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Abstract

One of the most challenging problems in microbiology is to understand how a small fraction of microbes that resists killing
by antibiotics can emerge in a population of genetically identical cells, the phenomenon known as persistence or drug
tolerance. Its characteristic signature is the biphasic kill curve, whereby microbes exposed to a bactericidal agent are initially
killed very rapidly but then much more slowly. Here we relate this problem to the more general problem of understanding
the emergence of distinct growth phenotypes in clonal populations. We address the problem mathematically by adopting
the framework of the phenomenon of so-called weak ergodicity breaking, well known in dynamical physical systems, which
we extend to the biological context. We show analytically and by direct stochastic simulations that distinct growth
phenotypes can emerge as a consequence of slow-down of stochastic fluctuations in the expression of a gene controlling
growth rate. In the regime of fast gene transcription, the system is ergodic, the growth rate distribution is unimodal, and
accounts for one phenotype only. In contrast, at slow transcription and fast translation, weakly non-ergodic components
emerge, the population distribution of growth rates becomes bimodal, and two distinct growth phenotypes are identified.
When coupled to the well-established growth rate dependence of antibiotic killing, this model describes the observed fast
and slow killing phases, and reproduces much of the phenomenology of bacterial persistence. The model has major
implications for efforts to develop control strategies for persistent infections.
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Introduction

The phenotypic heterogeneity observed in populations of

genetically identical cells is a ubiquitous and intriguing phenom-

enon, whose precise origin is still far from being fully understood.

Since it appears to play a relevant role in many different contexts,

ranging from the emergence of drug tolerance phenotypes in

bacterial populations [1], to the somatic evolution of cancer cells

[2], to cell differentiation [3], it is believed that it does not emerge

by mere accident, but it is rather the result of maybe complex gene

regulatory processes.

Stochastic processes are at the base of phenotypic heterogeneity

[4]. It is conceivable that different noise sources, both static and

dynamic, play a different role in the emergence of heterogeneous

phenotypes in clonal populations of cells. Extrinsic noise sources,

such as for instance fluctuations in the number of ribosomes or

RNA polymerases, are static, and therefore are often the best

candidates when looking for mechanisms that produce different

cell phenotypes. In contrast, so-called intrinsic noise, related for

instance to the bursting activity of gene expression or to the

repartition of protein molecules in daughter cells at cell division,

creates typically fast dynamical fluctuations, and therefore no

stable phenotypes can emerge [5].

In this paper we focus on intrinsic noise, and propose a specific

mechanism that slows down the intrinsic fluctuations associated

with gene expression and protein repartition during cell division.

We show that this mechanism is in fact sufficient to account for the

emergence of phenotypic heterogeneity in clonal populations.

In order to do this, we make reference to the concepts of

ergodicity breaking and epigenetic landscape. Ergodicity breaking

[6] is a concept borrowed from dynamical systems theory and

statistical physics, and recently suggested to play a role in biology

as well [2]. It relies naturally on the notion of the epigenetic

landscape, first proposed by Waddington in 1957 [7] in a

developmental context.

Inspired by [7], we represent the cell state as a point in a

multidimensional space (the so-called configuration space), whose

axes correspond to the expression values of each gene of the cell.

The specific gene network dynamics determines what gene

configurations are accessible to the cell, and therefore restricts

the cell to a limited set of possible states. Computing the inverse

probability that the cell is found in any state [2], and plotting it on

a further axis, defines a hyper-surface in the state space, which

describes pictorially the network dynamics. This hyper-surface

corresponds to the epigenetic landscape introduced in [7]. The cell

explores the epigenetic landscape driven by the network dynamics,

and by temporal stochastic fluctuations of genetic and non-genetic

origin. In Fig. 1, we present a pictorial description of the
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probability distribution of the cell states and of the corresponding

epigenetic landscape in the case of a single gene.

