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Abstract

The selection pressure experienced by organisms often varies across the species range. It is hence crucial to characterise the
link between environmental spatial heterogeneity and the adaptive dynamics of species or populations. We address this
issue by studying the phenotypic evolution of a spatial metapopulation using an adaptive dynamics approach. The singular
strategy is found to be the mean of the optimal phenotypes in each habitat with larger weights for habitats present in large
and well connected patches. The presence of spatial clusters of habitats in the metapopulation is found to facilitate
specialisation and to increase both the level of adaptation and the evolutionary speed of the population when dispersal is
limited. By showing that spatial structures are crucial in determining the specialisation level and the evolutionary speed of a
population, our results give insight into the influence of spatial heterogeneity on the niche breadth of species.
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Introduction

Long term evolution of populations can lead to local adapta-

tions to environmental conditions: organisms tend to have a higher

fitness in their local habitat than organisms originating from other

habitats. In natural populations, local adaptation is one of the

main forces shaping biodiversity [1–3]. In agrosystems, man-

driven selection leads to genotypes with high performances in

given environments [4,5] but also to pathogens that are adapted to

their hosts and that are likely to be more damaging [6].

Understanding the mechanisms involved in adaptation is therefore

an important challenge of evolutionary biology with potential

application in agronomy.

Spatial heterogeneity of natural or agricultural systems results

from externally imposed variations of environmental conditions

(e.g. resources, physical characteristics). Divergent selection in

space favours local adaptation to such spatial variations and the

emergence of specialised organisms which is often pointed out as

determinant for the maintenance of diversity since it allows the

partitioning of resource use [7]. In a heterogeneous environment,

however, migration from other habitats counter-balances local

adaptation leading to a decrease in the mean fitness of local

populations [8]. Migration between habitats at the global scale

depends on the proportion of the different habitats, their spatial

aggregation and the dispersal ability of the organism under

investigation [9]. In natural ecosystems, habitat loss and fragmen-

tation have strong effects on biodiversity and more particularly on

the maintenance of specialist species [10]. Indeed, such species

tolerate a narrower range of resources than generalist ones and are

thus more susceptible to resource availability in the environment.

Such a change in community structure along a gradient of

landscape fragmentation is described by Devictor et al. [11] on

birds. Based on a large scale bird survey, they studied the

distribution of species in landscapes with varying levels of

fragmentation and disturbances [12]. They found that specialist

species tended to be located in less fragmented and less disturbed

landscapes than generalists. More generally, the specialist decline

due to anthropogenic disturbances is reported in various

taxonomic groups and is known as biotic homogenisation of

communities (see [13], for a review). In agrosystems, the shift from

complex and diversified natural environments to much more

simplified and genetically uniform agrosystems over vast areas [14]

has facilitated the occurrence and spread of highly specialised and

damaging plant pathogens [15]. The development of control

strategies that hamper the evolution towards more damaging

pathogens is a major challenge in crop protection.

Evolutionary responses to environmental disturbances are

observed not only at the interspecific level but also at the

intraspecific and intrapopulational ones [16]. For example,

Barnagaud et al. [17] studied the variations of specialisation in

response to habitat reduction for 94 bird species in France. They

established that habitat specialisation decreased in 37% of bird

species. In addition, this decrease in habitat specialisation was the

most important for the most specialised species. In plant

epidemiology, Papaı̈x et al. [18] have characterised the level of

adaptation, at the scale of France, of the Puccinia triticina population

(a fungus responsible of the wheat leaf rust) to several wheat

varieties. They found that the rust population was composed of

several genotypes with different degrees of specialisation (see also

[19]). They also found that the amount of disease was influenced

by variations in the frequencies of P. triticina specialist genotypes in
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the rust population, these variations being explained by modifi-

cations of the wheat landscape.

It is hence crucial to better characterise the link between spatial

heterogeneity of the environment and the adaptive dynamics of

species and populations. We address this question from a

theoretical point of view and study how the components of spatial

heterogeneity interplay to make a population evolve toward

generalist or specialist phenotypes. We provide a general

framework based on an adaptive dynamics approach [20–23]

focused on the spatial description of the environment. Adaptive

dynamics is a theoretical approach that refers to a set of techniques

for studying long-term phenotypic changes of an evolving

population. It requires two main assumptions: mutations are rare

and they have small effects (evolution is gradual). The aim is then

to compute the evolutionary equilibria (singular strategies) and to

characterise their convergence stability (does a gradual evolution

lead to them?) and evolutionary stability (are they resistant to

invasion by any other phenotype?).

Several studies have investigated the effect of spatial heteroge-

neity on the evolution of specialisation using adaptive dynamics. In

these studies, space has either been assumed to be a continuous

domain or a discontinuous set of patches. For example, Doebeli &

Dieckmann [24] considered a square area where environmental

conditions changed gradually in one dimension. This assumption

is suitable for modelling environmental heterogeneity due to

changes in altitude, temperature, etc. Débarre & Gandon [25]

considered a one-dimensional continuous space with two habitats

that alternated. Geritz et al. [21], Meszéna et al. [26], Parvinen &

Egas [27] and Ravigné et al. [28] considered metapopulation

structures, consisting of a network of local populations intercon-

nected by dispersal. In addition, space has either been assumed to

be implicit, when the probability of migrating from one point to

another does not depend on the distance between these points, or

explicit. For example, Geritz et al. [21] considered space as implicit

and used an uniform dispersal while Débarre & Gandon [25]

considered a true spatial structure and addressed the problem by

means of diffusion theory.

All these studies on the effect of spatial heterogeneity on the

evolution of specialisation show that habitat differentiation and

balanced habitat proportions favour the evolution of specialism

while dispersal favours the evolution of generalism. They also

show that the phenotype of the generalist is the mean of the

optimal phenotypes in each habitat weighted by habitat propor-

tions. However these results are incomplete for several reasons.

First, they do not cover all possible situations. For example the

phenotype of the generalist has not been defined when some

patches receive fewer migrants than the other patches, which is a

common feature of agricultural and fragmented landscapes.

Indeed, spatial heterogeneity results in more or less connected

habitat fragments which do not contribute to the same extend to

the global network [29]. Second, the effect of the spatial

distribution of habitats on the evolution of specialisation has been

little studied. An exception is the study of Débarre & Gandon [25]

which shows in a one-dimensional environment that evolution

towards generalism is favored when habitats alternate frequently.

Third, these studies mainly investigate whether evolution leads to

specialists or to generalists, but when evolution leads to specialists,

the phenotype of these specialists has been little studied.

Exceptions are the studies of Geritz et al. [21] and Meszéna et al.

[26] which show that specialist phenotypes are closer to the

optimal phenotypes in each habitat when dispersal is limited and

when habitats are differentiated. Fourth, the effect of spatial

heterogeneity on the speed of adaptation has not been studied.

The stable coexistence of genotypes in spatially structured

populations is also an important question in population genetics

[30,31]. In this approach, evolution is studied over shorter periods

than in adaptive dynamics and a protected polymorphism occurs if

selection is heterogeneous in space and is sufficiently strong

relative to migration. When migration dominates selection, a rapid

reduction of the gene-frequency differences among demes is

expected. This panmictic evolution results in a unique mean fitness

for the entire population. Eco-evolutionary models are also used to

explore the dynamics of adaptation. Recently, Hanski et al. [32]

proposed an eco-evolutionary dynamics model for a spatially

explicit metapopulation inhabiting a finite network of patches, and

they studied the scale at which the population was adapted.

