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Abstract

Next-generation sequencings platforms coupled with advanced bioinformatic tools enable re-sequencing of the human
genome at high-speed and large cost savings. We compare sequencing platforms from Roche/454(GS FLX), Illumina/HiSeq
(HiSeq 2000), and Life Technologies/SOLiD (SOLiD 3 ECC) for their ability to identify single nucleotide substitutions in whole
genome sequences from the same human sample. We report on significant GC-related bias observed in the data sequenced
on Illumina and SOLiD platforms. The differences in the variant calls were investigated with regards to coverage, and
sequencing error. Some of the variants called by only one or two of the platforms were experimentally tested using mass
spectrometry; a method that is independent of DNA sequencing. We establish several causes why variants remained
unreported, specific to each platform. We report the indel called using the three sequencing technologies and from the
obtained results we conclude that sequencing human genomes with more than a single platform and multiple libraries is
beneficial when high level of accuracy is required.
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Introduction

The Human Genome Project [1,2] published the first working

draft of the human reference sequence in 2000. That sequence was

generated in its entirety by capillary sequencing; all subsequent

genomes of human individuals [3–9], except one [4], have relied

on next-generation sequencing (NGS) platforms. Starting in 2005,

454/Roche [10], and subsequently Illumina [11] and SOLiD/ABI

[12] entered the market with technology that ultimately aims to re-

sequence human genomes for less than $1000, which would

transform the field of personalized medicine. While several new

entrants may have the future potential to change the sequencing

landscape yet again, the current sequencing market is dominated

by these three matured platforms. With the introduction of these

technologies, reports of biases in all platforms [13], as well as

efforts to monitor [14], remove [15], or compensate for them

arose. Initially, the three sequencing approaches were evaluated in

targeted regions (up to 4 Mbp) [16] where they were compared

with Sanger-generated sequences for validation. A recent study

compared the accuracy of the SNP calls and the quality of the

short-reads from the three platforms in an E. coli sample [17],

while another study compared single nucleotide variants from

Illumina data with the data from Complete Genomics, another

entrant in the sequencing landscape [18].

Here we compare three platforms namely 454/Roche GS FLX,

Illumina HiSeq 2000 and ABI SOLiD 3 ECC in their ability to

identify the single-nucleotide substitutions in the same human

individual. In contrast to previous studies that generated a

saturating level of redundant coverage to eliminate low coverage

as a factor in SNP calling, we sequenced the individual’s DNA to

read-depths that allows for variant detection in each correspond-

ing dataset with sufficient confidence. This allows us to assess the

performance and biases of each sequencing platform, as it would

affect the completeness of the variant detection in a genome-

sequencing project. In this study we show that both Illumina

HiSeq 2000 and SOLiD 3 ECC sequencing exhibit variation in

coverage with GC content, and report on the probable reasons

why certain SNPs are missed by each of the technologies. We also

discuss a method to calculate the uniquely mappable regions of a

reference genome, which can then be used to filter SNPs and

improve the quality of the variant calls, thereby avoiding the

generation of false positive variants. This approach is especially

useful for 454 GS FLX sequences analyzed using the software

Newbler [3], which does not utilize the concept of mapping quality

[19].
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Results

Generation and Alignment of Reads
We sequenced the genomic DNA from a human DNA sample

called KB1 [5]; to 10.04 fold coverage using 454 GS FLX

sequencer, 58.89 fold coverage using Illumina HiSeq 2000

sequencer and 78.63 fold coverage using SOLiD 3 ECC

technology (Table 1). All three platforms are expected to exhibit

different error characteristics and therefore should complement

one another to yield the most accurate set of human single

nucleotide variants. Since the dominant type of error for SOLiD

and Illumina reads is substitutions, it is possible to compare the

sequences using similar alignment criteria and software. Using the

software BWA [20] (version 0.5.9rc), we aligned the SOLiD and

Illumina reads to the human reference GRCh37, henceforth

referred to as hg19. In contrast to randomly dispersed Illumina

and SOLiD sequencing templates, the array-based pyrosequenc-

ing technology used by 454 generates sequences with homopol-

ymer errors (indels in runs of the same nucleotide). The assembly/

mapping software Newbler aligns these data in a format called

flow-space in an attempt to correct these systematic errors

associated with pyrosequencing. We used Newbler version 2.3 to

align the single-end fragment reads to hg19 with the default

parameters. Only the two platforms 454 and Illumina exclude the

low-quality reads using filters prior to reporting the final set of

reads to the user; a fact that is reflected in a higher alignment rate

for these two technologies. In contrast, the SOLiD system uses the

alignment to a reference as a mean to determine reads of sufficient

quality (Table 1).