The epigenetic landscape plays the same role as the energy

landscape in Hamiltonian system. Because of the probabilistic

definition adopted here, the modes of the probability distribution

of the different gene configurations correspond to landscape

minima, and probability minima correspond in turn to local

maxima of the landscape. In the same way as a Hamiltonian

system relaxes in time towards the energy minimum, in the present

picture the cell tends to approach the minima of the epigenetic

landscape, which can then be called metastable, or attractor,

states. However, since conceptually derived from the knowledge of

the probability distribution of cell states, the epigenetic landscape

combines both deterministic and stochastic components of the

dynamics, and metastable states do not necessarily correspond to

stationary states of the underlying deterministic dynamics only.

Complex landscapes, possibly characterized by many maxima

and minima, and hills and valleys, are likely in gene regulatory

networks because of the ubiquitous existence of gene feedback

circuits [8]. The set of cell states belonging to the same valley, and

relaxing toward the corresponding metastable state is commonly

called the basin of attraction of that metastable state.

The notion of basin of attraction suggests a useful definition of a

phenotype. We propose to interpret the basin of attraction of each

metastable state as one phenotype. Namely, we associate all cell

states within the basin of attraction of a given metastable state to

the same phenotype, and states belonging to basins of attraction of

different metastable states to distinct phenotypes (Fig. 1). The case

of only one metastable state in the system corresponds trivially to

one single phenotype. In the following we are interested instead in

the case when multiple metastable states are present.

At equilibrium, stochastic fluctuations are responsible for the

wandering of the cell state in the landscape, both within basins of

attractions when fluctuations are small, and across them, when

fluctuations are large. In the first case fluctuations do not modify

the cell phenotype, while in the second case a phenotypic change is

produced. We define the permanence or sojourn time tp as the

average time the cell has to wait before being exposed to a

fluctuation large enough to make a ‘‘hop’’ from the basin of

attraction of one metastable state to an adjacent one. Furthermore,

we call observational time texp the time over which a typical

experiment or observation is performed. It is then natural to refine

our definition of a phenotype, and interpret the basins of attraction

of distinct metastable states as distinct ‘observable’ phenotypes

only if the permanence time is larger or at least of the order of the

observational time, namely if tp=texp§1.

In the case when the permanence time is considerably shorter

than the observational time, tp=texpvv1, the system hops rapidly

among the basins of attraction of the available metastable states,

and the observed time-averaged behaviour is the same for any

observed cell. For this reason, the time average of the relevant

variable (for instance a specific protein concentration) for a single

cell equals the ensemble average over the population of cells. In

this case the system is said to be in the ergodic phase [6]. The fact

that all cells behave the same during the observation leads to

conclude that only one (average) phenotype is present in the

population, despite the presence of multiple metastable states, with

multiple basins of attraction.

In contrast, when the permanence time is large, at least of the

order of the observational time, each cell maintains its own

individuality during the observation, and the time-averaged

variable of interest measured over the observational time will

differ from cell to cell. The time average differs now from the

ensemble average, and in the limit of infinite observational time

the system is said to be in the non-ergodic phase. This case allows

for distinct phenotypes to become observable. The transition

between ergodic and non-ergodic phases is called ergodicity

breaking [6].

The standard definition of non-ergodic phase relies on the

observational time going to infinity. This implies that cells

belonging to the basin of attraction of one metastable state cannot

access any other basin of attraction in any finite time. In the

landscape picture introduced above, this would correspond to the

barriers between different basins of attraction becoming of infinite

height, and the basins of attraction becoming dynamically

disconnected. The whole state space would then be partitioned

into distinct islands, no matter how large the fluctuations would

be. The impossibility for the system to explore the whole space in

any finite time would then imply impossibility of reaching

equilibrium.

In fact this definition of non-ergodic behaviour is too strong for

our purposes, since much of the interesting biological dynamics

may happen in an off-equilibrium regime, well before the system

has had the time to attempt to explore the whole phase space.

