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Abstract

MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by
translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully
exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic
effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic
delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by
inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue
specimens that six perfectly complementary miR122 target sites in the 39 untranslated region of the viral E1A gene are
sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus
(Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer
tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse
model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice.
These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver
damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an
additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNA molecules

20–24 bp in length that negatively regulate gene expression

through binding to complementary sequences typically residing

within the 39 un-translated region (UTR) of mRNAs. Partial

sequence complementarity between miRNA and the target

mRNA leads to repression of mRNA translation, whereas a high

degree of sequence complementarity can guide destruction of the

target mRNA [1]. Already more than 1000 human miRNA

precursor sequences have been deposited in miRBase [2], and

more than 50% of cellular mRNAs have been estimated to be

under miRNA regulation [3,4]. miRNAs are expressed in tissue-

and differentiation state-specific patterns, and are often differen-

tially expressed or deleted in various human cancers [5,6,7].

Several viruses infecting humans have been shown to contain

target sequences for human miRNAs that can suppress viral gene

expression [8,9], but the role of this phenomenon as an antiviral

mechanism remains controversial [10]. Nevertheless, numerous

recent studies have shown that by introducing artificial miRNA

target elements into viral genomes the miRNA machinery can be

experimentally exploited to modify the replicative tropism of both

RNA and DNA viruses (reviewed by Kelly and Russell [11]. By

preventing replication in specific tissues accounting for viral

pathogenicity it is possible to generate live attenuated vaccine

viruses, as well as safer oncolytic viruses for the treatment of

cancer. For example, Barnes at al. used a miRNA targeting

strategy to control poliovirus tissue tropism for developing

rationally attenuated polio vaccines [12]. By inserting target sites

for muscle-specific miRNAs into the viral genome Kelly et al. were

able to overcome the lethal myositis occurring in tumour bearing

mice infected with Coxsackie A21 virus without compromising the

oncolytic potential of this virus [13].

Adenoviruses have been actively studied as tools for cancer

virotherapy [14,15,16]. Several approaches have been used to

increase tumour selectivity of oncolytic adenoviruses. Chemical or

genetic modifications of capsid proteins have been made to

augment infection of cancer cells [17]. Replacement of the E1A

promoter with tumour- or tissue-specific promoters has been used

to target adenovirus replication into tumours, such as prostate
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carcinoma [18]. In addition, removal of the E1B55K reading

frame as well as specific deletions within E1A have been used to

increase tumour selectivity of adenovirus replication [19].

Systemic administration of adenoviruses leads to infection of

hepatocytes, which can cause severe liver toxicity [20,21]. To

improve the safety of oncolytic adenoviruses we have introduced a

miRNA-based approach for engineering adenoviruses that are

suppressed in their replication by the liver-specific miR122 [22].

By inserting miR122 target elements in the 39UTR of E1A gene

we could strongly reduce E1A expression in cells of hepatic origin.

Subsequently, Cawood at al. used the same strategy to show

reduced E1A protein levels in murine liver in vivo as well as in

cultured human hepatocytes in vitro [23,24]. However, in order to

achieve potent liver-specific suppression of adenovirus replication

additional E1A expression-reducing modifications have been

necessary [22,25].

Thus, it has remained unclear if miRNA-based engineering

alone has the potential to prevent liver toxicity associated with

systemic administration of oncolytic adenoviruses. In this study we

show in normal human liver tissue strong suppression of otherwise

unmodified adenovirus 5 carrying six copies of miR122 target

elements in E1A 39 UTR. These results provide a definitive

validation for introducing miR122 targets into oncolytic adeno-

virus constructs as a safeguard of the liver.

Results

Construction and Characterization of a Novel miRNA-
targeted Adenovirus

To generate a miRNA-targeted version of wild-type adenovirus

5 (Ad5 in Fig. 1), we inserted six copies of target elements with

perfect sequence complementarity for the liver-specific microRNA

miR122 in the 39UTR of the E1A gene (Ad5T122 in Fig. 1). As a

control virus, we used a non-replicative virus containing the firefly

luciferase gene under the control of the cytomegalovirus (CMV)

promoter in the E1-region [26] (Ad5Luc1 in Fig. 1).