Coverage Distribution and Variation
The depth-of-coverage distributions of the reference genome

from data from the three sequencing platforms are shown in

Figure 1. The coverage distributions are bimodal (Figure 1), with

the two modes that at first appeared to reflect the coverage on the

autosomes and the sex chromosomes. However, we found that

removing the sex chromosomes from the analysis did not eliminate

the bimodal behavior. Since, earlier studies reported a decrease in

coverage in A/T rich regions with Illumina sequencing [21], we

investigated the correlation between the GC content and coverage

for the three platforms, for potentially influencing bimodal

behavior. Figure 2 shows a significant variation in coverage with

GC content; coverage by Illumina and SOLiD sequences is

notably lower in G/C rich regions. This variation with GC

content, along with the expected haploid coverage on sex

chromosomes, explains the observed bimodal behavior of these

distributions. Despite sharing the emulsion PCR approach in the

sequencing template preparation with the SOLiD 3 system, only

the Roche/454 FLX sequencing chemistry seemed to be immune

to this bias, as is demonstrated with only a minor correlation

between GC content and coverage for 454 reads (Figure 2). The

behavior exhibited by Illumina HiSeq sequences is in stark

contrast to the behavior of GA II reads, which exhibit a lower

coverage in A/T rich regions.

Detection of SNPs and Indels
A large portion of the genomic regions requires local

realignments due to the presence of indels in the sequenced

genome when compared to the reference genome. Indels can lead

to alignment artifacts where a lot of bases around the indel do not

agree with the reference and can masquerade as SNPs. We used

the realignment tool in GATK [22] version 1.2–29 to realign the

sequences from the Illumina and SOLiD dataset; followed by use

of SAMtools version 0.1.16 to call variants. As described in the

Table 1. Sequencing and alignment statistics. Coverage is calculated with and without the putative PCR duplicates.

454 Illumina SOLiD

Number of reads generated 83,331,227 1,867,073,052 6,905,193,148

Number of bases generated 29,246,232,549 188,349,876,745 397,681,271,500

Read lengths 350 avg. single-end 101 paired-end 50 paired-end, 75 single-end

Number of reads aligned 82,310,265 (98.77%) 1,751,042,389 (93.79%) 4,429,505,837 (64.15%)

Number of bases aligned 28,732,501,185 (98.24%) 168,495,777,999 (89.46%) 224,998,686,646 (56.58%)

Coverage 10.04/9.78 X 58.89/55.06 X 78.63/53.20 X

Duplicate reads 2,211,903 115,528,614 1,216,108,795

Reference bases covered 2,781,827,482 2,858,458,440 2,850,277,778

The number of aligned reads includes the duplicate reads.
doi:10.1371/journal.pone.0055089.t001

Figure 1. Depth of coverage distribution for the three
platforms. The y-axis indicates the fraction of the bases in the
reference sequence that has a particular coverage. This does not
include secondary alignments and potential PCR duplicates. The dashed
lighter curves depict the coverage distribution as calculated using a
Poisson model for each sequencing technology.
doi:10.1371/journal.pone.0055089.g001
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previous section, Newbler handles the 454 data in flow-space and

we used Newbler version 2.3 to call variants in it (See Methods).

While the three sequencing approaches resulted in a similar

number of single substitution variants, namely 4,331,131 variants

for the 454 data, 4,691,363 variants using the Illumina data, and

4,145,208 variants using the SOLiD sequences, the combination

resulted in a total of 5,252,985 potential variant locations.

However, only a common set of 3,401,954 variant locations was

shared between all three technologies, whereas only one or two of

the platforms supported the remaining 1,851,031 locations

(Figure 3a). As for indels, we found 614,794 indels using the 454

data, 554,138 small indels using the Illumina data and 303,937

potential indels using the SOLiD data.

Reasons for Failure of Detection of Substitutions
The 1,851,031 discrepant locations between 454 FLX, Illumina

HiSeq and SOLiD 3 sequences allow for the study the false

positive and the false negative rates for the obtained variant calls.

Considering the SNP calls from each platform as independent

evidence, we use the locations where two platforms agree to study

the false negatives for the third one. This allows us to quantify and

understand the reasons why this SNP was not called in the dataset

sequenced using the third platform. Similarly, at the locations

where only one platform calls a variant, we identify and study the

false positives for that platform, barring exceptions that are

explained later in the text.

Figure 2. Variation of coverage with GC content in the three sequencing technologies. The red line shows the mean coverage across the
whole genome. Each point on the plot reflects the mean coverage and fraction of GC content in 50 kbp non-overlapping window. The y-axis shows
the coverage whereas the x-axis shows the fraction of C, G nucleotides in the window. This does not include secondary alignments and potential PCR
duplicates.
doi:10.1371/journal.pone.0055089.g002
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The reasons why a SNP is not detected by one sequencing

technology, whereas it is reported by another, can be broadly

divided into three categories:

N Issues related to coverage: These can be further

subdivided into complete lack of coverage, low coverage

(which is not enough to call a SNP based on predefined

criteria), and higher-than-expected coverage (based on a

model used to separate SNPs from structural variants and

assembly errors) at the candidate location.