Furthermore, strict ergodicity breaking would not be verifiable

experimentally, because observational times are anyway experi-

mentally finite. For this reason, we use the concept of ergodicity

breaking in a weaker way, to indicate that the system appears as

non-ergodic when measured over a finite observational time,

Figure 1. The epigenetic landscape. The probability distribution
(upper panel) and the corresponding epigenetic landscape (lower
panel) are shown for a 1-dimensional system, characterized by the
expression levels of one single gene. The bimodal structure of the
probability distribution of the cell states induces a dual landscape,
similar to the potential energy landscape in Hamiltonian systems, in
which the modes of the probability distribution are mapped into
metastable states. The profile of the landscape is a manifestation of the
gene dynamics, which the cell can explore at equilibrium, driven by
stochastic fluctuations. For fluctuations small enough (light blue
arrows), the cell remains confined in the basin of attraction around
each metastable state, while strong enough fluctuations (red arrows)
will make the cell hop from one basin of attraction to an adjacent one. If
these transitions are rare, and the sojourn time within a basin of
attraction is comparable with the observational time, we identify all
possible states within that basin of attraction as one single (noisy)
phenotype.
doi:10.1371/journal.pone.0054272.g001
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which is generically large but finite, dictated by the experiments,

and define the weakly non-ergodic phase by the same condition

used in our definition of a phenotype, namely tp=texp§1. In doing

so, we leave open the possibility that cells might eventually be able

to visit all available states, and therefore equilibrate, on infinite

observational times. Our definition of weak ergodicity breaking is

similar in spirit to the one introduced in [9,10] for disordered

systems, with the difference that we adopt a finite observational

time.

The search for distinct phenotypes becomes then equivalent to

searching for mechanisms capable of slowing down the dynamics,

so as to increase the permanence time, and approximate the

behaviour of the system as weakly non-ergodic, in the sense

specified above. Slow-down of dynamics may be the result of

different causes. For instance both the topological properties of the

landscape, (namely the depth of the basins of attractions, or their

internal possibly rugged structure), and the intensity and rapidity

of the temporal stochastic fluctuations in gene expression are all

factors expected to play a role. If temporal fluctuations in protein

numbers are fast, in particular because of the relatively short cell

division time that provides an efficient mixing mechanism of

protein levels across generations, these contribute ergodic compo-

nents to the full dynamics. In [11] for instance, in a developmental

context, it is in fact hypothesized that the complexity of the

landscape plays a major role. The Authors of [11] show that a

complex rugged landscape emerges because of the complex

multidimensional network of gene interactions. This implies the

existence of high dimensional attractor states, and thus leads to the

appearance of a relatively limited number of long-lived macro-

scopic states, which are interpreted as distinct phenotypes.

To explore how ergodicity breaking may generate distinct

phenotypes we consider how it may emerge from protein control

of cellular growth rate. Many factors, both genetic and environ-

mental, do of course influence cellular growth rate [12,13].

However we here envisage the situation in which growth is

inhibited by a protein and consider how distinct growth

phenotypes may emerge due to a slow-down of protein fluctua-

tions. In our model accumulation of protein in the cell leads to

increasingly longer cellular division times, and therefore decreases

the effectiveness of cellular division as a randomization process

responsible for protein levels mixing [14]. Other processes

responsible for mixing (transcription and protein degradation)

are also kept at minimal efficiency, by assuming low gene

expression and degradation.

In the Results section of the paper, we show that the systems

appears as non-ergodic, in the weak sense defined above, and is

characterized by growth heterogeneities, which turn out to be

stable over typical observational times. We analyse the model in

the ergodic and weakly non-ergodic regimes, and show that

bimodal distributions of growth rate are expected in the non-

ergodic regime, for fast enough translation.

We also apply this model to considering how the resulting

bimodal distribution of cellular growth rate may impact on

downstream drug tolerance phenotypes. Growth rate is an

important determinant of the response of cells to numerous

stimuli including stresses such as starvation and exposure to toxins,

drugs and biocidal agents [15–17]. We illustrate this effect by

extending the model to examine killing of bacteria by antibiotics.

