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Abstract

Simvastatin have been shown to induce bone formation and there is currently a urgent need to develop an appropriate
delivery system to sustain the release of the drug to increase therapeutic efficacy whilst reducing side effects. In this study, a
novel drug delivery system for simvastatin by means of hydrothermally converting marine exoskeletons to biocompatible
beta-tricalcium phosphate was investigated. Furthermore, the release of simvastatin was controlled by the addition of an
outer apatite coating layer. The samples were characterized by x-ray diffraction analysis, fourier transform infrared
spectroscopy, scanning electron microscopy and mass spectroscopy confirming the conversion process. The in-vitro
dissolution of key chemical compositional elements and the release of simvastatin were measured in simulated body fluid
solution showing controlled release with reduction of approximately 25% compared with un-coated samples. This study
shows the potential applications of marine structures as a drug delivery system for simvastatin.
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Introduction

In the continual development of drug delivery systems for bone

tissue engineering it is widely accepted that the efficiencies of such

system can be further improved by ‘‘controlling’’ or ‘‘slowing’’ the

release of pharmaceutical compounds enabling prolonged thera-

peutic effect. The primary goal of such delivery systems in bone

tissue engineering is to stimulate bone growth in the local

environment at the site of interest and many promising systems

have been developed over the years. Compounds such as bone

morphogenetic proteins, growth factors, and pharmaceutical

compounds are commonly incorporated in drug delivery systems.

In recent years, particular interest in the use of statins [3-hydroxy-

3 methylglutaryl coenzyme A (HMG-CoA reductase) inhibitors],

which are used as a cholesterol-lowering drugs have shown

promising effectiveness in a wide range of medical applications.

One of the key benefits on the use of statins is its ability to increase

the expression of bone morphogenetic protein-2 (BMP-2) and

vascular endothelial growth factor (VEGF) [1–3]. These studies

suggest they can be beneficial in the treatment of osteoporosis,

fractures, and bone defects. Studies have been carried out to

investigate the effects of systemic administration on bone healing

[4–7], oral ingestion [4,8] and in local applications on bone repair

[9–12]. Despite the obvious benefits of statins, there are some

associated side effects. It has been found that exceedingly high

dosage of statins applied systemically can increase the risk of liver

failure, kidney disease, and rhabdomyolysis [13]. While low

dosages can be inefficient in bone healing, higher doses can

stimulate subsequent inflammation [14]. As such this study seeks

to develop a controlled release delivery system capable of

delivering simvastatin.

Whilst most attention has been in developing delivery vehicles

by conventional synthetic materials, biomimetic structures have

been mostly overlooked. Fossilized coral exoskeletons naturally

possess uniform and interconnected porous network capable of

allowing more effective and predictable drug loading. Further-

more, as these exoskeletons are chemically composed of calcium

carbonate, which has a faster dissociating rate, can be easily

converted to calcium phosphate derivatives whilst retaining the

original structural integrity. This will allow us the ability to control

the degradation rate of the delivery vehicle. In addition, calcium

phosphates are biocompatible and as part of its natural

degradation process, calcium ions will be released which can

provide additional supplement in the healing of bone repair. This

study looks at evaluating and characterizing coral derived beta-

tricalcium phosphate (b-TCP) as a drug delivery scaffold material

for simvastatin delivery.

Materials and Methods

Hydrothermal Synthesis of b-TCP Stars
Foraminifera samples were purchased commercially from Busi-

ness Support Okinawa Co. Ltd., Japan. The samples were first

cleansed in sodium hydrochlorite for 20 mins and dried at 40uC
for 2 hours and placed in a heating oven at 220uC for 48 hours

with aqueous diammonium hydrogen phosphate [(NH4)2(HPO4)]

(Wako Chemical Co., Tokyo, Japan). The diammonium hydrogen

phosphate solution was adjusted to yield Ca/P molar ratios of 1.5
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to produce b-TCP. The resulting samples were than subsequently

characterized by the following methods. Furthermore no specific

permits were required for the described field studies.