N Issues with the alternate allele: Most software tools

(including SAMtools and Newbler) require observing the

alternate allele at least twice or more, before they consider the

location as a potential variant. These can be further subdivided

into instances where the alternate allele is not seen at all and

others, when the alternate allele is not seen a sufficient number

of times.

N Issues with the variant calling: These refer to the

situations where the alternate allele is seen a requisite number

of times, but the SNP is not called due to other reasons. These

reasons may include proximity to many other SNPs, proximity

to a high quality indel, existence in a non-uniquely alignable

region, and a huge deviation from the expected diploid

behavior of the sample for the data aligned using BWA. For

the reads aligned using Newbler, the reasons include the

location being in a non-uniquely alignable region and other

alignment errors that arise due to the unique error-profile of

the 454 reads.

We investigated the alignments at the 439,122 locations that

were called as putative variants by using 454 and Illumina

sequences, but not using SOLiD sequences (Figure 4a i). We

assigned each location to a particular category based on the reason

why it was not called a SNP. We found that the variant allele was

observed in the SOLiD reads in 64% of these cases, but the SNP

was filtered away for various reasons. 27% of the locations were

filtered away due to a low SNP quality (defined as the Phred-scaled

likelihood that the called genotype is identical to the reference),

18% of them were filtered away due to a low RMS (root mean

square) mapping quality (reflecting the limitation of shorter reads)

and another 19% were filtered away as the variant allele was not

seen enough number of times. Coverage related issues (no

coverage, too little coverage or more than expected coverage)

were responsible for another 19% of the locations. The alternate

allele was not seen at all, despite adequate coverage at the site, for

the remaining 17% locations.

For the 71,567 locations that were called using the SOLiD

sequences (but not by others), we looked at the alignments for both

the 454 dataset and the Illumina datasets. At about 15% of these

locations (Figure 4a ii), the alternate allele was seen just once in the

454 dataset and at about another 16% of them, the coverage of

454 reads was not enough to call a SNP. For another 21% of the

locations the SNP was not called by Newbler, even though the

allele was seen multiple times in the pairwise alignments between

the reference and the 454 reads, with most of them being

associated with homopolymer errors. On the other hand at 25% of

these locations the SNP was seen in the Illumina dataset (Figure 4a

iii), but it was filtered away due to a lower SNP quality (15%), or

because lower mapping quality (9%). Another 14% of these

locations did not have sufficient coverage with Illumina reads to be

considered in SNP calling. Considering the locations where both

454 and Illumina had little, no, or higher than expected coverage,

and where the alternate allele was seen at least once in either 454

or Illumina dataset as true SNPs, we expect 14,707 of the 71,567

locations to be false-positives for the SOLiD calls.

When we looked at the 47,381 locations that were called a SNP

using 454 and SOLiD reads, we found that primary reason (at

60% of the locations) these were not called a SNP with Illumina

reads had to do with the coverage (Figure 4b i). 57% of the

locations were in regions where the coverage was more than

expected (signaling a putative structural variant), whereas there

was little of no coverage for the remaining 3%. We used a Poisson

distribution with the same mean value to calculate the coverage

threshold to filter variants, but this data suggests that a gamma

distribution with more weight on more tails is probably a better

model for Illumina data. The second largest contributor was low

SNP quality (22% of the locations), which is the result of an

observed deviation from the expectation that both allele should be

seen approximately the same number of times on a heterozygous

location.

We found 225,981 locations that were called as putative variants

using Illumina reads only. Looking at the alignments for the

SOLiD reads at those locations (Figure 4b ii), we found that for

22% of them we saw the alternate allele a sufficient number of

times, but it was filtered away either due to low RMS mapping

quality or a low SNP quality. Another 16% of the locations were

Figure 3. Venn diagram showing the overlap in the SNP calls made using data from the three sequencing technologies. We display
the sizes of each of the seven categories of overlaps among the variant calls in the three technologies. (a) depicts the overlaps when all substitution
calls are used, (b) depicts the overlaps when all calls from Illumina and SOLiD are used but only the high-confidence subset of the 454 dataset is used,
and (c) depicts the overlaps when only the variants in the uniquely alignable regions of the reference sequence are used.
doi:10.1371/journal.pone.0055089.g003
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filtered away as the variant was not seen sufficient number of