We demonstrate that biphasic killing, a key characteristic of the

enigmatic phenomenon of bacterial persistence, emerges in the

weakly non-ergodic regime. We also present direct stochastic

simulations (Gillespie), which support the analysis for the

emergence of both growth phenotypes and persistence. In the

Methods section we give details on our extension of the Gillespie

algorithm to include protein controlled cellular division times.

Results

Bacterial Persistence
The term ‘persisters’ was first used by Bigger [18] to describe

the ability of a small fraction of a population of genetically

identical (isogenic) cells of Staphylococcus aureus to survive prolonged

exposure to bactericidal concentrations of penicillin. Since then,

the phenomenon has been described in nearly all known microbes

and considered to be largely responsible for the resistance to

antibiotic therapy of many chronic bacterial infections, such as

tuberculosis (TB) [1] and in the resistance of biofilms to

microbiocides and antibiotics [19,20]. The key signature of

persistence is the biphasic kill curve obtained when bacteria in

batch culture are exposed to a bactericidal antibiotic [1]: the

killing rate is initially very high but then slows and may even level

off to zero. Numerous factors have been proposed to be

responsible for persistence but a landmark study in 2004 [21]

examined antibiotic killing of hipA7 E. coli at the single cell level

and demonstrated that persister cells were either slow-growing or

non-growing at the time of antibiotic administration. The authors

introduced a persistence model based on the simultaneous

existence of two preexisting subpopulations consisting of normal

and persistent cells, and a constant rate of stochastic phenotypic

switching between the two cell types. The hipA gene was

subsequently shown to encode the toxin component of a toxin-

antitoxin (TA) module, hipAB [22] whose over-expression was

shown to slow growth. It has recently been proposed that

stochastic [23] or growth-rate mediated gene expression feedback

mechanisms [24] in the regulatory circuits controlling expression

of HipA cause bistability and switching between drug-sensitive

normal and drug-tolerant persister states. However, drug-toler-

ance and persistence are arbitrarily assigned to the normal and

persister cells in these models, rather than derived from the

models.

Toxin components of toxin-antitoxin systems, such as HipA, are

generally expressed at low level and, at sublethal concentrations,

inhibit cell growth [25]. This suggests the development of a model

based on the weak expression of a growth controlling protein,

whose distribution may be subject to ergodicity breaking.

However, the mechanism proposed here is not specific to toxin

components, but may hold for any growth inhibiting protein. We

then extend this model to include antibiotic-mediated killing of an

isogenic bacterial population by assuming that the killing rate is

proportional to the growth rate [15], and examine whether

ergodicity breaking may be involved in the phenomenon of

persistence.

The Growth Model
Let us consider then the behaviour of a system in which

expression of a single gene controls cellular division times.

Specifically, we consider the action of a gene that inhibits growth,

and express the protein dependent cellular growth rate g(p(t)) in

terms of a Hill function with unity Hill coefficient:

g(p(t))~
g0

1zkp(t)
: ð1Þ

Here p(t) is the time dependent protein concentration,

g0~ ln 2=T0 is the maximal cellular growth rate, with T0 being

the zero protein division time, and k is a parameter that quantifies

Emerging Growth Phenotypes & Bacterial Persistence
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the growth-inhibitory strength of the inhibitory protein. The

protein concentration is defined as p(t)~n(t)=V (t), where n(t)
and V (t) are respectively the number of protein molecules and the

cellular volume at time t.

We then assume that the cellular volume V satisfies the

equation:

dV (t)

dt
~

g0

1zkp(t)
V (t): ð2Þ

For k~0, Eq. (1) reduces to the protein independent growth

rate g0, and Eq. (2) reproduces an exponential growth law for the

cellular volume. Although it has been claimed that growth of

cellular volume is linear in some systems [26], this has been

questioned by later studies [27], and most recent modelling

[28,29] has assumed exponential growth, which is also assumed

here.