Physico-chemical Characterization
The powder X-ray diffraction (XRD) profiles of the coral before

and after hydrothermal conversion were measured by powder

XRD analysis (RINT- Ultima-III, Rigaku Co., Japan; CuKa
radiation, 40 kV, 40 mA). The step scanning was performed with

an integration time of 1 min at intervals of 2u (2h) and matched

with JCPDS database. The chemical composition of the crushed

sample powder was investigated by fourier transform infrared

spectroscopy (FTIR). Samples were ground with 1% KBr in an

agate mortar, and analyzed under nitrogen atmosphere from 2000

to 400 cm21 using a Nicolet IR 760. Inductively coupled plasma-

mass spectroscopy (ICP-MS) was used to measure the chemical

composition of the samples by using approximately 0.3 g of

sample which was digested with 0.25 mL of HNO3 and 0.25 mL

of H2O2. Once the digestion was completed the sample volume

was made up to 5 mL with H2O. The samples underwent a

further 1:100 dilution before ICP-MS analysis. Samples were

diluted further as needed. The surface morphology was charac-

terized by scanning electron microscopy (JEOL JSM-7600F, Field

Emission SEM, 10 KV). The internal architectural structure was

characterized by a micro-CT scanner (InspeXio; Shimadzu

Science East Corporation, Tokyo, Japan) with a voxel size of

70 mm/pixel as a non-destructive method. Tri/3D-Bon software

(RATOC System Engineering Co. Ltd, Tokyo, Japan) was used to

Figure 1. XRD spectra showing before and after hydrothermal conversion of sample with matching peaks corresponding to calcium
carbonate and b-TCP.
doi:10.1371/journal.pone.0054676.g001

Figure 2. FTIR spectra comparing before and after hydrothermal conversion reinforcing conversion of calcium carbonate sample to
b-TCP.
doi:10.1371/journal.pone.0054676.g002
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generate a complete 3D reconstruction of the sample. The surface

area was measured by using a Quantachrome MonosorbTM

B.E.T. surface area analyzer and the pore size distribution profile

was measured by nitrogen volumetric adsorption measurements

(Quantachrome Autosorb pore size analyser).

Evaluation of in-vitro Degradation of b-TCP
The in-vitro degradation of the b-TCP looking specifically at the

release of calcium and magnesium was evaluated in simulated

body fluid solution (SBF) [15]. The samples were each immersed

in 5 mL of the buffer solution and placed in a shaking water bath

at 37uC. At each predetermined time point, the buffer solution

were collected and replaced with fresh buffer every 24 hours for 7

days. The collected solutions were than evaluated by ICP-MS.

Production of Simvastatin Drug Delivery System
Simvastatin solution (Watanabe Chemical Co., Osaka, Japan) at

a concentration of 4 mg/mL were immersed with the b-TCP

samples in a rotaevaporator (Buchi Rotavapor RT200) until the

solution were dried and subsequently placed in a 100% humidity

vacuum seal. The simvastatin loaded b-TCP were further coated

with an apatite outer layer. The apatite cement bulk powder

consist of equimolar mixture of tetratricalcium phosphate (TTCP)

and dicalcium phosphate dihydrate (DCPD) (Wako, Tokyo) and

was prepared by grinding at 20 per second for 17 mins in an agate

vibration mixer mill (Retsch Co., Germany; 10 mL volume

chamber in a ball 10 mm in diameter). This cement bulk powder

(0.470 g) was poured into a silicon rubber mould (5 mm in

diameter with 2 mm thickness) for 1 hour, and stored at room

temperature in a vacuum seal with 100% relative humidity for

24 hrs.

In-vitro Evaluation on the Release of Simvastatin
The amount of simvastatin released in SBF solution was

measured by UV-spectroscopy (Shimadzu UV-2550 Spectropho-

tometer) at 238.5 nm wavelength and the concentration was

calculated with reference to standards prepared fresh for each

analysis. A shaking water bath (Personal-11, TAITEC Co., Japan)

was used for the dissolution release study. The solvent content was

5 mL for each buffer solution, and replaced with fresh 6 mL of

each respective solution at 2, 4, 6, 8, 24, 48, 72, 96, 120, 144, 168

and 192 hours. The temperature of the dissolution test was

conducted under 37uC with a shaking rate of 180 times/min. SBF

solution was prepared according to Kokubo’s method [15].

Statistical Analysis
All data were examined based on 5 different measurement

values and presented as standard deviation. Repeated measure-

ment analysis of variance (ANOVA) was used to determine

significant differences among the groups and a p-value of 0.05 was

considered significant.

Results

Physico-chemical Characterization of b-TCP Stars
The goal of this research is to determine if coral exoskeletons

can be hydrothermally converted to b-TCP and be used as a drug

delivery system for simvastatin with the aim of stimulating faster

and better bone regeneration. The first of the series of analysis

involves characterizing the samples before and after conversion to

Figure 3. SEM images showing preservation of the morphological and structural integrity of the sample before conversion (a,b and
c) and after conversion (d, e and f). The images also detail the uniform distribution of surface pores.
doi:10.1371/journal.pone.0054676.g003

Table 1. Compositional make-up of samples before and after
hydrothermal conversion.