Depending on gene flow and demo-genetic parameters they found

that adaptation may be local, at the network scale, or may lead to

a mosaic specialisation. They did not, however, specifically address

the question of the effect of habitat spatial structures on

adaptation.

How does spatial heterogeneity drive the evolution of specialism

vs generalism? And how does habitat spatial structure determine

the level and speed of adaptation? To address these questions, a

flexible metapopulation model allowing for different metapopula-

tion structures is developed. Analytical and simulation studies are

then used to investigate how ecological trade-off, dispersal range,

habitat proportion and habitat spatial structure interplay to

influence the evolution of specialisation. We first describe the

model and the methods for the model analysis. Then, the results

are presented. An invasion analysis is performed and general

analytical results are obtained on the singular strategy, its stability

and the evolutionary speed. Finally, the role of habitat spatial

structure on the pre- (monomorphic population) and post- (when

specialists are selected) branching dynamics is investigated.

Model and Methods

In this section, we first present the model in its more generic

form. Then we describe two specific metapopulation structures

(hierarchical and lattice) that were used to explore the role of

environment composition and spatial organisation on adaptive

dynamics. Last, we present the different approaches that were used

to analyse the model. Table 1 provides a summary of terms and

parameters definitions.

Model
The model is based on a discrete-time deterministic description

of the population dynamics. It deals with a metapopulation

composed of several phenotypes that develop on a spatially

heterogeneous environment consisting of a network of P patches.

We consider dispersal as a passive process only, i.e. there is no

habitat choice. This model generalises the Levene’s soft selection

model [33] to any number of patches interconnected with any set

of pairwise dispersal values.

Environmental heterogeneity. Two kinds of environmental

heterogeneity are accounted for in our model. The first one is

related to the patch structure and it acts in the same way on all

phenotypes. We shall call it ‘structural heterogeneity’. The second

one refers to the habitats, their characteristics, their proportions

and their distribution over the different patches. We shall call it

‘habitat heterogeneity’.

Two components account for the structural heterogeneity: the

carrying capacity (size) of each patch and the dispersal rates

between each pair of patches. In our model, each patch j carries a

finite and constant number Kj of individuals. We define the

relative carrying capacity of patch j as Kj~Kj=KT , where

Adaptive Dynamics and Spatial Heterogeneity
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Table 1. Definition of the main notations.

Symbols Description

General metapopulation

P Number of patches

Kj Carrying capacity of patch j

KT ~
XP

j~1
Kj

Total carrying capacity of the environment

Kj~Kj=KT Relative carrying capacity of patch j

M Dispersal matrix

mj’ j Dispersal rate form patch j
0

to patch j

mzj~
XP

j’~1
mj’ j Kj’

Input connection of patch j

H Number of habitats

h(j) Habitat type of patch j

pk~
XP

j,h(j)~k
Kj

Proportion of habitat k in the environment

xi Value of trait x for phenotype i (strategy)

nij (t) Population size of phenotype i in patch j at time t

fh(j)(xi) Survival probability of phenotype i in patch j

bk Optimal trait in habitat k

1=s2 Habitat selectivity

d=s Differentiation between two habitats when only two habitats are present with
d~b1~{b2

Hierarchical metapopulation

p1 Number of groups

p2 Number of patches per group

m0 Proportion of the propagules issued from a patch that are deposited in a given
patch of another group

m0zm1 Proportion of propagules that are deposited in another given patch of the same
group

m0zm1zm2 Proportion of propagules that remain in their patch of origin

pkg Frequency of habitat k in group g

Cov(pk ,pk’)~
1

p1

Xp1

g~1
(pkg{pk)(pk’g{pk’)

Covariance between habitat group frequencies

VarM Variance of dispersal rates

Lattice metapopulation

ms Mean dispersal range

AI Aggregation index

p Proportion of habitat 2

Evolutionary speed

c2(x) Mutation variance

h(x) Rate of mutation occurence

t2(x) Variability of the offspring distribution of an individual with trait x

Post branching simulations

Tbranch Time to reach the singular strategy

ESS Trait values of the specialists

TESS ESSTime taken to reach the

�xxj(T) Mean phenotype in patch j at the end of simulations

D�xxj(T){bh(j) D Level of local adaptation at the end of simulations

doi:10.1371/journal.pone.0054697.t001
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KT~
XP

j~1
Kj denotes the total carrying capacity of the

environment. Dispersal is heterogeneous so that a propagule

dispersed from a patch is deposited in another patch according to

a specified dispersal distribution that is not necessarily uniform.

The proportion of propagules from patch j’ that migrate to patch j

during a life cycle is denoted by mj’ j . The number of propagules

received by patch j is determined, up to a constant, by the input

connection of this patch defined by:

mzj~
XP

j’~1

mj’ j Kj’,

In the general case, no assumptions are required on dispersal

rates and the model deals with any metapopulation structure with

any set of pairwise dispersal values. Thus it provides a unified

framework to handle classical metapopulation as well as spatially

explicit models. In addition to this generic environmental

structure, two specific types of structural spatial heterogeneity will

be given a particular attention. The first one is based on a

hierarchical environment structure and the second one on a lattice

structure (Section ‘Specific environments’).

The habitat heterogeneity is described as follows: the environ-

ment is composed of H different habitats (or niches) with a single

habitat in each patch. The habitat of patch j is denoted by h(j).

Habitat k is in proportion pk~
XP

j,h(j)~k
Kj in the environment.

Habitat allocation in space depends on the patch structure and will

be explained in Sectioǹ Specific environments’.

Individuals. Individuals are assumed to be haploid and are

classified with respect to their phenotype. They reproduce

asexually with non-overlapping generations and the progeny of

an individual usually has the same phenotype as its parent.

Phenotype i is characterised by the value, or strategy, xi of a

continuous trait x. The population size of phenotype i in patch j at

time t is denoted by nij(t). As the total population size is constant,

it satisfies

XI(t)

i~1

XP

j~1

nij(t)~KT ,

where I(t) is the largest phenotype index in the metapopulation at

time t.

Given its trait value xi and the habitat encountered in patch j

the survival probability of phenotype i in patch j is proportional to

fh(j)(xi), where fk(:) is a fitness function depending on the habitat.

In this paper, the function fk(:) is assumed to be Gaussian [21], so

that

fk(x)~ exp (
{(x{bk)2

2s2
),

where bk is the optimal trait in habitat k and 1=s2 is the habitat

selectivity, the same in all habitats. Differences between optimal

traits bk for the different habitats generate a trade-off between

survival functions on the habitats: adaptation to a particular

habitat causes maladaptation to the others. In particular, consider

two habitats 1 and 2 with opposite values of the optimal trait.