To take into account production of the inhibitory protein, we

assume the following model of gene expression [28,29],

k1 k2

DNA?mRNA?protein

c1 ; c2 ;

� �

where the parameters k1 and k2 are respectively transcription

and translation rates, while c1 and c2 describe degradation of

mRNA and protein. Furthermore, cell division is implemented by

imposing that cells divide when the cellular volume doubles. At

division we make the assumption that the protein content of each

mother cell is distributed binomially into the two daughter cells.

Because of this process, and because of the bursting activity of gene

expression, this model is intrinsically stochastic.

If the function p(t) is known (for instance through direct

stochastic simulations), we can formally solve Eq. (2) as.

V (t)~V0 exp

ðt
0

g(p(t’))dt’

0
@

1
A: ð3Þ

The condition V (Tdiv)~2V0 leads then to the following implicit

definition of the division time Tdiv:

1~

ðTdiv

0

1

T0(1zkp(t’))
dt’: ð4Þ

This expression can be solved explicitly for Tdiv only if the

stochastic variable p(t) is known. If this is not the case, the integral

in (4) cannot be computed, and we have to rely on approximation

methods. In particular, we can find an approximate solution of (4)

when the fluctuations of p(t) are either very fast or very slow with

respect to the cell cycle.

Fast gene expression fluctuations – The ergodic regime.

If p(t) fluctuates fast over Tdiv, we can replace p(t) in (4) with its

time average,

�pp~
1

Tdiv

ðTdiv

0

p(t’)dt’: ð5Þ

Bursting activity and protein degradation are the stochastic

processes responsible for protein fluctuations within generations,

with protein reshuffling at cell division contributing further

stochasticity across generations. In terms of the parameters of

the model, fast gene expression fluctuations can be realized by

assuming fast bursting activity (namely k1 large) and fast protein

degradation (namely c2 large, even though always smaller than the

mRNA degradation rate c1 [28,29]). Protein reshuffling due to cell

division is not expected to play a role in this regime, because

subsequent randomization due to bursting and degradation will

quickly decorrelate the protein content from its initial value, set

just after cell division. As a consequence the value �pp as given by (5)

will be the same across different generations, namely conserved

within, and also across, cell lines.

Using then the ergodic hypothesis, �pp~SpT, with SpT the

average over the cell population, leads to.

Tdiv&T0(1zkSpT): ð6Þ

By following [28,29], we then write the master equation

associated with the processes above as.

Lw(p,t)

Lt
~

L
Lp

c2z
ln 2

T0(1zkSpT)

� �
pw(p)

� �

zk1

ðp
0

K(p{p’)w(p’)dp’,

ð7Þ

where w(p) is the protein distribution over the population, the first

two terms in the right hand side represent dilution effects due to

protein degradation and cell division, and the last term is protein

production, with K(p)~(1=b) exp ({p=b){d(p). Here b is the

average burst size during translation, and the Dirac delta function

represents transitions away of p [28,29].

An analytic stationary solution of the master equation (7) can be

computed. This results in the Gamma distribution.

w(p)~
1

baC(a)
pa{1e{p=b, ð8Þ

where a~k1=(c2z ln 2=(T0(1zkSpT))) is the mean number of

transcriptional bursts per cell cycle, b~k2=c1 is the mean number

of protein molecules produced per burst during translation, and

C(a) is the gamma function. In particular, by using SpT~ab we

obtain the following expression for a:

a~
kk1k2{c1c2{c1 ln 2=T0z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kk1k2{c1c2{c1 ln 2=Tð Þ2z4kc1c2k1k2

q
2kc2k2

:

ð9Þ

Since Tdiv=a is the mean time between successive bursts, the

condition of fast protein fluctuations over the cell cycle Tdiv, used

to solve (4), requires Tdiv=avTdiv, namely aw1. Since the

ð9Þ
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observation time texp is supposed to be larger than Tdiv, aw1

guarantees ergodicity.

To assess the validity of our analytical predictions we performed

direct stochastic simulations. We extended the Gillespie algorithm

[30] to incorporate a cell division model where the division time is

dependent on a growth controlling protein. We give details of the

adapted simulation algorithm in the Methods section.