times. The alternate allele was not seen at all for 35% of the

locations and the coverage was deemed insufficient for the

remaining 27% of the locations. This was very different from

454 (Figure 4b iii), where the alternate allele was not seen at all for

about 28% of the locations, only seen once for about 20% of the

Figure 4. Discrepant SNP calls from each platform. The categories on the x-axis are (1) no coverage at location (2) not enough coverage at
location (3) more than expected coverage (4) alternate allele not seen (5) alternate allele seen just once (6) too many SNPs around location (7) close to
a high-quality indel (8) low RMS mapping quality (9) low SNP quality. The y-axis depicts the number of locations (frequency) in each category. a)
Comparison of SOLiD generated sequences with other sequences based on SNP calls and alignments. (i) SNPs called using 454 and Illumina
sequences but not called using SOLiD reads. (ii) SNPs called only by SOLiD sequences. We investigate why they were not called using Illumina
alignments. (iii) SNPs called only by SOLiD sequences. We investigate why they were not called using 454 alignments. b) Comparison of Illumina
generated sequences with other sequences based on SNP calls and alignments. (i) SNPs called using 454 and SOLiD reads but not called using
Illumina reads. (ii) SNPs called only by Illumina sequences. We investigate why they were not called using SOLiD alignments. (iii) SNPs called only by
SOLiD sequences. We investigate why they were not called using 454 alignments. c) Comparison of 454 generated sequences with other sequences
based on SNP calls and alignments. (i) SNPs called using SOLiD and Illumina reads but not called using 454 reads. (ii) SNPs called only by 454
sequences. We investigate why they were not called using SOLiD alignments. (iii) SNPs called only by 454 sequences. We investigate why they were
not called using Illumina alignments.
doi:10.1371/journal.pone.0055089.g004
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locations, and for another 21% the allele was seen multiple times

but was not called as a variant by Newbler. Using the same

criterion as for SOLiD data, we expect 31,696 of the calls to be

false-positives for the Illumina data.

Among the 624,306 locations that were called a SNP using both

Illumina and SOLiD reads, but not using 454 reads, 225,443

(36%) had the alternate allele multiple times in the pairwise

alignments of the reads with the reference (Figure 4c i). However,

they were not flagged as variants in the later stages of processing,

with most of them being associated with homopolymer errors.

There were another 205,060 SNPs (33%) where we saw the

alternate allele once, not twice or more as required by Newbler to

call it a SNP. As for the 442,674 locations that were only called as

variants using 454 sequences, SOLiD (Figure 4c ii) and Illumina

(Figure 4c iii) did not call 19% of them due to low RMS mapping

quality or low SNP quality. 45% of the variant locations were not

considered in Illumina reads as the coverage exceeded the

expectations, and another 23% were not called as the variant

was not seen enough times. In contrast, only 17% of the locations

had more than expected coverage in SOLiD reads, but 40% of the

variants were not called as the variant allele was not seen enough

times. We expect 75,695 calls to be false-positives for sequences

generated using 454 instruments for this sample using the same

criterion as that used for Illumina and SOLiD. However a large

proportion of these putative false-positive calls were in locations

where both Illumina and SOLiD saw the alternate allele multiple

times, but the SNP was filtered away as the depth-coverage at that

location was higher than expected. This could be an artifact of our

SNP-calling pipeline, which used Poisson distributions to set the

coverage thresholds for the SNP calls, or a consequence of

structural variants present in the target genome. This also means

that false-positives for 454 sequences are indicative of certain

biases in Illumina and SOLiD reads along with errors in the 454

reads.

454 Data and Newbler-specific Variant Calling Variation
Newbler labels a subset of its variant calls as ‘‘high-confidence’’.

These calls require more evidence than that required for the calls

used in the analysis summarized above. We therefore decided to

use the high-confidence subset of the 454 FLX calls to investigate

whether this increases the concordance rate of 454 data with the

other two technologies. Newbler called 3,137,921 substitutions

when the high-confidence subset was used, resulting in a reduction

from 442,674 454-specific calls (with default parameters) to now

only 226,879. The more stringent setting, however, significantly

increased the number of SNPs that were called by Illumina and

SOLiD, but not by 454, to 1,447,828. It also decreased the

number of SNPs called by all three technologies to 2,578,432

(Fig. 3b). Therefore, even though using the high-confidence subset

of SNP calls seems to reduce the false-positive rate of calls (as

evident by a decrease in the number of calls made only by 454

reads), it significantly increases the false-negative rate for variant

calls.

BWA and many other aligners assign a mapping quality to each

read, which is a scaled error probability that the alignment for the

read is wrong. A read with a mapping quality of zero does not

contribute to SNP calls. Newbler on the other hand aligns the

reads to the reference and if it finds more than one alignment that

passes all its alignment thresholds, then it tags the read as a

‘‘repeat’’, and that read is not used in SNP calling. Both methods

attempt to reduce the false-positive rate of SNP calls, while

attempting to use as much of the data as possible.