Then the survival functions of strategy x are

f1(x)~ exp (
{(xzd)2

2s2
) and f2(x)~ exp (

{(x{d)2

2s2
) with

d~{b1~b2. The associated trade-off function, u(:), between

the survival functions in habitats 1 and 2 is defined by

f1(x)~u(f2(x)). As shown in Débarre & Gandon [25], it satisfies

u(y)~ exp½{2(
d

s
{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{

1

2
ln y

r
)2�:

The differentiation between the two habitats is quantified by

d=s. When d=sv1, the trade-off is weak. When d=sw1, the

trade-off is strong. When d=s is close to one, the trade-off is very

sensitive to the phenotype value x ([25], Figure 1c).

Metapopulation dynamics. The demography of the meta-

population is modelled using deterministic discrete-time equations.

The model is based on the life cycle of individuals that involves the

following sequence of events: reproduction, dispersal, selection and

regulation. Reproduction rates are assumed to be constant among

habitats and phenotypes, so we only present in detail the dispersal,

selection and regulation phases.

During dispersal, a proportion mj’ j of propagules produced in

patch j’ is deposited on patch j. So, up to a constant, the number

of propagules of phenotype i that are deposited on patch j is equal

to

XP

j’~1

mj’ jnij’(t):

In each patch, new individuals are subject to a selection process

with a survival probability of phenotype i in patch j proportional

to fh(j)(xi). Thus, in patch j, the number of surviving individuals of

phenotype i is proportional to:

Figure 1. Hierarchical environment structure. P~p1|p2 patches
are distributed among p1 groups of p2 patches. m0: dispersal rate
between patches that belong to different groups, m0zm1: dispersal
rate between patches that belong to the same group, m0zm1zm2:
intra-patch dispersal rate.
doi:10.1371/journal.pone.0054697.g001
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(
XP

j’~1

mj’ j nij’(t))fh(j)(xi):

After the selection phase, a non-selective local regulation for

space makes the population size of phenotype i on patch j at time

tz1 equal to

nij(tz1)~Kj

PP
j’~1 mj’ j nij’(t)

��
fh(j)(xi)PI(t)

i’~1

PP
j’~1 mj’ j ni’ j’(t)

�
fh(j)(xi’)

� �� , ð1Þ

where the sum is performed over all phenotypes i’ present in the

metapopulation at time t.

Specific environments
Two specific environments will be studied in detail with the

model described above. The first one is a hierarchical environment

with three nested levels: patch, group of patches and whole set of

patches. It describes space as a partition between groups made of

mutually neighbour patches. The second one is a lattice

environment with dispersal rates based on euclidean distance. In

this case, space is explicit and two-dimensional.

The hierarchical and lattice environments are two different and

complementary ways of representing spatial relationships between

patches. So we will study the influence of habitat distribution in

both environments in parallel. In addition, the hierarchical

environment will allow us to go further in analytical developments,

while the lattice will be used to explore the post-branching

dynamics by simulation.

Hierarchical environment. Structural

heterogeneity. The hierarchical environment consists of a

network composed of p1 groups of p2 patches of the same

carrying capacity (K ), so that P~p1p2 (Figure 1). Three dispersal

rates m0, m1 and m2 are defined: m0 is the proportion of the

propagules issued from a patch that are deposited in a given patch

of another group, m0zm1 is the proportion of propagules that are

deposited in another given patch of the same group, m0zm1zm2

is the proportion of propagules that remain in their patch of origin.

Each propagule lands in one patch so thatX
j
mj’j~p1p2m0zp2m1zm2~1. This parametrisation leads

to the dispersal matrix

M~m0 JPzm1 Ip1
6Jp2

zm2 IP,

where JP is the P|P matrix of ones, IP is the identity matrix of

size P and Ip1
6Jp2

denotes the block-diagonal matrix with

diagonal matrices Jp2
. The symbol 6 denotes the Kronecker

product between matrices. Note that when p1~1 or p2~1 the

hierarchical environment corresponds to the Deakin’s model [34].

Habitat heterogeneity. The H habitats are dispatched

among the patches in proportions pk, for k~1, . . . ,H and their

spatial distribution is defined by the frequencies pkg of habitat k in

group g. It is also characterised by the covariances

Cov(pk,pk’)~
1

p1

Xp1

g~1

(pkg{pk)(pk’g{pk’):

If the proportion of habitat k or k
0
is constant across the groups,

then the covariance is zero. In particular, this is the case for all

pairs of habitats if they are spread homogeneously across the

groups. Otherwise, if two habitats are distributed identically across

the same groups, their covariance is positive. But if they are

aggregated in distinct groups, their covariance is negative. In

particular it reaches the value Cov(pk,pk’)~{pkpk’ when each

pkg is either zero or one, that is, when each group contains only

one habitat.

Lattice environment. Structural heterogeneity. The lat-

tice environment consists of a continuous square area e partitioned

into a regular lattice of square patches. Dispersal is assumed to be

isotropic and to decrease exponentially with distance. More

precisely, the proportion of propagules dispersed from a given

source point z and arriving at a given reception point z
0
is given by

the individual dispersal function

g(DDz{z
0
DD)~

2p

m2
s

exp {
2p

ms

DDz{z
0
DD

� �
,

where DDz{z
0
DD is the euclidean distance between z and z

0
, and ms

is the average dispersal range ([35], Appendix C). The between-

patch dispersal proportions are deduced by integration according

to the formula

mj j’~

Ð
A
Ð
A0 g(DDz{z

0
DD)dz

0
dz

DAD
: ð2Þ

When using Equation (2), the integration is defined over the pairs

of points that belong to the domains A and A0 of patches j and j
0
,

respectively, and DAD is the area of patch j. The implicit assumption

is that the population mixes perfectly in each patch.

The lattice environment was studied by numerical calculation

and by simulation. It was fixed to a size of 30|30 length units,

resulting in P~900 contiguous square patches of area equal to

one. To avoid border effects, e was considered as a torus in the

calculations of dispersal rates and habitat aggregation (see after).

The dispersal rates mjj
0 in Equation (2) were computed using the

CaliFloPP algorithm [36] on the 900 patches.

Habitat heterogeneity. In the lattice environment, the

spatial distribution of habitats is characterised by the proportions

pk and by an aggregation index, AI [37]. This index varies

between 0, when two patches sharing the same habitat are never

neighbours, and 1, when patches sharing the same habitat are as

clustered as possible (Figure 2, top line). In the numerical

calculations and in the simulations, two habitats (H~2, with

b1~{d and b2~d) in proportions 1{p and p were allocated to

the 900 patches. Without loss of generality, we only considered

patterns that satisfied 1{p§1=2§pw0. For a particular

combination of p and AI, several habitat allocations were

considered (Figure 2, bottom line).

Model analysis
The model described above was analysed in three stages. First, we

carried out an invasion analysis. Under the assumption that the

metapopulation is monomorphic, the condition was established for

the metapopulation to evolve towards either one generalist or several

specialists (branching criterion). We derived a mathematical

expression of the branching criterion for a general environmental

structure. Then this criterion was simplified in the hierarchical case

and it was explored numerically in the lattice case. Second, we

Adaptive Dynamics and Spatial Heterogeneity
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studied the evolutionary speed to reach the branching point in a

monomorphic metapopulation. Here again a general environmen-

tal structure was first considered before applying the results to the

hierarchical environment. In the lattice environment, the evolu-

tionary speed was analysed using a simulation model. Third, the

post-branching evolution of the specialists was studied in the lattice

environment by a simulation approach based on Equation (1).