Huh7 hepatocellular carcinoma cells resemble normal hepato-

cytes in that they express significant amounts of the liver-specific

miR122 [27], and have previously been used as an in vitro model

for adenovirus infection of liver cells to demonstrate the capacity of

miR122 target sites to down-regulate E1A expression [22,23].

Thus, we infected Huh7 cells together with a panel of cancer cell

lines of non-hepatic origin with Ad5, Ad5T122 or Ad5Luc1 at a

multiplicity of infection 0.05. Because of the non-hepatic origin of

the latter cell lines they were not expected to express miR122. To

confirm this, we quantified the functional miR122 expression in

these cell lines using a previously validated dual luciferase assay

[22]. As expected, a strong miR122 target element-dependent

suppression of reporter gene expression was observed in Huh7

cells, whereas no evidence for miR122 expression in A549,

HCT116, or Hep-2 cells could be detected (Figure S1). The extent

of lytic cell killing caused by the spread of the infection in this

panel of cell lines was monitored using a colorimetric cell viability

assay (Figure 2). The E1-deleted, non-replicative Ad5Luc1 did not

have a significant effect on the viability of any of the cell lines

tested, whereas infection with Ad5 led to destruction of all cell lines

with a variable but high efficiency. Very similar cytopathicity was

observed following Ad5T122 infection in all of the non-hepatic cell

lines. By contrast, cell death caused by Ad5T122 was strongly

Figure 1. Schematic illustration of the virus constructs used in this study. Ad5 is a wild-type serotype 5 adenovirus containing an
unmodified E1 region. In Ad5T122, six copies of miR122 target elements were introduced in the 39UTR of E1A gene. Ad5Luc1 is a replication-deficient
virus in which the whole E1-region has been replaced with a CMV-driven firefly luciferase gene.
doi:10.1371/journal.pone.0054506.g001

Figure 2. Comparison of cell killing by Ad5 and Ad5T122 in a
panel of cancer cell lines. Four cell lines of non-hepatic (HCT116,
A549, and Hep-2) or hepatic (Huh7) origin were infected with Ad5Luc1
(non-replicative virus control), Ad5, or Ad5T122 at an MOI of 0.05. Cell
survival in the infected cells was measured 7 days (Hep-2 and A549) or 9
days (HCT116 and Huh7) post-infection using an ATP-based cell viability
assay, and plotted on the y-axis as the percentage of the control values
measured from uninfected cultures. The data are presented as the
mean of six repetitions 6 standard error.
doi:10.1371/journal.pone.0054506.g002
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reduced in Huh7 cells, indicating that replication of Ad5T122

could be attenuated by miR122.

To confirm that the attenuation of Ad5T122 in Huh7 cells was

indeed specifically due to silencing by miR122 we generated stable

cell lines in which the critical miRNA machinery component

Argonaute 2 (Ago2) had been targeted for silencing with

lentivirally transduced anti-Ago2 shRNAs. We also examined

the effect of miR122 inhibition by a transfected antagomir

designed against miR122. In both cases the suppressive effect of

the miR122 target elements on replication and cytopathicity of

Ad5T122 in Huh7 cells was almost completely abolished (Figure

S2).

Ad5T122 is Strongly Attenuated in Normal Human Liver
but Replicates Well in Tumour Tissue

To examine the potential of the miR122-mediated suppression

in controlling Ad5T122 replication in human liver we turned into

an experimental system based on ex vivo culturing of precision-cut

human liver tissue slices [28,29]. Since human Ad5 is normally

only capable of an abortive genome replication in murine cells

[30], we considered this ex vivo human liver infection model as a

superior study system for preclinical evaluation of adenoviral-

induced liver toxicity. Indeed, this system allowed us to follow

productive adenovirus infection in the presence of all the cell types

within the context of the normal three-dimensional architecture of

the human liver (see Figure 3).