The resulting simulation data are reproduced very well by the

Gamma distribution (8), with no fitting parameters (Fig. 2). The

value for the parameter a is computed according to Eq. (9), while

we set b~k2 ln 2=c1, where the factor ln 2 comes from averaging

the volume over the cell cycle as in [28,29]. The strong agreement

between analysis and simulations supports the validity of the

ergodic hypothesis leading to eq. (6), and therefore to (9). In Fig. 2

we also show the corresponding division time and growth rates

distributions, as resulting from the simulation. Notice that in this

regime, each distribution is characterized by a single mode only,

representing a single (noisy) phenotype. In the epigenetic

landscape picture, this corresponds to a single valley.

Slow gene expression fluctuations – The weakly non-ergodic

regime.

Let us consider now the case when p(t) is slowly fluctuating

during the cells’ life span. In this case we consider p(t) almost

constant in (4), and obtain

Tdiv~Tdiv(p)&T0(1zkp), ð10Þ

with p the protein concentration just after cell division. Slow

fluctuations in gene expression over the cell cycle will now be

produced by slow transcription (k1 small) and slow protein

degradation (c2 small). The requirement of slow transcription

corresponds to imposing the condition Tdiv=awTdiv, which

produces now av1, and guarantees that fluctuations in gene

expression are slow over the cell cycle Tdiv. Furthermore the

requirement of slow protein degradation over the cell cycle

corresponds to imposing 1=c2wTdiv. These two conditions

together make Eq. (10) valid. However, in contrast to the fast

fluctuations case, protein reshuffling at cell division will now play a

role in randomizing protein levels, and resetting them across

generations. This implies that the regime k1 and c2 small does not

guarantee in general that protein levels will be constant within cell

lines. So, in general, slow fluctuations in gene expression and

degradation are a necessary but not sufficient condition for (weak)

ergodicity breaking. Weak ergodicity breaking will be realized by

imposing the further requirement that the observational time be

smaller than the division time, texpvTdiv. This condition fixes the

maximal length of an experiment aiming at detecting individually

stable phenotypes.

If we now supplement the regime of k1 and c2 small with the

further assumption of fast translation (k2 large), any time a

molecule of mRNA is produced, with high probability a large

burst of protein molecules will be translated. Therefore in this

regime all cells will undergo rare transcriptional events, from

which however large amounts of protein are produced. As a

consequence cells will be most likely to fall in one of the two

categories, either with close to zero protein content (because

transcription is rare), or with a large amount of protein (because

translation is very efficient). The number of cells showing an

intermediate amount of protein numbers is then relatively

negligible in this regime.

It should be noted that this regime, with fast translation,

reproduces the features of the weak ergodicity breaking defined

above. The two portions of phase space respectively characterized

by negligible and very large protein contents appear to be weakly

connected phase space islands, with negligible transition proba-

bilities between them over large but finite observational times.

Within the epigenetic landscape picture presented in the

Introduction, the translation rate k2 can then be regarded as a

parameter that controls the landscape morphology, by inducing a

transition from a single well to a double-well in the growth rates

landscape. In the dual representation in terms of probability

distribution, this situation will correspond to the emergence of a

bimodal probability distribution for growth rates, which is then the

result of a weak ergodicity breaking. The role of the parameter k2

appears to be that of ‘‘separating’’ the non-ergodic components of

the system.