Invasion analysis. We considered a standard and simplified

framework whereby the metapopulation is monomorphic and

evolves through episodic mutations of small amplitude. According

to the theory of invasion analysis [21], the metapopulation evolves

towards the ‘evolutionarily singular strategy’ characterised by the

trait value x?, if x? is an attractor (i.e. x? is ‘convergence-stable’).

The singular strategy corresponds to a generalist phenotype. If x?

is an ‘evolutionarily stable strategy’ (ESS), the population remains

monomorphic and the environment thus selects for a generalist

phenotype. Otherwise, i.e. x? is convergence-stable but not an

ESS, x? is a branching point. In this latter case, some phenotypes

on opposite sides of x? can coexist and the population becomes

polymorphic, i.e. the environment selects for specialist phenotypes.

Figure 3 gives some examples of evolutionary trajectories in both

cases.

We applied the theory of invasion analysis to our setting using a

matrix model based on Equation (1) ([38], chapter 4) to describe

the demography of a mutant with trait x2 in a resident population

with trait x1. As long as the phenotype x2 is rare, n2j(tz1)

satisfies:

n2j(tz1)&
(
PP

j’~1 mj’ j n2j’(t))fh(j)(x2)

(
PP

j’~1 mj’ j Kj’) fh(j)(x1)
Kj :

The vector N2(t)~(n21(t), � � � ,n2P(t))0 (prime denotes transpo-

sition) of the numbers of mutant individuals in the different

patches at time t satisfies thus the matrix equation

N2(tz1)&A(x1,x2)N2(t), where A(x1,x2) is the P|P projection

matrix [38]. The element of A(x1,x2) in row j and column j
0

gives

the number of mutant individuals in patch j resulting from a single

mutant individual in patch j
0

and is equal to

½A(x1,x2)�j j’~
fh(j)(x2)

fh(j)(x1)
½Aenv�j j’ ,

where the matrix Aenv depends on the environment structural

heterogeneity only and is defined by

½Aenv�j j’~
mj’ j Kj

mzj

:

Following Durinx et al. [39], the mutant invasion fitness

function is defined by s(x1,x2)~ ln (l(1)(x1,x2)), where

Figure 2. Distribution of habitats in the lattice environment. Distribution of habitats in the lattice environment. Habitat 1 (white) and habitat
2 (grey) represent 1{p~75% and p~25% of the environment, respectively. Top row: increasing aggregation index (AI); bottom row: three pseudo-
random habitat allocations. a: AI~0:1; b: AI~0:5; c, d, e and f: AI~0:8.
doi:10.1371/journal.pone.0054697.g002
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l(1)(x1,x2) is the dominant eigenvalue of A(x1,x2). As mutation

steps are small, the first order approximation of the invasion fitness

s(x1,x2) gives

s(x1,x2)&s(x1,x1)z(x2{x1):Dloc(x1),

where Dloc(x1)~
Ls

Lx2
(x1,x1) is the local fitness gradient [21]. Its

sign determines the direction of selection: if Dloc(x1)w0, then only

mutants with x2wx1 can invade, whereas if Dloc(x1)v0, then this

is possible for mutants with x2vx1 only. The trait value x? for

which the local fitness gradient is zero, i.e. Dloc(x?)~0,

corresponds to the ‘singular strategy’. It is convergence stable if

the resident population evolves towards x?, which occurs if the

derivative of the local fitness gradient Dloc(x) is negative at x~x?

[21]. Otherwise x? is an evolutionary repeller. The evolutionarily

singular strategy x? depends on the eigenvectors of Aenv. The

eigenvalues of Aenv are denoted in decreasing order by l(j)
env for

j~1, � � � ,P and the corresponding left and right eigenvectors are

denoted by l(j)
env and r(j)

env. In the Section ‘Results’, we derive the

evolutionarily singular strategy and we characterise its stability by

an analytical expression of the branching criterion. After deducing

the analytical expression of the branching criterion, we study it in

more detail in the hierarchical and lattice environments. Technical

support for the invasion analysis is given in Appendix S1.

For the hierarchical environment, analytical results are

presented and interpreted. For the lattice environment, the

branching criterion had to be computed numerically and so three

global sensitivity analyses were performed at different values of the

dispersal range ms [40]. The three values of ms were

15%,37:5%,75% of the environment range. The same three input

factors were varied in each sensitivity analysis: (i) the proportion p
of habitat 2; (ii) the aggregation index AI and (iii) the habitat

differentiation d=s. The proportion p was varied at ten levels in

the range (0; 0:5). The AI index was varied at eight levels in the

range (0:1; 0:8). The habitat differentiation d=s was varied in the

range (0:4; 2) by fixing s~1. A simulated annealing algorithm

[41] was used to generate environments with controlled values of p
and AI (see Figure 2, top line). For each combination of p and AI,

up to 30 habitat allocation replicates were randomly generated

(Figure 2, bottom line).

In the Section ‘Results’, sensitivity indices are decomposed into

main effects (SI(1)), two-factor interactions (SI(2)) and the triple

interaction (SI(3)) of the three input factors p, AI and d=s. In

addition, the total effect (TSIv) of a factor is defined as the sum of

its main effect and of the interactions involving that factor. Each

index is the proportion of the branching criterion variability

explained by a given factorial term, so that it varies between 0 (no

effect) and 1 (maximum effect). We used the definition of sensitivity

indices based on the Sobol’ decomposition [42] and applied it to

the branching criterion considered as a function of the three input

factors. The sensitivity indices were estimated by the metamodel-

ling technique which consists in approximating the function under

study by a polynomial chaos expansion [43].

Evolutionary speed. The evolutionary speed of the resident

phenotype trait x in a monomorphic population is defined as the

derivative _xx of x on time at a large scale. It can be approximated

by the canonical equation of adaptive dynamics [44,45], which is

based on asymptotics with three nested time scales. At the finest

time scale, time is discrete and the dynamical model (Equation (1))

applies to each generation. At medium time scale, the number of

generations per time unit tends to infinity. Time appears as

continuous but phenotype trait evolution still appears as discrete

with a series of monomorphic resident metapopulations each

identified by its unique phenotype. At large time scale, a large

number of small mutations occur at each time unit, so that the

phenotype trait evolution appears as a continuous and derivable

process. More precise mathematical details are given in Appen-

dix S2.

In order to study the evolutionary speed up to the singular

strategy in our setting, the population was still assumed to remain

monomorphic and the mutations were assumed to have a small

amplitude, just as for the invasion analysis. In addition, each

mutation was assumed to alter the phenotype trait with a small

variance c2(x) and to occur according to a continuous-time

Poisson process with rate h(x). The stochasticity that affects the

demography of the mutant when it is still rare was taken into

account through a parameter t2(x) that quantifies the variability

of the offspring distribution of an individual with trait x

(Appendix S2). Under these assumptions, the canonical equation

of adaptive dynamics was first obtained in the general case. It was

then applied analytically to the hierarchical environment. For the

lattice environment, the time to reach the singular strategy was

estimated using the simulation model described in Section ‘Post-

branching evolution’.