The same ex vivo experimental system was also used to confirm

that the robust replication of Ad5T122 observed in cancer line

lines (Figure 2) could be recapitulated in human tumour tissue. To

this end, we compared the replicative capacity of Ad5 and

Ad5T122 in precision-cut tumour slices obtained from a colorectal

carcinoma liver metastasis, which is a particularly relevant

malignancy for this study. Oncolytic adenoviruses have already

been evaluated in clinical trials for treatment of patients with

colorectal cancer liver metastases [31,32], and the value of

hepatocyte detargeting of the virotherapy is especially evident in

this instance.

The histomorphological evaluation based on haematoxylin and

eosin staining of the uninfected precision-cut liver slices showed

that although towards the end of the 5 day follow-up some

increase in the amount of well demarcated coagulation necrosis

was observed in the central areas of the slices, the outer cell layers

remained viable for the entire duration of the experiments (Panel J

in Fig. 3). In the precision-cut tumour slices the integrity of the

histology was preserved even better, and the majority of the cells

appeared viable after five days of ex vivo culture (Panel G in Fig. 3).

Immunohistochemical analysis of the Ad5-infected tissue slices

with an antibody against adenovirus E1A protein showed

considerable increase in signal intensity in the liver as well as in

the tumour as the infection proceeded (Figure 3, panels B and E,

and data not shown), indicating efficient viral replication and

spread in both tissues. A very similar staining pattern was observed

when immunohistochemistry was used to follow the spread of

Ad5T122 in the tumour tissue (Figure 3, panel C). This confirmed

that inclusion of the miR122 target sites had not compromised the

replicative potential of Ad5T122 in the tumour tissue, as we had

already observed in cancer cell lines (Figure 2). By contrast,

immunostaining of the Ad5T122-infected liver tissue did not

reveal any specific signal for E1A (Figure 3, panel F), and appeared

identical to the analysis of the uninfected control liver tissue

(Figure 3, panel D). Thus, we concluded that miR122 in normal

human liver tissue could exert a powerful negative regulation on

the target site-containing virus.

Immunohistochemistry of the infected tissues does not provide a

quantitative measure of viral replication, and low levels of E1A do

not exclude replication of the miR122-targeted virus. Therefore,

to directly examine the rate of productive replication of Ad5 and

Ad5T122 in the human liver and colorectal cancer liver metastasis

tissues the amount of infectious virus in the medium of these ex vivo

cultures was quantitated at different time point after the virus

inoculum. Data from titration experiments done in triplicate to

determine the tissue culture infective dose 50 (TCID50) are shown

in Figure 4. To minimize the manipulation of these tissues the

input virus (107 PFU/ml) was not removed, which thus accounted

for the infectious titre measured 1 h p.i. (0 d time point in Figs. 4A

and 4B).

The infectious titre of Ad5 in the liver tissue supernatants

increased robustly during the follow-up period, exceeding the

input dose by 68-fold at the 5d time point for liver #1 and by 27-

fold for liver #2. By contrast, very little infectious Ad5T122 was

found in the liver tissue supernatants, where the titre for liver #1

only slightly (1.3-fold) exceeded the input (1 h p.i.) level at the final

5d time point, and for liver #2 even decreased to less than half

(0.47-fold) of the original input. In samples of colorectal cancer

liver metastasis tissue both viruses replicated to the same extent

(Fig. 4B). Based on these data we conclude that the miR122 sites

could strongly suppress replication of Ad5T122 in normal human

liver tissue without compromising its replication in colorectal

cancer liver metastasis tissue.

Systemic Injection of Ad5 but not Ad5T122 Leads to
Hepatic Damage in Mice

Despite the failure of human adenovirus to productively

replicate in murine cells systemic viral injection is associated with

signs of hepatocyte damage, such as elevated serum levels of the

liver enzyme alanine aminotransferase (ALAT). To investigate the

behaviour of Ad5T122 in this mouse model of adenovirus-induced

liver toxicity we injected 16109 PFU of Ad5, Ad5T122 or PBS

into the tail vein of C57bl/6 mice. 72 h post-injection these

animals were sacrificed and serum ALAT levels were measured.

Mice injected with Ad5 showed significantly increased ALAT

levels compared to PBS injected control mice, indicating that

hepatocyte damage had indeed occurred. By contrast, mice

injected with Ad5T122 showed ALAT levels that were indistin-

guishable from those of PBS injected mice (Fig. 5).