In the weakly non-ergodic regime, we expect the Gamma

distribution (8) to be still a (approximate) solution of the model. In

fact the slow fluctuations at the protein level correspond formally

to slow varying heterogeneities in the corresponding mean number

Figure 2. Protein, division time, and growth rate distributions
in the ergodic regime. Parameter values are k1 = 3?1022, k2 = 0.35,
c1 = 0.04, c2 = 4?1023 (all units in sec21), T0 = 2100 (sec), k = 0.01 (nM) 21,
V0 = 1.7 fl. Histograms are the result of direct stochastic simulations (see
text for details). The full curve in panel (a) corresponds to the Gamma
distribution (8) with parameters a = 7.14 as from (9) and b = k2 ln2/
c1 = 6.06, and no other fitting parameters. The ln2 here comes from
averaging the cellular volume over the cell cycle [28,29]. Panel (b)
shows the histogram for the division time distribution, obtained by
direct measurement of Tdiv during the simulation. The histogram for the
growth rate distribution (panel (c)) is obtained from the measured Tdiv

by computing m = ln2/Tdiv. In the ergodic regime, the growth rate
distribution is characterized by one mode only, corresponding to one
single phenotype.
doi:10.1371/journal.pone.0054272.g002
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of bursts a and mean burst size b. No matter what the distributions

of these heterogeneities are, these can be integrated over, and

produce again an approximate Gamma distribution, as shown in

[31]. For this reason, we make the well justified assumption that in

the weakly non-ergodic regime the protein is still distributed with a

Gamma distribution, for which we will evaluate the corresponding

a and b values numerically from our stochastic simulations.

As a result, in the weakly non-ergodic regime the population

structure can be represented in terms of a continuum of

subpopulations, which are virtually non-interacting because of

the limited mixing among different protein levels. The growth

dynamics of each subpopulation is thus defined as.

dXp

dt
~

m0

1zkp
Xp(t), p[½0,?�: ð11Þ

Here Xp(t) represents the number of cells in the subpopulation

characterized by protein content p, and m0 is the maximal

population growth rate, identical in value to g0. The protein p is

distributed as a Gamma distribution.

The non-interacting population dynamics (11) is an approxi-

mation to the real dynamics based on neglecting mixing terms

among different protein levels. This approximation is valid for

times smaller than any mixing time scale in the system, for which

the division time is a lower bound, as discussed. For longer times,

mixing will become effective, the system will restore ergodicity and

equilibrate, and single cells will lose their phenotypic individuality.

By using (10), and the fact that DH(Tdiv)dTdivD~Dw(p)dpD, Tdiv is

distributed as.

H(Tdiv)~
1

(kb)aC(a)

1

T0

Tdiv

T0
{1

� �a{1

e
{ 1

kb

Tdiv
T0

{1

� �
, ð12Þ

and by using the non-interacting population approximation

leading to Eq. (11), the distribution of the p dependent cellular

growth rates m(p)~m0=(1zkp) defined by (11) results in:

x(m)~
m0

(kb)aC(a)

1

m2

m0

m
{1

� �a{1

e
{ 1

kb

m0
m {1
	 


: ð13Þ

It can be proven that for av1 and 1zaz1=kbð Þ2{8=kbw0 (see

Methods section), the distribution x(m) is characterized by two

modes: a first mode at slow growth rates associated with cells

expressing high values of protein, and a second mode at the

maximal growth rate when the majority of cells present negligible

protein concentration. In the weakly non-ergodic phase this model

generates a bimodal dynamics in a system which does not assume

apriori the two phenotypic states associated with two pre-existing

subpopulations (slowly and fast growing cells). The stochastic

effects stemming from the individual cells’ gene expression,

together with the chosen protein control of division times, are in

fact solely responsible for the appearance of the growth

heterogeneity in the population.

In Fig. 3 we show Gillespie simulations of protein, division time,

and growth rate distributions for two different parameter sets, both

determining slow fluctuations. In this case, theoretical predictions

of the mean number of bursts a and mean burst size b are not

available. Therefore we estimated their values by measuring the

first and second moment of the simulated data, and by using

a~SpT2=s2 and b~s2=SpT, consistent with the assumption of an

underlying Gamma distribution, and with s being the variance of

the data. In panels (a) and (d) of Fig. 2, the corresponding protein

Gamma distributions w(p) are shown, which fit very well the

simulations. In panels (b) and (e) we instead compare the

distribution of division times Tdiv directly measured from the

simulation with the theoretical prediction H(Tdiv) given by Eq.