Elements
Before Conversion (x104

ppm)
After Conversion (x104

ppm)

Calcium 1.69 1.68

Phosphate 0.02 6.21

Strontium 0.18 0.21

Magnesium 3.06 3.08

doi:10.1371/journal.pone.0054676.t001
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confirm if the conversion took place and to evaluate any significant

changes in the physical and chemical properties of the material.

Figure 1 shows the results from XRD analysis and shows matching

peaks from JCPDS database associated with calcium carbonate

(before conversion) and b-TCP (after conversion). There remains a

small amount of carbonate peaks after conversion but this will only

affect the dissolution rate of the material and does not in any way

affect the outcome of the goal of this research. FTIR pattern

shown in Figure 2 provides additional supporting data showing the

carbonate bands n2 at 866 cm21 (labile carbonate group) and n3 at

1420 cm21. The after conversion pattern shows the phosphate

band n3 and n4 in the ranges 1120 cm21 to 1000 cm21 and

670 cm21 to 530 cm21. The band at 865 cm21 corresponds to

the P-OH stretching mode of HPO4 groups and the small peak at

1454 cm21 to 1414 cm21 is from the C-O of CO3 groups which

indicate the presence of small amount of remaining carbonate in

the material. Furthermore, an in-depth chemical compositional

Figure 4. Cross sectional image taken by SEM showing various porous chambers within the material (a); micro-CT image showing
similar structure with a denser porous network towards the center of the material and the pore size distribution profile of the
material is shown in (c).
doi:10.1371/journal.pone.0054676.g004

Figure 5. SEM images showing simvastatin loaded b-TCP sample [(a), (b)] and with apatite coating [(c), (d)] showing a spherical
coating around the sample material.
doi:10.1371/journal.pone.0054676.g005
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analysis of the samples was performed by mass spectroscopy and

the results are presented in Table 1.

The amount of calcium before and after conversion remained at

a similar amount and the presence of phosphate is clearly

observed. The amount of strontium and magnesium was also

preserved during the conversion process. The morphological

characterization was observed by scanning electron microscopy

and Figure 3 (a, b and c) shows the coral exoskeleton before

conversion and Figure 3 (d, e and f) shows the material after

hydrothermal conversion. It is clear that there is no significant

morphological change during the conversion process and the

architectural structure and integrity of the material was preserved

during this process. Furthermore, the higher magnification images

shows uniform pore distribution across the surface of the material

thereby allowing potential increase drug loading efficiency. This

again highlights the advantages of biomimetic materials combined

with hydrothermal conversion technique. The above results

therefore confirm that the coral materials were successfully

converted to b-TCP. The internal structure of the coral

exoskeleton was examined by examining the cross sectional cut

of the sample and observed by SEM (Figure 4 (a)) and micro-CT

(Figure 4 (b)) analysis. SEM imaging showed that the exoskeleton is

internally compartmentalized with various ‘‘chambers’’ intercon-

nected by pores beneath the surface of the material. Micro-CT

analysis was used as a non-destructive method to study the internal

architectural structure. The image again shows that porous

chambers further connected near the center of the structure with

a much denser porous network. These compartments of porous

chambers and interconnected pores are truly unique and so far

irreproducible synthetically whilst offering an ideal structure for

various biomedical applications such as drug delivery system. The

surface area of the material was measured to be 0.13860.004 m2/

g. The corresponding pore size distribution profile of the sample is

presented in Figure 4 (c) showing the presence of larger pores

,5 mm with the majority of the pore size ,1.5 mm. The

distribution profile also indicate the presence of ,1 mm pores.

Characterization of b-TCP Drug Delivery System
The load concentration of simvastatin in the b-TCP material

was calculated to be 23 mg/mg and with the apatite coating this

was found to be 13 mg/mg. There is some loss of simvastatin

during the production of the apatite coated b-TCP system but this

is not at a significant amount. The morphological observation was

done by SEM in Figure 5 where (a) and (b) shows the b-TCP stars

with simvastatin and (c) and (d) shows simvastatin incorporated

with the apatite coating. The method for the apatite coating is

easily reproducible and can produce consistent and uniform

coating around the material.

Comparative in-vitro Dissolution Profile of b-TCP Stars
As the scaffold material is intended for use as a prolonged drug

delivery system, it is vital to evaluate the dissolution profile of the

b-TCP stars and to ascertain if the apatite coating had any effect

on dissolution. This study was examined in-vitro by immersion in

SBF solution which mimics closely to the physiological environ-

ment. Figure 6 (a) shows the cumulative release of calcium with

and without the additional apatite coating over a 7 day period.