Ad5T122 and Ad5 have Similar Oncolytic Potential in a
Lung Cancer Xenograft Model

Although Ad5T122 replicated well and was as cythopathic as

Ad5 in non-hepatic tumour cell lines (Figure 2) it was important to

confirm that its attenuation in liver was not associated with a

reduced oncolytic potential in a more relevant model of cancer

virotherapy. Therefore, groups of nude mice bearing an estab-

lished subcutaneous A549 lung cancer xenografts with initial

volumes typically ranging between 15–40 mm3 were treated

intratumourally on days 0, 2 and 4 with 16107 PFU of Ad5,

Ad5T122 or a corresponding volume of PBS, and tumour growth

was monitored for 12 days following the start of the treatment.

The group of mice receiving PBS showed rapidly increasing

tumour growth, and by day 12 after the start of the treatment the

average volume of the tumours had reached more than 56 the

initial volume. The groups of mice receiving either Ad5 or

Ad5T122 showed very similar oncolytic potential and significantly

reduced tumour growth from day 8 compared to the PBS treated

group (Fig. 6). Based on these data we conclude that the oncolytic

Efficient Adenovirus Liver-Detargeting by miR122
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potency of Ad5T122 was not reduced compared the wild-type

Ad5.

Discussion

In this study we show that targeting of E1A to cell type-specific

downregulation by miR122 is sufficient to potently attenuate

adenovirus replication in the human liver. These observations

emphasize the utility of miRNA-mediated optimization of the

tropism of virotherapy in general, and its use in liver detargeting of

oncolytic adenoviruses in particular.

Using a chimeric Ad5/3 adenovirus containing three miR122

target elements in the E1A 39UTR, we have previously reported

that despite potent suppression of E1A mRNA and protein

expression, viral replication was only modestly attenuated in the

liver-derived Huh7 cells [22]. In order to bring the replication of

this modified Ad5/3 virus effectively under the control of miR122-

Figure 3. Immunohistochemical analysis of Ad5 and Ad5T122 infection in ex vivo tissue cultures of normal human liver and
colorectal carcinoma liver metastasis. Precision-cut tumour (top and third row of panels) and liver (second row and bottom panels) tissue
cultures were left uninfected (left panels) or infected with 107 PFU (in 2 ml of media) of Ad5 (middle panels) or Ad5T122 (right panels), and fixed five
days later for staining with haematoxylin-eosin (panels G-L) or an antibody against the viral E1A protein (panels A–F). Necrosis developing in the
central area of the uninfected control tissue (panel J) is indicated with arrows.
doi:10.1371/journal.pone.0054506.g003
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mediated E1A regulation, it was necessary to combine the liver-

specific, miR122-mediated inhibition with a mutation that non-

specifically decreased E1A translation in all cell types. By itself this

uniform decrease of E1A protein production did not have a

noticeable effect on Ad5/3 replication in a panel of non-hepatic

cancer cell lines, but together with the miR122-mediated E1A

control led to a potent suppression of replication and cytopathicity

in Huh7 cells [22].

Subsequently Cawood et al. reported the use of a serotype 5

virus in which E1A had been replaced with an E1A-luciferase

fusion gene containing four miR122 target elements in its 39UTR.

This chimeric mRNA was strongly downregulated by miR122, as

evidenced by reduced luciferase activity in Huh7 cells and in

primary hepatocyte cultures, as well as in the livers of infected

mice. They also showed that serum markers of liver damage as

well as viral genome copy numbers in the livers of mice infected

with wild-type Ad5 containing four miR122 targets were lower

than mice infected with an unmodified virus [23,24]. While

promising, it is difficult to extrapolate these findings to the

infection of human liver, since human adenoviruses are not able to

productively replicate in mouse cells [30]. Nevertheless, it is

interesting to note that despite this limited capacity to replicate in

murine cells, our current findings together with the data by

Cawood et al. clearly show that the elevated markers of liver

damage in mice are a genuine consequence of adenoviral gene

expression in hepatocytes rather than due to less direct hepato-

toxicity caused by the viral particles, and can thus be counteracted

by miR122-based targeting.