We normally post-process the SNP calls to restrict the calls to

the uniquely alignable regions of the reference genome, for the

reads of a certain length and error profile. This method was used

in Schuster et al. 2010 [5] to call the variants and explicitly

discussed in Koehler et al. 2010 [23], which termed the uniquely

alignable region of the reference as the ‘‘uniqueome’’. We

calculated the uniquely mappable region for 454 reads of average

length 350 bp, 76 bp paired-end Illumina reads and 75 bp single-

end/50 bp paired-end reads for SOLiD reads, and then filtered to

throw away the SNP calls that did not lie in these regions. The

results are shown in Figure 3c, where we see a substantial decrease

in the calls made only by 454 sequencing, a marginal decrease in

the number of calls made only by SOLiD sequencing, and an

increase in Illumina only calls.

Our study highlights some of the issues encountered when these

technologies are used for whole-genome sequencing of samples.

We realize that the results of our analyses reflect a cumulative

effect of library preparation, base callers, sequencing bias,

alignment tools and variant callers. All platforms have their own

biases, and use of more than one technology can be used to

overcome the limitations that are posed by a single sequencing

technology.

Comparison of Indels
Insertions and deletions are harder to call and analyse,

compared to single nucleotide substitutions. Calculation of indel

boundaries requires computationally expensive local realignments,

and even then the exact start and stop of an indel can vary

between algorithms and samples, making any comparison based

on coordinates difficult. We had fragment reads from 454, and

paired-end reads from Illumina and SOLiD (with different insert

length distributions); each technology is best suited for different

lengths and ranges of indels making any meaningful comparison

difficult. Prior report on indels in whole-genome sequences have

varied greatly; from 135,262 in the Han Chinese genome, to

823,396 indels in the Venter genome, showing the limitations

faced in calling these variants.

Newbler called 614,794 indels in KB1 with the 454 data,

225,980 of which were homozygous and 282,909 of them were

tagged as high confidence. Intersection of indel intervals in dbSNP

132 with these indel calls results in 263,262 (42.82%) overlaps and

another 67,895 (11.04%) indels are found with +/210 bp of the

indels in dbSNP. We called 554,138 indels using the Illumina data,

and 303,937 indels with the SOLiD data. 440,514 (79.49%) of the

indels called using the Illumina data and 255,232 (83.97%) of the

indels called using the SOLiD data were also found in dbSNP132.

These numbers increased to 456,328 (82.35%) and 259,333

(85.32%) when an overlap +/210 bp around indels was allowed.

In terms of overlap between the technologies, out of the possible

842,281 intervals, 177,772 of the indels were called using the

sequences from all the technologies. 223,029 of them were

supported by 2 of the 3 technologies, whereas the remaining

had support from just one of them.

Experimental Validation of SNPs
We randomly selected 300 SNPs from each of the six sets in

Figure 3a, i.e., where at least one of the three platforms (454 GS

FLX, Illumina HiSeq 2000, SOLiD 3) disagreed on the computed

genotype. For this purpose a sequence interval of 50 bp flanking a

potential variant on each side was used for primer design using the

MassARRAYH Assay Design Software (Sequenom, Inc.). These

SNPs were assayed using mass spectrometry based genotyping

technology and the results are shown in Figure 5. The validation

rate was 50% for variants supported only by 454, 69% for variants

only supported by Illumina, and 87% for the ones supported only

by SOLiD. The validation rate for variants supported by more

Comparison of Sequencing Platforms
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than one platform was higher when compared to the rate from the

individual platforms, e.g. the validation rate for variants supported

by 454 and Illumina was 78% whereas the validation rate for

variants supported only by 454 was 50% and the validation rate

for variants supported only by Illumina was 69%. The validation

rate for SNPs called using 454 and SOLiD was 80% and it was

89% for variants called by Illumina and SOLiD. The longer reads

generated by 454 resulted in some SNPs with 50 bp flanks (as

required by the Sequenom assay) in repeat regions that have a

higher dimer/hairpin potential when compared to the flanks for

SNPs in the other two platforms. As a result, we saw significantly

more primer design and assay failures for the 454 derived SNPs

when compared to SNPs in the two short read technologies.

Furthermore, the number of assays and primers that failed was

also notably higher for locations that had been called by only one

of the sequencing technologies.

Discussion

With the ultimate goal to sequence and analyze a human

genome as fast and cost-effective as possible, it is highly desirable

to simplify sampling and library preparation steps, but also to

carry out DNA-sequencing on a single technology platform. In

fact, with the availability of a high quality reference genome, re-

sequencing with ‘‘low-cost per base’’ technologies has been at the

center of recent efforts of most academic and commercial

sequencing endeavors. However, with hundreds of human

genomes currently being deciphered, the question of completeness

relative to today’s technological possibilities has become secondary

to other pursuits. Faced with increasing evidence that human

genomics does not provide allelic association to critical human

phenotypes at predicted rates, the question is being raised whether

missed genetic variants might be causal due to unmapped regions

of the genome. Further, understanding interactions of so far

unrecognized genetic variations with small molecule drugs is of

increasing interest to pharmaceutical and diagnostic industry. Our

analysis on the false negative rate of SNP identification suggests

that a significant number of variants are not reported using a single

sequencing platform, limiting insights which could enable a more

complete understanding of the human genome. On the other

hand, false positives from a single sequencing technology lead to a

continuous degradation of the quality of SNP databases via the

inclusion of non-existing genetic variants. Using a non-sequencing

approach we report that the validation of SNP calls is significantly

improved for variants that are reported using more than a single

sequencing platform.