The amount of calcium released is within the ppb range and it can

be seen that with the additional apatite coating that the release of

calcium has been ‘‘slowed down’’ while retaining the same release

pattern. Figure 6 (b) shows the release profile of magnesium which

shows a similar trend and release pattern before with and without

the apatite coating. The release of strontium is not presented as

there was no detected release of strontium over the 7 day

Figure 6. The in-vitro dissolution profile in SBF solution showing the release of (a) calcium and (b) magnesium with and without the
apatite coating. The result shows slower release of both ions with the apatite coating.
doi:10.1371/journal.pone.0054676.g006

Figure 7. The in-vitro release profile of simvastatin with and
without the apatite coating showing controlled and slower
release of the drug by 20% over 7 days.
doi:10.1371/journal.pone.0054676.g007
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experimental period which implies that the release of strontium

would be delayed to a later stage of the dissolution process.

In-vitro Release of Simvastatin from b-TCP Stars
Figure 7 shows the in-vitro percentage release of simvastatin in

SBF solution over 7 days comparing apatite coated b-TCP stars

and non-coated samples. From the results the non-coated samples

released an average of 48% over the 7 days where the apatite

coated group only released an average of 21% over the 7 days. It is

clear from the result that with the apatite coating the release of

simvastatin was delayed by approximately 20%.

Discussion

Studies have shown the potential effect of simvastatin as an

active promoter of BMP-2 gene markers and its active role in the

complex mechanism of bone reconstruction. The overall goal of

the present study was to investigate whether marine exoskeletons

can be used as potential carrier for the delivery of simvastatin. It is

of great importance to develop inexpensive and strategies of

producing calcium phosphate synthesis methods focused on the

precise control of morphology and chemical composition. Because

the hydrothermal conversion reactions are solution-mediated, the

composition can be controlled. Our approach includes hydrother-

mally converting the material to biocompatible b-TCP combined

with an outer apatite coating to slow the release of simvastatin.

The physico-chemical analysis confirms the successful conversion

from calcium carbonate coral exoskeleton to b-TCP though there

remains a small quantity of carbonate but this will only slightly

affect the overall dissolution rate of the bulk material. One of the

key advantages of the hydrothermal conversion is the preservation

of the original architectural structure of the marine exoskeleton.

This is crucial as the uniform pore distribution combined with the

interconnected porous network provides the appropriate setting

for higher efficiency drug loading and more predictable release.

This can be observed from both the degradation of calcium,

magnesium and the release of simvastatin. The results showed that

with the apatite coating the release of key compositional elements

and simvastatin was slowed down while maintaining similar

release pattern compared without the coating. Furthermore, the

release of simvastatin was reduced by approximately 20% which is

significant for prolonged delivery of the drug. This will limit the

initial burst release and provide the time for the inflammation

around the surgical site to subside and allow the continual delivery

of simvastatin. It is also important to note the significance of the

natural degradation of the b-TCP stars. Apart from the release of

simvastatin from the material, calcium ions are also being released

with the addition of magnesium which studies have shown to

benefit in the formation of healthier and stronger bones [16]. In

addition, even though in our 7 day release study the release of

strontium was not detected, from the compositional analysis

strontium is present in the material and many studies have shown

the potential benefits of strontium in the bone regeneration and

healing process [17]. As such, these results presents a dynamic

delivery system where key bioinorganics in conjunction with

pharmaceutical compound are combined together in hope of

providing an effective therapy for bone related problems. The

envisioned goal of this research is the development of a sustained

delivery of simvastatin as a systemic therapy for the treatment of

osteoporosis or bone fracture as current delivery systems for

simvastatin are still limited in their therapeutic efficiencies. The

intended and proposed route of administration of the simvastatin

loaded b-TCP delivery system is to implant at either the local site

of trauma or in the intramuscular region near the affected site.

The rationale for this is to provide a localized delivery of

simvastatin to the affect or trauma site. Intramuscular implanta-

tion can help with the systemic delivery of simvastatin via the local

blood vessels. This work will be the subject of future experiment.

Conclusion
In conclusion, this research showed that marine exoskeleton

with appropriate morphology and structures can be incorporated

with simvastatin and its release can be controlled with an outer

apatite coating. This will enable a more prolonged therapeutic

delivery of simvastatin allowing the drug to sustain its effect in the

repair and healing of bone related fractures.
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