Cawood et al. suggested that four miR122 target sites as

compared to the three copies used in our previous study allowed a

better control of viral replication. However, no data was provided

on infection of Huh7 or other liver-derived cells that would be

competent for adenovirus replication. On the other hand, similar

to our earlier study, Leja et al. reported that combining miR122-

mediated E1A mRNA suppression with other inhibitory measures

was required to potently suppress adenovirus replication in

cultured hepatic cells [25]. Specifically, they combined miR122-

mediated downregulation of E1A with deletion of the E1B gene

and a tissue-specific promoter showing low activity in the liver to

drive E1A transcription.

Figure 4. Quantitative analysis of productive replication of Ad5 and Ad5T122 in human liver and in liver metastatic colorectal
cancer tissue. (A) Titration of infectious virus in the supernatants of liver tissue cultures collected 1 h (0d), 1d, 3d, or 5d after infection with 107 PFU
of Ad5 or Ad5T122. (B) Infectious titre in supernatants of the tumour tissue infected with 107 PFU of Ad5 or Ad5T122 were quantitated 5 d after the
infection. The virus titres are indicated as the tissue culture infective dose 50 (TCID50) on the y-axis. The data are presented as the mean of triplicates
6 standard error.
doi:10.1371/journal.pone.0054506.g004
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The potent suppression of the current Ad5T122 virus in the

normal human liver tissue may be contributed by the higher

number of miR122 targets compared to the Ad5/3-derived virus

that we have studied earlier [22] (six vs. three copies). However,

Leja et al. also used six miR122 targets in their related study

design discussed above. Moreover, while Ad5T122 was clearly

more attenuated in Huh7 cells than our previous Ad5/3-derivative

[22], residual replication/cytopathicity was still observed in the

Ad5T122-infected Huh7 cells (see Figure 2). Thus, the profound

attenuation of Ad5T122 observed in the ex vivo cultured human

liver (Figure 4A) was likely related to the non-transformed

phenotype and the normal tissue environment of the hepatocytes

in the ex vivo tissue culture. Indeed, E1A provides several key

functions for adenovirus replication, which are differentially

needed in normal vs. transformed cells [33]. Interactions of E1A

with host cell proteins, such as the tumour suppressor Rb,

modulate the activity of transcription factors and cell-cycle

regulators, thereby promoting further viral gene expression and

pushing the host into the S-phase of cell cycle to enable viral DNA

replication. Since these signalling pathways are inherently

deregulated in transformed cells [34], such as Huh7, adenovirus

replication may proceed normally even if the E1A levels are

greatly reduced [22,35]. On the other hand, although the rate of

proliferation of primary hepatocytes grown on cell culture dishes

depend on many factors, such culturing effectively promotes the

transition of their cell cycle towards the S-phase [36,37]. Thus,

although representing a more physiological study system than the

Huh7 hepatocarcinoma cell line, cultured primary hepatocytes do

not provide a good model for addressing the effects of suppressed

E1A expression on adenovirus replication in the liver. Finally, it is

also important to note that Huh7 cells express only 8% of the

miR122 levels observed in primary human hepatocytes [27].

Indeed, miR122 is very highly expressed in normal hepatocytes

where it has been estimated to constitute over 70% of all miRNAs

expressed [27,38]. Equally important, miRNA122 is one the most

tissue-specific miRNA and apart from minimal expression in some

cells of the thymus and brain, it is not expressed outside of the liver

[38,39,40,41].

Although even a strong systemic antagomir-mediated miR122

inhibition used as an experimental HCV therapy did not show any

obvious adverse effects on the liver [42], the prominent role of

miR122 in hepatocytes might raise concerns of disrupting normal

gene regulation in hepatocytes due to a ‘‘sponge effect’’ of

expression of multiple miR122 target sites. However, this is not a

relevant concern in our approach because of a strong inbuilt

negative feedback loop in the Ad5T122 virus. The number of

miR122 target elements is determined by the copy number of E1A

mRNAs in the infected cells, which becomes very low in liver cells

due to miR122-guided destruction. Moreover, the failure of

Ad5T122 to replicate and spread in the liver cells provides another

layer of protection against deregulating normal miR122-regulated

processes in the liver.