Figure 3. Examples of evolutionary trajectories simulated from Equation (1) on the lattice environment. The branching criterion
(Equation (4)) is equal to 0.6 (a), 1.07 (b) and 7.5 (c). When it is lower than one, the generalist strategy is stable (a). Otherwise, the metapopulation
splits into two sub-populations of specialists (b and c). Dashed line: theoretical singular strategy (x?), solid lines: habitat optima (b1 and b2). Other
parameters are: a: d=s~0:8 (d~{b1~b2~0:8 and s~1), ms~0:75,p~0:32, AI~0:1; b: d=s~1:1 (d~{b1~b2~1:1 and s~1), ms~0:75, p~0:32,
AI~0:1; c: d=s~1:1 (d~{b1~b2~1:1 and s~1), ms~0:15, p~0:16, AI~0:7.
doi:10.1371/journal.pone.0054697.g003
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Post-branching evolution. In our framework, the main

assumption required for analytical developments is that of a

monomorphic population. As a consequence, it is not possible to

obtain analytical results when several specialists are present in the

metapopulation. In order to study the effects of environmental

heterogeneity on the specialist strategies after branching, we had to

relax the monomorphic population assumption. For this, we

developed a simulation model, based on Equation (1), representing

the evolution of a metapopulation whatever its phenotypic

composition.

The model assumptions regarding the environment and the

dispersal function were those of the lattice environment (see

Section ‘Lattice environment’). The patch carrying capacity was

set to Kj~100 for all patches. The continuous trait x varied

between {5 and 5 and this range was discretised into 101
phenotypes. The simulations started with a monomorphic

population with trait value x~{5. At each time step, mutants

were generated from an existing phenotype provided its local

population size was over a threshold of 1. New mutants were

generated according to a Gaussian perturbation centred on the

pre-existing trait value with a variance of 0:01. There was no

genetic drift. The multitype metapopulation dynamics followed

Equation (1) and were simulated over T~2000 time steps.

Two situations were selected to study the post-branching

evolution. For each situation, the values of the parameters ms,

d=s and p were chosen so that a branching occurs whatever the

aggregation index. They were set to ms~75% and p~0:32 in

situation A and to ms~15% and p~0:16 in situation B. In both

situations habitat differentiation was equal to d=s~1:1 (d~1:1
and s~1) and the aggregation index AI was varied by 0.1 in the

range (0:1; 0:8). In situation A, the large dispersal range reduced

the influence of the spatial structure and the branching criterion

was little sensitive to the aggregation index (Figure 4). In situation

B, the dispersal range was smaller, so that there was a wide range

of branching criterion values when the aggregation index varied

(Figure 4). Two contrasted examples of evolutionary trajectories

when the branching criterion was close to 1 or much more greater

than 1 are shown in Figure 3a and b, respectively.

For each situation and each AI value, 15 replicates were

conducted, each on a different environment pattern generated at

random as described in Section ‘Lattice environment’. Before

branching, we estimated the time Tbranch taken to reach the

singular strategy. After branching, the metapopulation was

considered as a mixture of two specialists. Simulations were then

compared through three criteria: (i) the trait values of the

specialists (ESS), (ii) the time taken to reach these values (TESS)

and (iii) the specialist’s phenotypic variance at final time T . In

addition, the level of adaptation of local populations was computed

at the end of the evolution process within each patch. It was

defined as the mismatch between the mean phenotype �xxj(T) and

the optimal phenotype bh(j): D�xxj(T){bh(j)D.
Technical details on how these criteria were calculated are given

in Appendix S4 and Figure S1. The consistency between the

analytical and the simulation approaches is discussed in Appen-

dix S5 and Figure S2.

Results

We first present the results of the invasion analysis and the

computation of the evolutionary speed in the general situation.

This leads to the mathematical expression of the singular strategy

and of the branching criterion. Then, we study the pre- (when the

population is monomorphic) and post- (when specialists are

selected) branching evolutionary dynamics by examining how

dispersal and habitat heterogeneity influence the selection for

specialists, the evolutionary speed and the adaptive dynamics of

specialists when branching occurs.

Invasion analysis and evolutionary speed: General case
Singular strategy. We show in Appendix S1 that a mono-

morphic population first evolves towards a unique singular

strategy x? equal to

x?~
XH
k~1

wkbk with wk~
X

j,h(j)~k

Kj ½l(1)
env�j , ð3Þ

where the eigenvectors l(1)
env and r(1)

env are normalised so thatX
k

wk~l(1)’
envr(1)

env~1. Thus the singular strategy is the barycentre

of habitat optima: it corresponds to a generalist phenotype. Note

that in this model, the singular strategy can always be reached by

gradual evolution, i.e. convergence stability always occurs

(Appendix S1).

When dispersal rates are symmetric, i.e. mj1j2~mj2 j1 , the jth

coordinate of the eigenvector l(1)
env is equal to the input connection

mzj of patch j. The singular strategy is then equal to

x?~
1PP

j’~1 Kj’mzj’

XH
k~1

(
XP

j~1,h(j)~k

Kjmzj)bk:

In other words, the singular strategy is an average of the habitat

phenotypic optima bk, weighted by an increasing function of the

relative carrying capacities and input connections of the patches:

small or isolated patches have a smaller influence on the generalist

phenotype.

If all the patches have the same carrying capacity and the same

input connection, the singular strategy is equal to

Figure 4. Value of the branching criterion against the
aggregation index (AI). Open circles, situation A (ms~75%,
d=s~1:1 (d~{b1~b2~1:1 and s~1) and p~0:32); pluses, situation
B (ms~15%, d=s~1:1 (d~{b1~b2~1:1 and s~1) and p~0:16). The
lattice environment was used.
doi:10.1371/journal.pone.0054697.g004
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x?~
1

P

XP

j~1

bh(j)~
XH
k~1

pkbk:

In this case, the weights are equal to the habitat proportions and

the spatial allocation of the different habitats has no impact on the

singular strategy (see also [25], equation (17)).

Branching criterion. In Appendix S1 we show that the

singular strategy x? is an ESS and thus that the environment

selects for a generalist phenotype if and only if

BC(x?)v1, ð4Þ

where the branching criterion BC(x?) is defined by

BC(x?)~l(1)’
envD? IPz2

XP

j~2

l(j)
env

l(1)
env{l(j)

env

r(j)
envl(j)’

env

 !
D?r(1)

env,

where prime denotes transposition. In this expression, D? is the

P|P diagonal matrix whose diagonal elements are given by

½D?�jj~
bh(j){x?

s
. The left and right eigenvectors of Aenv are

normalised so that l(j)’
envr(j)

env~1, l(j)’
envr(j’)

env~0 for j=j’.
The branching criterion depends on the patch structure and on

the habitat phenotypic optima. The expression is too complex to

be interpreted directly, but it opens the way to a better

understanding of how environment heterogeneity and structure

influence the stability of the singular strategy. This will be

illustrated in the following sections.

Evolutionary speed. Under the notations and assumptions

of Section ‘Evolutionary speed’ in ‘Models and methods’, the

canonical equation of adaptive dynamics is (Appendix S2)

_xx~
c2(x)h(x)

s2t2(x)
(x?{x): ð5Þ

Thus the speed increases with the mutation amplitude c2(x), the

mutation rate h(x) and the habitat selectivity 1=s2, while it

decreases with the offspring variability t2(x) because of an

increasing risk of loss by drift. It also decreases progressively

when the population comes closer to the singular strategy.

