN and
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RPT family of genes belong to the 19S proteasome complex. The

repression of these genes during H2O2 treatment indicates that the

19S regulatory particle may play a minor role in maintaining

cellular homeostasis during oxidative stress in C. neoformans.

By examining gene expression differences over a time course

that paralleled the kinetics of H2O2 removal, we identified many

more genes affected by oxidative stress than were identified in

previous studies of oxidative stress in C. neoformans. The pattern of

the transcriptional response mirrored the kinetics of peroxide

removal and allowed us to infer potential mechanisms for the

response as well as the recovery from oxidative stress. We found

potential novel mechanisms for the role of mitochondria and

expanded our understanding of the role of ubiquitin-dependent

proteolysis in recovery from oxidative e stress.

Supporting Information

Figure S1 The affect culture density on H2O2 break-
down by C. neoformans cells. A 4 mM of H2O2 was added to

cultures at various densities (OD650) growing in YPD (A) and YNB

(B). At various time points samples were withdrawn, cells separated

by centrifugation and the supernatant was used for H2O2

estimation. The percentage of residual H2O2 was plotted against

H2O2 treatment time. Standard bars reflect standard error

calculated from three independent experiments.

(TIF)

Figure S2 Differential expression pattern of C. neofor-
mans genes related to anti-fungal drug resistance upon
peroxide stress.
(TIF)

Table S1 Global transcriptional profile of C. neofor-
mans genome during H2O2 induced oxidative stress.
(XLSX)

Table S2 Gene ontology enrichment analysis of the
differentially expressed probes at various time points
during H2O2 treatment.
(PDF)

Table S3 Master list of gene ontology annotation of the
differentially expressed probes at various time points.

(XLSX)

Table S4 Differential expression pattern of C. neofor-
mans genes assigned to oxidation-reduction functional
category at various time points during exposure to
oxidative stress.

(XLSX)

Table S5 List of C. neoformans differentially expressed
genes assigned to oxidation-reduction functional cate-
gory that exhibited persistent induction or repression
for a minimum of three time points during H2O2

induced oxidative stress.

(PDF)

Table S6 Differential gene expression profile of the
genes belonging to metabolic process functional catego-
ry with proposed gene names.

(XLSX)

Table S7 Transcript abundance at multiple time points
of the genes belonging to C. neoformans ubiquitin
dependent protein catabolic processes during H2O2

induced oxidative stress.

(XLSX)
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