We realize that every lab and sequencing platform has a ‘‘best

practice’’ protocol from sample-prep to the bioinformatics

pipeline, and that all the steps heavily influence any conclusion

that one attempts to derive in such an experiment. In this study we

show evidence that each of the three applied sequencing

technologies contributes, at the respective coverage of each

dataset, an additional unique 71,000 to 443,000 variants (1.4–

8.9%) of the total of 5 million found in the human individual KB1.

Remarkably, at least 1.4% of these technology-dependent variants

would have gone unnoticed, even if the genome were sequenced

on two of the three platforms. Furthermore as evident using

Sequenom mass spectrometry, the validation rates for variants

using two platforms are improved by more than 10% over the

validation rates for the individual platforms. It therefore seems

highly beneficial to sequence at least reference genomes from each

geographic region by the multi-platform approach presented here.

A larger number of multi-platform human reference genomes

would not only minimize systematic technological biases, but also

reduce ethnical biases from today’s human genome reference

sequence.

In this comparative study we looked at nine factors that affect

the ability of a sequencing platform to accurately call variants in

the human genome (see Figure 4 a–c). That include coverage

related issues, allele related issues where the alternate allele was

not seen multiple times and SNP related issues where the SNPs

were filtered away in an attempt to reduce the false-positives.

Among all the factors impacting the probability of a variant to be

called, one of the most important one is the unbiased distribution

of reads across a genome. As shown in Figure 2, the Roche/454

data is much more uniformly aligned, independent from the GC

content of the genome than the short read platforms, resulting in

comparable number of variant calls despite a much lower overall

coverage. This trend however is counteracted by the 454 Roche

specific error model that is prone to inaccurately assess the length

of a given homopolymer, leading to potential false-positive SNPs

calls, as shown by calls made only by 454 sequencing (Figure 3a).

In addition to the platform specific errors, systematic errors are

introduced through the varying algorithms and parameters used in

the process of variant calling. This becomes apparent when the

Roche/454 dataset is reanalyzed to include only the ‘‘high-

confidence’’ variants, which reduces the total number of detected

Newbler SNPs by 21%. The Roche/454 specific SNPs are

reduced this way by more than 51% (226,879 calls, down from

442,674) (Figure 3b), however at the cost of increasing potential

false negative prediction, as is apparent in a largely increased

number of calls that are seen only by the Illumina and SOLiD

platform (1,447,828 calls, up from 624,306). In order to avoid the

conflict of Newbler’s two modes of that either over-predicts false-

negative or under-predicts true positive variants, we calculated the

uniquely mappable region of the human genome for each dataset

specific on the platform’s read length (Roche/454 length 350 bp,

Figure 5. SNP Validation using Mass spectroscopy. Validation of
300 putative SNP locations from each of the six sets of SNP calls in
Figure 3a, where not all three technologies agree on the computed
genotype. The categories on x-axis are ‘‘454’’ (SNPs called by 454 only),
‘‘Illumina’’ (SNPs called by Illumina only), ‘‘SOLiD’’ (SNPs called by SOLiD
only), ‘‘454 & Illumina’’ (SNPs called by 454 and Illumina), ‘‘454 & SOLiD’’
(SNPs called by 454 and SOLiD), ‘‘Illumina & SOLiD’’ (SNPs called by
Illumina and SOLiD). The color categories include ‘‘Primer Failure’’
(Primer extension failure), ‘‘Assay Failure’’ (Assay Failure), ‘‘Validated’’
and ‘‘Not Validated’’.
doi:10.1371/journal.pone.0055089.g005
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Illumina 76/101 bp paired-end reads and SOLiD 75 bp single-

end, 50 bp paired-end reads). This approach is highly successful in

combining the sensitivity of the variant detection for the Roche/

454 data, while significantly reducing the rate of false negative

prediction, as shown in Figure 3c. In our approach, the total

number of variants agreed upon by all three platforms remains by

,3.3 million, while the number of Roche/454 specific variants is

lowered to 302,032.

Interestingly, the lower GC bias as seen in 454 reads is not

observed for the Life Technologies/SOLiD platform, despite the

fact it also uses emulsion-PCR for template amplification. The

performance of the SOLiD system was greatly aided in this

comparison by its much higher coverage when compared to the

454 or Illumina data set.

An ideal setup for a high quality human or other mammalian

genome project therefore would include all three sequencing

platforms and thus allow for the generation of the most complete

SNP sets and genome sequences. While we find that the three

technology platforms complement one another, efforts are

underway to improve currently used chemistries to combine

advantages from multiple platforms into a single one.