Provided c2, h and t2 do not depend on x, the solution to

Equation (5) satisfies:

r~
x(t){x?

x(0){x?
~ exp ({

c2h

s2t2
t):

Thus the distance r to the singular strategy x? relatively to the

initial distance x(0){x? decreases exponentially. Conversely, the

time taken by trait x to arrive within the relative distance r is

tr~{
s2t2

c2h
ln r:

Parameters s2, c2 and h do not depend on structural and

habitat heterogeneities. Therefore, structural and habitat hetero-

geneities influence the speed of adaptation only though parameter

t2, the offspring variability (Appendix S2 and Section ‘Evolution-

ary speed’).

Effect of environmental heterogeneity on specialisation:
Pre-branching dynamics

Branching condition when dispersal is

homogeneous. When dispersal is homogeneous, i.e. the meta-

population is not spatially structured, the condition for evolution-

ary stability in Equation (4) is:

XH
k~1

pk

(x?{bk)2

s2
v1 ð6Þ

(Appendix S3). This result has already been established by

Geritz et al. ([21], Appendix 2). Considering that the singular

strategy x? is a weighted mean of the habitat optima (Equation (3)),

the left-hand side of inequality (6) can be considered as a variance

ratio measuring global habitat differentiation. When dispersal is

homogeneous, this global habitat differentiation is sufficient to

determine whether branching will occur or not: only the non-

spatial components (p and the bk) of the habitat heterogeneity are

involved.

If there are two habitats in proportions p and 1{p with b1~d
and b2~{d, Equation (6) becomes:

p(1{p)v
s2

4d2
: ð7Þ

This simple inequality shows that specialisation is facilitated

when the habitats are highly differentiated (d=s is large). Equation

(7) also shows that both habitats must exist in sufficient proportions

for specialists to emerge. Otherwise, evolution leads to a single

generalist poorly adapted to the habitat with the lowest

proportion, according to Equation (3).

Branching condition when dispersal is hierarchical. We

now consider the hierarchical environment described in Section

‘Hierarchical environment’ (Figure 1). The condition for evolu-

tionary stability in Equation (4) becomes (Appendix S3):

XH
k~1

pk
(x?{bk)2

s2
z2j

XH
k~1

pk
(x?{bk)2

s2
z

2n
XH
k~1

XH
k0~1

Cov(pk,pk0 )
(x?{bk)(x?{bk0 )

s2
v1,

ð8Þ

where j~
m2

1{m2
~

m2

p2m1zp1p2m0
and n~(1zj)

m1

p1m0
. The

first term on the left-hand side is the global habitat differentiation

of Equation (6). The hierarchical structure adds the next two terms

which are positive (Appendix S3), indicating that heterogeneity in

dispersal makes specialisation easier.

The second term is related to the effect of purely local dispersal.

Indeed it is the product between the global habitat differentiation

and parameter j that quantifies patch isolation in terms of

propagule exchanges. Parameter j varies between 0, when the

within-group dispersal is homogeneous, and z?, when the

dispersal is purely local inside the patches. This term indicates that
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a low habitat differentiation (weak trade-off) can be compensated

by a high level of patch isolation with regard to the emergence of

specialists.

Existence of a group structure appears explicitly in the third

term of Equation (8). It is the product between a measure of

habitat aggregation across groups and parameter n, which is a

synthetic measure of patch and group isolation with respect to

dispersal. When the habitats are distributed homogeneously

between groups, this third term vanishes since Cov(pk,pk’)~0

for all k,k
0

(see Section ‘Hierarchical environment’). On the

contrary, when groups are unbalanced with respect to habitat

proportions, the third term increases up to the extreme situation in

which each group contains only one habitat. Increasing habitat

differentiation between groups increases the third term of

Equation (8) and makes specialisation easier. As a consequence,

generalist strategies are favoured when habitat composition of the

groups is homogeneous, that is when there is no habitat clusters in

the environment.

Consider now the situation when two habitats are present in

proportions p and 1{p with b1~d and b2~{d. If each group of

patches is composed of one habitat only, Equation (8) becomes:

4(1z2jz2n)p(1{p)
d2

s2
v1: ð9Þ

This relation shows that dispersal, habitat proportion and

habitat differentiation affect the branching criterion in a multipli-

cative way (see also the sensitivity analysis on the lattice

environment). Specialisation is favoured when habitat proportion

is balanced (p&0:5) and when habitat differentiation is high. In

addition, limiting dispersal, either by increasing patch (j) or group

(n) isolation, facilitates branching. Conversely, if habitats are mixed

within groups so that each group is composed of both habitats in

proportions p and 1{p, Equation (8) becomes:

4(1z2j)p(1{p)
d2

s2
v1: ð10Þ

The comparison of Equations (9) and (10) clearly shows that

mixing habitats within groups favours the generalist over the

specialists.

To summarise, Equation (8) allows to separate the effects of

global (first term), local (second term) and spatial (third term)

components of habitat heterogeneity on the branching criterion.

Interactions between dispersal, habitat proportion and

habitat allocation. The weight of each term in Equation (8)

depends on the dispersal rates. For instance, the effect of the group

composition measured by Cov(pk,pk’) is greater for stronger

group isolation as measured by n. In addition, habitat allocation

and proportion interact strongly. The range of variation of

Cov(pk,pk’) is maximal when pk~pk’ and overall the spatial

component of the branching criterion decreases when a habitat is

increasingly present in the environment (Equation (8)). This means

that when the proportion of the major habitat increases in the

environment, habitat allocation in space has less and less influence

on the branching criterion.

These analytical results on the hierarchical environment are

consistent with the sensitivity analyses performed on the lattice

environment (Figure 5). The sensitivity indices showed that more

than 90% of the branching criterion variability is explained by

non-spatial components when dispersal range is large (TSId
s
~0:62

and TSIp~0:29 when ms~75%) whereas this proportion drops to

59% for a small dispersal range (TSId
s
~0:37 and TSIp~0:22

when ms~15%). Note that the variability of the branching

criterion is mainly explained by interactions between factors,

including the third order interaction, especially when the dispersal

range is low (Figure 5).

Effect of habitat spatial distribution. Here, we specifically

investigate the issue of habitat allocation in space. Figure 6 maps

the stability of the singular generalist strategy in the lattice

environment as a function of p and AI, for different levels of

habitat differentiation and dispersal range. Figure 6 shows that an

increase in the proportion p of the minor habitat as well as an

increase in habitat aggregation AI make selection for specialist

phenotypes easier. If the dispersal range ms decreases, or if habitat

differentiation d=s increases, branching occurs for lower values of

p and AI. In case of a strong trade-off (d=s~1:16), this

determines a threshold for p above which specialisation is

observed whatever the aggregation level. The threshold value

depends on the dispersal range (Figure 6, bottom line). In addition,

when the dispersal range is small (ms~15%) and the aggregation is

high (AI§0:6), specialisation is observed whatever the value of p
and d=s.