The success in using miR122 targets for suppressing E1A

expression, suggests that similar strategies might also be useful for

preventing potentially harmful replication of other therapeutic or

vaccine viruses. Moreover, miR122-control could also be further

employed in liver detargeting of oncolytic adenoviruses by placing

additional target sequences in other positions in the viral genome.

Compared to E1A, targeting of an mRNA encoding for a

structural viral protein might result in a potent attenuation even if

a less complete shut-off of the target gene expression would be

achieved. Conversely, however, maximal replication in tumour

cells might be compromised even by minor reduction in the levels

of the modified mRNA, which is not a concern in the case of E1A.

It has been reported that viral sequestration into the liver and

subsequent infection of the hepatocytes following systemic

administration of serotype 5 adenoviruses can be reduced by

introducing mutations into the Ad5 hexon protein that abolish

binding of the viral capsid to the blood coagulation factor X (FX)

[43,44]. Combining such transductional liver-detargeting with the

post-transcriptional, miR122-based approach validated in this

study would be straight-forward, and could further minimize the

potential damage to hepatocytes by oncolytic adenoviruses,

especially when treating tumours outside of the liver.

Figure 5. Assessment of hepatotoxicity of Ad5 and Ad5T122
systemically administered into mice. Measurement of serum ALAT
levels 72 h after systemic injection of 109 PFU of Ad5, Ad5T122 or PBS
(Mock). Data are presented as mean 6 standard error. Four animals per
group were used.
doi:10.1371/journal.pone.0054506.g005

Figure 6. Oncolytic potential of Ad5T122 and Ad5 in a lung
cancer xenograft model. Mice were treated with 107 PFU of Ad5,
Ad5T122, or injected with a corresponding volume of PBS (Mock) on
days 0, 2 and 4, as indicated by arrows. Tumour size was calculated as
the volume of an ellipsoid. Tumour growth is expressed as a percentage
increase from first day of virus injection. The asterisks (*) indicate a
statistically significant differences in the volumes of the PBS-injected
tumours compared to the virus-treated tumours. The number of
tumours in each group were 10 (PBS), 11 (Ad5T122), and 12 (Ad5). Data
are presented as mean 6 standard error.
doi:10.1371/journal.pone.0054506.g006
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Of note, when considering intrahepatic tumours, the value of

miR122-based targeting is not limited to metastatic disease, but

could also be exploited in virotherapy of primary hepatocellular

carcinoma (HCC). Reflecting its role as a tumour suppressor

[45,46], the loss of miR122 expression is common in HCC

[47,48], and the Huh7 cells used in this study are exceptional

among HCC-derived cell lines in resembling normal hepatocytes

by expressing miR122 [27].

It seems likely that the future oncolytic adenoviruses to be used

in the clinics will be ‘‘armed viruses’’ that express at least one

additional gene product aimed at enhancing direct or immune-

mediated killing of the infected cells, and promoting the

development of systemic anti-tumour immunity [14,49]. Prevent-

ing the expression of such potentially dangerous effector genes in

hepatocytes might be even more critical than suppressing viral

replication itself. Thus, placing these toxic or immunomodulatory

genes under a dual miR122 control by targeting their mRNAs

directly as well as indirectly (via miR122-regulated replication)

would provide a synergistic and powerful strategy for excluding

their expression in hepatocytes.

In summary, the current study provides a definitive proof of

concept and preclinical validation for the use of miR122 target

elements for reducing the risk of liver toxicity of therapeutic

adenoviruses. Our data show that in normal human liver tissue

miR122 target elements alone are sufficient to profoundly

attenuate Ad5. However, due to the ease of introduction and

the small genomic size of this modification, it should be possible

and beneficial to combine it with any other adenoviral targeting

approach.

Materials and Methods

Ethics Statement
Human tissue specimens were obtained with written informed

consent and approval by ethics committee of the Helsinki

University central hospital. All animal experiments were approved

by the experimental animal committee of the University of

Helsinki and the provincial government of Southern Finland.