Methods

Sequencing
454 Sequencing on the GS FLX. The protocols and details

of library construction and sequencing on four Roche/454 GS

FLX instruments using Titanium chemistry, for a total of 72 runs

have been previously described in Schuster et al, 2010.

Illumina Sequencing on the HiSeq 2000. The KB1 library

was prepared from genomic DNA using the Multiplexing Sample

Preparation Oligonucleotide Kit from Illumina according to

manufacturers instructions. The library was subjected to 5 cycles

of PCR enrichment prior to cluster generation and then sequenced

on the HiSeq 2000 according to manufacturers instructions.

SOLiD sequencing using SOLiD 3 ECC platform. SOLiD

sequencing of KB1 was performed using recent developments in

ligation-based sequencing. Specifically, improvements in paired-

end sequencing have allowed us to sequence longer read lengths in

both the forward (75 bp) and reverse direction (30 bp). The longer

paired end reads were combined with a mate pair (2650, 1.5 kb

insert size) sequencing approach to achieve ,606 paired

coverage. In addition, an increase in accuracy was obtained by

using Exact Call Chemistry (ECC) for mate pair sequencing, as

well as the 75 base pair forward tag.

ECC is based on standard ‘‘error correcting codes’’ commonly

used in modern communication and data storage systems. This

approach works by transforming data and augmenting it with

redundancy to make it more resistant to measurement error.

SOLiD and its ligation-based sequencing approach has the unique

ability to use ECC by applying an additional, second sequencing

probe set and repeating a sequencing primer for redundancy

(Figure 5). This reduces measurement error and improves

accuracy with minimal impact on sequencing time. Furthermore,

ECC allows one to decode SOLiD sequencing data directly to

base space without using a reference by using Bayesian inference.

All of the analysis on the data was performed in base space and

more details about the involved chemistry can be found at http://

www3.appliedbiosystems.com/cms/groups/

global_marketing_group/documents/generaldocuments/

cms_091372.pdf.

Alignment of Reads
454. We used Newbler version 2.3 to align the 454 reads to

the human reference genome (hg19) using the default parameters.

Illumina. We aligned the Illumina reads to the human

reference genome (hg19) using BWA version 0.5.9rc, allowing up

to 2 differences for reads of length 36 bp, up to 4 differences for

reads of length 76 bp and up to 5 differences for reads of length

101 bp. The base quality deteriorates towards the 39 end of the

read, so we ran BWA with an option ‘–q 209 to allow trimming of

the read down to 35 bp.

SOLiD. We aligned the SOLiD reads to the human reference

genome (hg19) using BWA version 0.5.9rc, allowing up to 3

differences in reads of length 50 bp and up to 4 differences in

reads of length 76 bp. All the other parameters and arguments

used were the same as that used for alignment of the Illumina

reads.

Coverage
Coverage from the three technologies is defined as:

C = (number of distinct bases aligned)/(number of non-N bases

in hg19 = 2,861,343,702).

Removal of Duplicate Reads
We used the MarkDuplicates tool offered as part of the Picard

command-line suite (http://picard.sourceforge.net) to mark the

duplicate reads in the Illumina and SOLiD datasets. Newbler takes

care of the duplicate reads internally by requiring that variants be

confirmed from non-duplicate reads. However, we did calculate

the number of duplicate reads in the 454 dataset (Table 1) to

compare them to Illumina and SOLiD, by calculating the number

of reads that had the same alignment coordinates on the reference.

Variant Calling
In previous studies [16], Poisson distribution has been assumed

as the model of depth coverage and we used it to set the coverage

thresholds to filter SNPs.

454. We used Newbler version 2.3 to align and call SNPs from

the 454 reads. The SNPs (available in the file 454AllDiffs.txt

produced by Newbler) were analysed and were kept if the coverage

at the SNP location was between 2 and 30. We deemed the SNPs

as homozygous if more than 80% of the reads supported the

alternate allele. We filtered to only keep the homozygous SNPs

from the sex chromosomes and the mitochondria.

Illumina. We used SAMtools version 0.1.16 to call the

variants in the Illumina reads. We required a minimum coverage

of 4, a maximum coverage of 60 and a minimum quality of 20 for

the SNPs and indels that were found to be on the autosomes. We

reduced the maximum coverage requirement to 45 for the sex

chromosomes and increased it to 10,000 for the mitochondrial

DNA. Only homozygous SNP and indels calls were kept from the

sex chromosomes and mtDNA.

SOLiD. We used SAMtools version 0.1.16 to call the variants

in the Illumina reads. We required a minimum coverage of 4, a

maximum coverage of 100 and minimum quality of 20 for the

SOLiD reads that mapped to the autosomes. The maximum

coverage limit was reduced to 60 for the sex chromosomes, and

increased to 10,000 for the mitochondrial DNA and only

homozygous SNP and indel calls were kept from these chromo-

somes.
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Variation with GC Content
We calculated the mean coverage and the GC content in non-

overlapping windows of 50 kbps and that information was used to

plot Figure 2.