The effect of habitat allocation can be further explored with the

hierarchical environment. Consider that the parameters pk, bk, s,

m0, m1 and m2 are fixed and that the within-group habitat

Figure 5. Sensitivity of the branching criterion given in
Equation (4) to habitat differentiation (d=s), habitat aggrega-
tion index (AI) and habitat proportion (p). a: large dispersal range
(ms~75%); b: medium dispersal range (ms~37:5%) and c: small

dispersal range (ms~15%). Black bar: main effect (SI(1)
v ); from the

darkest to the lightest grey bars: interaction d=s|AI and p|AI;
interaction AI|d=s and p|d=s; interaction d=s|p and AI|p; and
triple interaction. The total bar length indicates the total effect (TSIv).
The lattice environment was used.
doi:10.1371/journal.pone.0054697.g005
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frequencies pkg are controlled. Then the global and local

components of the branching criterion in Equation (8) are fixed

and the branching criterion is minimal when the spatial

component is zero. This occurs when Cov(pk,pk’)~0, that is,

when pk1~ . . . ~pkp1
~pk for k~1, . . . ,H. This establishes an

optimality property in the hierarchical case: allocating habitats to

patches so that all the groups have the same habitat composition is

optimal for limiting specialisation.

Evolutionary speed. As it was explained in Section ‘Evolu-

tionary speed’ in ‘Results’, structural and habitat heterogeneities

influence the speed of adaptation through parameter t2 only. In

the case of a hierarchical environment, an analytical expression for

parameter t2 can be provided. Since all patches have the same

carrying capacity and since dispersal rates are symmetric, t2 is

equal to (Appendix S2):

t2~
KT{1

KT

{
P

K
VarM ,

where VarM~
1

P2

X
j’j

(mj’j{
1

P2

X
j’j

mj’j)
2, that is, VarM de-

notes the variance of dispersal rates. Remarkably, in that case t2

does not depend on the allocation of habitats in space. It only

depends on the dispersal rates through their variance. When

dispersal is homogeneous (i.e. the metapopulation is not spatially

structured, mj’j~m,V(j’,j)), VarM~0 and the time to reach the

singular strategy is maximal. As the variance of the dispersal rates

increases, the population evolves more rapidly up to the singular

strategy (Equation (5)). Thus, adding heterogeneity in dispersal (i.e.

increasing VarM ) makes specialisation easier and faster.

This effect is found again in the lattice environment, in which

the time to reach the singular strategy was estimated by

simulations (Figure S3). In situation A (large dispersal range thus

low structural heterogeneity) the singular strategy was globally

reached slower than in situation B (low dispersal range thus high

structural heterogeneity). In addition, in situation B, the singular

strategy was reached significantly faster when habitats were

aggregated.

Effect of environmental heterogeneity on the adaptive
dynamics of specialists: post-branching dynamics

We now only consider situations in which the singular strategy is

unstable, i.e. the metapopulation splits into two phenotypic morphs

of habitat specialists, and we examine the effect of habitat spatial

structures on the evolutionary dynamics of the specialist pheno-

typic morphs. The monitoring of the specialist’s phenotypic

variance revealed a first diversification phase during which the

phenotypic variance increased then a selection phase during which

the phenotypic variance decreased until it was stable (Figure 3 and

Figure S4). The phenotypic variance reached its maximum at the

singular strategy. In the following we only discuss the effect of

habitat aggregation on the phenotypic morphs but the other

parameters could also have an influence. For example, Figure S4

Figure 6. Stability of the generalist strategy against habitat 2 proportion (p) and habitat aggregation index (AI). The generalist
strategy is stable when the branching criterion (Equation (4)) is lower than 1 (dark grey) and unstable when it is greater than 1 (light grey). In the top
row the trade-off is weak (d=s~0:84, d~{b1~b2~0:84 and s~1), in the bottom row the trade-off is strong (d=s~1:16, d~{b1~b2~1:16 and
s~1). Left column, dispersal range ms~75%; middle column: dispersal range ms~37:5% and right column: dispersal range ms~15%. The lattice
environment was used.
doi:10.1371/journal.pone.0054697.g006
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shows that the decrease in both mS and p decreased phenotypic

variance of the specialist morphs.

The simulations showed that specialists adaptation to each

habitat was higher (Figure 7) and that the specialist’s phenotypic

variability was lower (Figure S4) when habitats were more

aggregated (higher AI). Moreover, specialist phenotypic morphs

evolved more rapidly to their stable strategies when habitats were

aggregated (Figure 8). Thus, specialists evolved faster and towards

populations that were better adapted and more homogeneous

when habitats were aggregated.

The adaptation pattern across the environment at the end of the

simulations showed that populations at the centre of habitat

aggregates had a high local adaptation level whereas populations

in isolated patches or developing at the edges of patch aggregates

tended to be poorly adapted (Figure S5). These differences in local

adaptation were not explained by the persistence of a generalist in

the edges but rather by the coexistence of the two specialist

phenotypic morphs in the same patch due to the migration-

selection balance [46]. This was observed in all simulations

satisfying the condition for branching.

The branching criterion characterises the stability of the

singular strategy but it is also strongly related to other

characteristics of the adaptive dynamics of the specialists after

branching. Figure 4 shows the branching criterion values in

situations A and B. High values of the branching criterion are

related to high evolutionary speeds and high levels of specialists

adaptation. In addition, the effects of environmental heterogeneity

on the global evolutionary dynamics are greater when the

branching criterion is close to 1.

Discussion

In this article, we addressed two questions related to the

dynamics of adaptation from a theoretical point of view: How does

spatial heterogeneity drive the evolution of specialism vs general-

ism? And how does habitat spatial structure determine the level

and speed of adaptation? To this aim, we developed a model that

describes the phenotypic changes occurring in a metapopulation

under soft selection and, with this model, we studied the

consequences of spatial heterogeneity on the dynamics of

adaptation of a population that lives on a finite network of

patches interconnected via passive dispersal. Compared to other

published models in adaptive dynamics, no assumption is needed

here on dispersal rates, which makes our framework very general.

By analysing the model through analytical as well as simulation

methods, we were thus able to extend classical results to any spatial

metapopulation: (i) we provided the singular strategy, (ii) we

characterised its stability and (iii) we provided the evolutionary

speed. We also (iv) studied the effects of spatial heterogeneity on

the specialist strategies.

The singular strategy corresponds to a generalist phenotype

since it represents a balanced strategy with respect to habitat

frequencies, spatial distribution and optima. When dispersal rates

are symmetric and patches have the same input connection, the

singular strategy is a function of habitat proportions and optima

only and is independent of the spatial distribution of habitats in the

environment. This result has already been established by several

authors, such as Geritz et al. [21] or Débarre & Gandon [25].

Equation (8) incorporates this result but extends it to any dispersal

structure. In a general case, spatial configuration may indeed

influence the singular strategy. For instance, small or isolated

patches have a smaller weight on the generalist phenotype

evolution. Although this had been pointed out in the case of the

dynamics and persistence of a metapopulation by Ovaskainen &

Hanski [29] and discussed by Hanski et al. [32] from an

evolutionary perspective, the role of individual habitat patches

had not previously been demonstrated in an adaptive dynamics

approach.