Cell Lines
Human lung carcinoma cell line A549, human colorectal cancer

cell line HCT116 and human epidermoid carcinoma cell line

HEp-2 was obtained from ATCC (Manassas, VA). Human

embryonic kidney cell line 293 was purchased from Microbix

(Toronto, Canada). Human hepatocellular carcinoma cell line

Huh7 [50] was a gift from Professor Mark Harris (Leeds

University, UK). All cell lines were cultured in DMEM with

10% foetal calf serum (FBS) (Life Technologies) 1% L-glutamine

and 1% penicillin/streptomycin at 37uC/5% CO2.

Dual-luciferase Assays
Cells were transfected with Renilla- and firefly-luciferase

plasmids as described previously [22] and 48 h post-transfection

luciferase activities were measured using Dual-Luciferase Assay

System (Promega).

Construction and Production of Adenoviruses
pShuttle 66122 was made as described [22], except inserting six

copies of miR122 target elements instead of three. Homologous

recombination between the modified subgenomic adenoviral

genome and pAd5-D24 [51], and generation of infectious

adenovirus stocks were done using previously described standard

procedures [22]. The titres of the purified viruses were: 2.1261012

VP/ml and 1.1261011 PFU/ml for Ad5, 1.2861012 VP/ml and

3.9861010 PFU/ml for Ad5T122 and 1.4061012 VP/ml and

4.4761010 PFU/ml for Ad5Luc1. All VP/PFU ratios were below

35 indicating good quality of the virus preparations. Intact of

miRNA target elements were verified also by sequencing analyses

of the purified viral stocks.

Virus Replication and Cell Viability Assays
Viruses were titrated by using tissue culture infective dose 50

(TCID50). Briefly, permissive 293 cells were seeded in 96-well

plates (104 cells/well) and the next day eight serial 10-fold dilutions

of purified viruses or collected supernatants were subjected to the

96-well plate. After 10 days of incubation the wells with observable

CPE were counted, and the viral titres calculated calculated by the

Kärber-Spearman method [52]. Cell viability was measured using

the CellTiter 96 AQueous One Solution Cell Proliferation Assay

(Promega, Fitchburg, WI), and a multi-well plate reader

(Multiskan EX; Thermo Fisher Scientific, Waltham, MA) to

determine the optical density of the reactions at 490 nm.

Argonaute 2 Knockdown Cell Lines
pLKO.1-puro-CMV-TurboGFP and two different pLKO.1-

puro-shRNA-Ago2 (The RNAi Consortium (TRC) ID numbers:

TRCN0000007865 and TRCN0000007866) expression plasmids

were transfected into 293T cells together with packaging plasmids

to generate lentiviral preparations using standard procedures.

Transduced Huh7 cells stably expressing shRNA against Argo-

naute 2 (Ago2) or a control lentiviral genome (TurboGFP) were

obtained by a selection with 2.5 mg/ml puromycin for three days.

miR122 Inhibitor Assay
Huh7 cells were transfected in 12-well plates with 200 nM

miRIDIAN miR122 inhibitor (Dharmacon) or 1.6 mg of salmon

sperm DNA as a control using Lipofectamine 2000 (Invitrogen)

and 24 h post-transfection cells were infected with 400 000 PFU of

Ad5 or Ad5T122. Cells were photographed six days later to

document the appearance of a cytopathic effect.

Ex vivo Tissue Culture and Infections
Healthy human liver or a liver metastasis of colorectal

carcinoma were obtained with written informed consent and

approval by ethics committee of the Helsinki University central

hospital. A cylinder of 8 mm in diameter was cored out of the

surgically removed tissue and sliced at approximately 300–500 mm

with a Krumdieck precision-cut tissue slicer (Alabama Research

and Development Corporation, Huntsville, AL). Tissue slices were

placed into six-well plates (1 slice/well) containing 2 ml of

William’s Medium E with 10% foetal calf serum (FBS) (Life

Technologies), 1% Glutamax-I (Life Technologies) and 1%

penicillin/streptomycin. The plates were incubated at 37uC/5%

CO2 in a humidified environment for up to 5 days. A plate rocker

was used to gently agitate the slices to ensure adequate

oxygenation and viability. Slices were infected by adding 26106

or 107 PFU of virus into the medium.