Selection of SNPs for Validation
We collated the SNPs belonging to each of the six categories in

Figure 5, where the three technologies did not agree on the call.

We removed the SNPs where the 50 bp flanks for the SNPs

aligned to more than one location on hg19 with greater than 95%

identity. We randomly selected 300 SNPs from each of the

categories for validation.

Single Copy Intervals in hg19
We used a ‘‘self-masking’’ process to identify the regions in the

reference genome where reads should align uniquely. The process

breaks the reference genome into smaller fragments of length

equal to the length of the reads, and adjacent fragments overlap

each other by half the read length. These fragments are aligned to

each reference chromosome, with alignment parameters selected

to allow differences with a certain mutation rate. Any reference

position appearing in no more than two alignments is considered

uniquely mappable, since we only expect it to align to the two

fragments that include it. We used LASTZ [24] and utilized the

dynamic masking option to mask the reference genome. Initially

the reference sequence is marked entirely as non-masked, and

counters associated with each base are set to zero. Scoring

parameters are set to reflect those that will be used later to map

reads. As alignments are found, the corresponding counter is

incremented for every base in the alignment. Whenever a base’s

counter exceeds 2, that base is soft-masked and removed from the

alignment seeding tables. This latter action prevents highly

repetitive regions from overwhelming the computational process.

Sequenom Genotyping
Whole Genome Amplification (WGA). We amplified geno-

mic DNA samples using the REPLI-g Whole Genome Amplifi-

cation Midi Kit (Qiagen, Valencia CA). Amplified DNA was

cleaned up as per manufacturer’s recommendation.
Sequenom validation. The predicted SNPs were validated

on the Sequenom Mass Spectrometry platform using the iPLEX

Gold Chemistry (Sequenom, San Diego CA). Primers for

validating the SNPs were made using iPLEX Assay Design 3.0

software (Sequenom, San Diego, CA). The software creates a pair

of primers that will allow amplification of an approximately 100

base pair PCR product that encompasses the region where the

SNP of interest occurs. It also creates an extension primer that is

complementary to the region of interest and extends up to the

penultimate base right before the SNP position that is being

interrogated. The PCR and extension primers used in this study

are listed in Table S1. The primers used in the study were

synthesized at Integrated DNA technologies in Iowa. PCR

reactions with the appropriate template DNA and 100 nM of

each PCR primer was set up and brought to 94uC and held for 2

minutes at 94uC followed by 35 cycles of 94uC for 15 sec, 56uC for

30 sec and 70uC for 1 min. A final extension setup at 70uC for

8 min concluded the PCR. Excess primers and unincorporated

deoxynucleotides were removed from PCR reactions by adding

0.3 units of shrimp alkaline phosphatase (Sequenom, San Diego,

CA), 0.3 to each reaction and incubating at 37uC for 40 min. The

shrimp alkaline phosphatase was heat inactivated for 5 min at

85uC. The PCR reactions products were then subject to single

base pair extension using the extension primer Thermosequenase

and iPLEX nucleotides (Sequenom, San Diego, CA). Extension

primers were used at a final concentration of 0.2 mM in a 10 ml

reaction. Extension reactions were initially incubated at 94uC for

30 sec followed by 40 cycles of 94uC for 5 sec, 5 cycles of 54uC for

5 sec and 80uC for 5 sec. After this, primer extension reaction

products were desalted with SpectroCLEAN resin (Sequenom,

San Diego, CA). Ten nanoliters of the extension reaction was

dispensed on a 384-format SpectroCHIP (Sequenom) prespotted

with 3-hydroxypicolinic acid using a MassARRAY nanodispenser

(Sequenom, San Diego, CA). Data was collected using a matrix-

assisted laser desorption ionization/time of flight mass spectrom-

eter (Sequenom, San Diego, CA). Primer extension data was

analysed using MassARRAY Typer 3.4 software (Sequenom, San

Diego, CA).

Supporting Information

Table S1 The putative allele, the flanking sequence in
the genome, PCR and extension primers used in this
study are listed in this spreadsheet. The sheet ‘‘Only 454’’

lists the details for locations that were only called using 454

generated sequences, ‘‘Only Illumina’’ refers to the details for

locations that were only called by sequences generated using

Illumina HiSeq 2000 sequencing, and ‘‘Only SOLiD’’ refers to the

details for the locations that were only called by sequences

generated using SOLiD 3 ECC technology. ‘‘454 and Illumina’’,

‘‘454 and SOLiD’’, and ‘‘Illumina and SOLiD’’ refer to details for

locations that were called by only two of the three sequencing

platforms that were used in this study.

(XLSX)
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