The stability of the singular strategy, characterised by the value

of the branching criterion, determines whether the population

remains monomorphic with a generalist phenotype or splits into

two specialised phenotypic morphs. We found that specialisation is

Figure 7. Specialist trait values at the equilibrium (ESS) plotted against the aggregation level of habitat 2 (AI) for situation A (a)
and situation B (b). The relationship between ESS values and AI was tested by linear regression (dotted line). Dashed line, singular strategy;
solid lines, habitat optima. Other parameters are for a: ms~75%, d=s~1:1 (d~{b1~b2~1:1 and s~1) and p~0:32; for b: ms~15%, d=s~1:1
(d~{b1~b2~1:1 and s~1) and p~0:16. The lattice environment was used.
doi:10.1371/journal.pone.0054697.g007
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facilitated when habitats are highly differentiated and that habitats

must exist in sufficient proportions for specialists to emerge.

However, a low habitat proportion or differentiation can be

compensated by limiting propagule exchanges between habitats

either by hindering dispersal or by aggregating habitats. In

addition, the components of environmental heterogeneity interact

strongly to determine the value of the branching criterion. For

example, when the proportion of a particular habitat increases in

the environment, the effect of habitat allocation in space on the

branching criterion decreases.

The first models that investigated the respective roles of

environmental heterogeneity and dispersal rate on the stability of

the singular strategy were based on two patches with different

habitats linked by migration [26]. In such a case, limiting

migration between patches favours specialisation. When consid-

ering a more complex system, however, migration between

habitats can be altered either by changing dispersal or by

changing the spatial distribution of habitats, and in particular

their aggregation level. The model developed here predicts that

both effects determine the fate of the metapopulation: either

remaining monomorphic or evolving into specialists of each

habitat. As underlined by Débarre & Gandon [25], spatial and

two-patch models reach the same conclusion that limiting

migration between habitats favours specialisation. Nevertheless,

we were able here to quantify this effect in several other dispersal

contexts. When considering a metapopulation that develops in a

hierarchical network of patches, we showed that the branching

criterion splits into a non-spatial term that depends on the fitness

function and on the global proportion of habitats and a spatial

term that reflects habitat allocation to groups of neighbouring

patches. When considering a lattice network, we showed that for a

short dispersal range the spatial distribution of habitats is the most

influential factor on branching whereas its effects decrease relative

to those of habitat proportions and habitat differentiation when

the dispersal range increases.

The evolutionary speed of a monomorphic population is

approximately given by the canonical equation of adaptive

dynamics. We found that the distance up to the singular strategy

decreases exponentially and that it depends on mutation

amplitude, mutation rate, habitat selectivity and offspring

variability. In addition, limiting dispersal was found to reduce

the time to reach the singular strategy. Habitat aggregation did not

always influence the evolutionary speed towards the singular

strategy and more work is needed to better characterise the role of

habitat spatial structure in the evolutionary speed of a monomor-

phic population. In addition, we used a deterministic model, and

thus we did not take into account the impact of random genetic

drift. However it is known that finite population size could delay

evolutionary branching via demographic stochasticity. For exam-

ple Claessen et al. [47] used an individual based model to study

how evolutionary branching is affected by demographic stochas-

ticity. Their key finding is that in small populations branching can

be delayed and even avoided. The effect of demographic

stochasticity on the trait substitution sequence and the canonical

equation was also studied by Champagnat & Lambert [48].

Evolution after branching is little discussed in the literature.

Meszéna et al. [26] demonstrated that adaptation of coexisting

phenotypes to habitats is stronger for higher habitat differentiation

or lower migration rates. Using simulations, we showed that the

spatial distribution of habitats impacts both the mean phenotype of

specialist phenotypic morphs and their phenotypic variance:

specialists were found better adapted when habitat aggregation

level was high. Moreover, specialists evolved faster towards their

optimal phenotype when habitats were more aggregated. In this

work we established the singular strategy and the branching

criterion expression in the general case but only explored the post

branching evolution when the environment was composed of two

habitats. Geritz et al. [21] studied the stable strategies that

coexisted in an environment composed of three habitats. They

found that when a population underwent evolutionary branching,

Figure 8. Time to reach the ESSs (TESS) plotted against the aggregation level of habitat 2 (AI) for situation A (a) and situation B
(b). The relationship between TESS and AI was tested by a GLM with Poisson distributed errors (dotted line). Other parameters are for a: ms~75%,
d=s~1:1 (d~{b1~b2~1:1 and s~1) and p~0:32; for b: ms~15%, d=s~1:1 (d~{b1~b2~1:1 and s~1) and p~0:16. The lattice environment
was used.
doi:10.1371/journal.pone.0054697.g008
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it could split into two or three phenotypic morphs depending on

habitat differentiation. When two morphs were selected, they had

an intermediate phenotype between two of the habitat optima.

However the spatial structure of habitats could modify this result.

For example, increasing the aggregation level of only one of the

three habitats may lead to the selection for its specialist whereas a

generalist could be maintained on the two habitats remaining

mixed. Neverthless this prediction should be refined by studying

more complex environment compositions and structures.

Coexistence of specialist and generalist genotypes in heteroge-

neous landscapes has been investigated by Débarre & Lenormand

[31] who studied the output of competition among pre-defined

genotypes. They showed that the three genotypes can coexist in a

two-habitat landscape whereas this was never the case with our

approach. This underlines an important difference between the

simulation of a gradual evolution of a population and that of

competition between pre-existing genotypes. In the first case, the

population first evolves towards a generalist genotype and then

may split into two coexisting specialists. When genotypes pre-exist

and are not allowed to evolve through mutation, their competition

may lead to the coexistence of three genotypes. To which extent

this is possible in the presence of mutations remains an open

question.

Adaptive dynamics allows studying the long-term evolution of a

population. This framework is appropriate for modelling the

evolution of short life cycles organisms such as bacteria or fungi

over one or several years. In our study, habitat structure did not

change over time. However, the environment is not static and can

suffer important seasonal changes. For example, the Australian

native plant Linum marginale undergoes two reverse patterns in its

life-cycle according to climatic regions. It has apparent shoots from

spring to autumn and overwinters as underground root-stocks in

the sub-alpine regions of New South Wales (Australia) and, in the

drier regions, plants grow through winter and flower in early

spring with summer survival largely being achieved via protected

rootstock. These reverse patterns impose strong spatio-temporal

heterogeneity which drives the evolution of the pathogen

Melampsora lini [49]. In an agricultural landscape crop rotations

over time represent drastic seasonal changes which potentially

impact the evolution of pathogen populations [50]. Such crop

rotations could be used to develop strategies for controlling

epidemics in the long term [51]. A perspective of this work could

be to study how temporal heterogeneities alter population

evolution.

The concept of ecological niche is at the heart of many

management strategies of species conservation or pest manage-

ment [52]. Processes that occur at the landscape scale are

increasingly gaining attention and, by showing that spatial

structures are crucial in determining the specialisation level and

the evolutionary speed of a population, our results give insight on

how spatial heterogeneity drives the niche breadth of species. In

the particular field of landscape epidemiology [53], still very few

studies incorporate large scale processes and most of them deal

with controlling epidemic spread [54,55] without pathogen

evolution. Most predictions on the durability of host resistance

with regard to pathogen adaptation rely on a few non-spatial

models [56]. Our model better takes account of mutation and

spatial structures and strongly suggests that landscape spatial

organisation impacts pathogen evolution. This potentially opens

the way to the design of strategies for a sustainable use of resistant

varieties in agriculture.
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