Immunohistochemistry (IHC)
Slices were fixed o/n in 10% phosphate-buffered formalin,

dehydrated, embedded in paraffin and cut into 4 mm sections. The

sections were deparaffinised, rehydrated and either stained with

haematoxylin and eosin, or prepared for immune staining by

heating the slides in Tris–EDTA (pH 9.0) buffer in a microwave

oven. Antibody against Adenovirus 5 E1A (MS 1069-P0,

Neomarkers, Thermo Fisher Scientific, 1:200 dilution) was used

as a primary antibody. Dako Envision system (Dako, Agilent
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Technologies, Santa Clara, CA) including HRP-conjugated anti-

mouse secondary antibody was used for detection. Labvision

autostainer (Thermo Fisher Scientific) was used for IHC sample

preparation.

In vivo Experiments for Assessment of Liver Toxicity
Adult 5 to 7 week old female C57bl/6 mice were systemically

infected with 16109 PFU of Ad5 or Ad5T122 by tail vein injection

(diluted in 100 ml of PBS). Control group received 100 ml of PBS. 4

animals were used in each group. After 72 h post-infection blood

was taken from mice by cardiac puncture and allowed to clot for

15 min at room temperature and spun at 1200 g for 10 min.

Serum samples were added to ALAT reagent (Thermo Fisher

Scientific) and the change in absorbance (340 nm) per minute was

monitored. Units of ALAT activity were calculated according to

manufacturer’s instructions.

In vivo Experiments for Assessment of Oncolytic Potency
Adult 5 to 7 week old female NMRI nude mice were

subcutaneously injected with 36106 A549 cells into both flanks.

Initial tumour sizes were typically 15–40 mm3. Mice were treated

on days 0, 2 and 4 by intratumoural injection at 107 PFU/tumour

with either Ad5 or Ad5T122 (diluted in 50 ml of PBS). Control

group received 50 ml of PBS. 6 animals were used in each group.

In order to determine tumour volume by hand-held calliper, the

greatest longitudinal diameter (length) and the greatest transverse

diameter (width) were determined. Tumour volumes were

calculated by the modified ellipsoidal formula [53,54]: Tumour

volume = 0.5(length6width2). MedCalc software was used to

calculate serial measurements (area under curve) for statistical

analysis. A P value of less than 0.05 was considered as significant.

Supporting Information

Figure S1 Functional quantitation of miR122 expression in

different cell lines. The indicated cells lines were co-transfected

with an unmodified Firefly luciferase vector (pSIRNALUC-

39MluI) or its derivative containing a miR122 target element in

the 39 UTR (pSIRNALUC-3916T122) together with a vector for

Renilla luciferase (pcDNA-Renilla). The average Firefly/Renilla

luciferase activity ratios in these cells 48 hours after transfection is

shown on the y-axis. The value from pSIRNALUC-39MluI -

transfected cells was set to 100%, and the ratio from pSIRNA-

LUC-3916T122 -transfected cells is expressed relative to this. The

data are presented as the mean of triplicates 6 standard error.

(TIF)

Figure S2 Suppression of Ad5T122 replication in Huh7 cells is

miR122-specific. A. Effect of miRNA machinery disruption by

down-regulation of Argonaute 2 on Ad5T122 replication in Huh7

cells. Two independent Huh7 cell lines (Ago2-kd1 and Ago-kd2)

stably expressing different shRNA constructs targeting Ago2 or a

control Huh7 derivative cell line (Control) transduced with a

control lentiviral vector were infected with 400 000 pfu of Ad5 or

Ad5T122, or left uninfected as indicated, and photographed 6

days post-infection. B. Effect of miR122 inhibition by a synthetic

antagomir oligonucleotide on Ad5T122 replication in Huh7 cells.

Cells were transfected with the miR122 inhibitor or mock

transfected, infected with 400 000 PFU of Ad5 or Ad5T122 on

the next day, and photographed 6 days post-infection.

(TIF)

Acknowledgments
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