(12), using the same a and b values estimated from the protein

distribution. These same parameter values are also used to

compare the growth rate data, obtained from the measured Tdiv’s

by computing m~ ln 2=Tdiv, with the theoretical growth rate

distribution x(m), Eq. (13). We show this comparison in the panels

(c) and (f) of Fig. 3. Even though mixing between different

subpopulations due to cell division is expected to play a role, the

agreement between simulations and the theoretical predictions for

the division time distribution (12) and the growth rate distribution

(13) is excellent. The comparison shown in panels (b) and (e)

supports the validity of (10), while panels (c) and (f) support also the

non-interacting population dynamics (11). This in turn shows that

non-ergodic components dominate the full dynamics.

At fast translation, we make the same comparison, again for the

three distributions, and show the result in Fig. 4. Again, the

parameters a and b are estimated from the protein data, and their

values are used in the protein Gamma distribution w(p), Eq. (8), in

the division time distribution H(Tdiv), Eq. (12), and in the growth

rate distribution x(m), Eq. (13). Also in this case the agreement

between analysis and simulations is excellent, and supports the

validity of Eq. (10), based on slow fluctuations, and the weakly

non-ergodic regime for large b values. The peak to the left in panel

(c) corresponds to a small subpopulation representing slowly

growing cells, and includes all cells in the tail of the protein

Gamma distribution illustrated in panel (a). The peak on the right

corresponds instead to the majority of cells in the population,

characterized by zero or negligible protein content, and therefore

growing at the maximal growth rate.

It is interesting to evaluate the different mixing time scales for

the set of parameters used for the simulation in Fig. 4. The

bursting time scale results in Tdiv=a&1:5:104 (sec), the degradation

time scale is 1=c2~2:5:104 (sec), and the typical division time can

be estimated as Tdiv~T0(1zkab)&104 (sec) (see caption of Fig. 4

for the corresponding parameter values). These values suggest that

equilibration will take place for times much longer than the largest

of these time scales, namely longer than 2:5:104(sec), while

phenotypic individuality will be maintained for times smaller than

the smallest time scale, namely 104(sec). The sampling for

constructing the distributions shown in Fig. 4 was then performed

after 105 sec of simulation, with further simulations with longer

time runs (up to 1010 sec) before sampling not producing any

appreciable change in the profile of the distributions (data not

shown). In these conditions, the good agreement between the

weakly non-ergodic assumption, represented by the non-interact-

ing population dynamics, Eq. (11), and the simulation, shows that

the dominant contribution to the population structure comes from

non-ergodic components, with most cells conserving their own

individuality, and performing only limited transitions between the

two sub-populations with slow and fast growth rates. In this sense,

these two subpopulations can be considered as non-interacting,

and the resulting distribution is predominantly made of cells

conserving their own growth rate. In the epigenetic landscape

picture, this situation corresponds to a double-well landscape, with

limited transitions between the two wells, and defines two distinct

growth rate phenotypes. With the parameter as in Fig. 4, a

conservative estimate for the duration of a typical single cell

experiment aiming at observing distinct non-mixing phenotypes is

of the order of 104 sec. However given the validity of (11) well
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beyond this limit, most (not all) cells will remain in their own state

for much longer times.

Emergence of Biphasic Killing in the Weakly Non-ergodic
Regime

It has been demonstrated in many systems that antibiotic-

mediated killing is proportional to growth-rate [15]. We then

describe cell killing by the rate k(p), given by k(p(t))~k0g(p(t)),
where k0 is a proportionality constant that quantifies the degree of

growth-rate dependency.

In the weakly non-ergodic phase the total population X (t) can

be regarded again as a continuum of subpopulations each labeled

by the protein content,

dXp

dt
~{keff (p)Xp(t)withkeff (p)~

m0(k0{1)

1zkp
,p[½0,?�, ð14Þ

where 0ƒk0v1 identifies a growth process, while k0w1
represents antibiotic exposure killing. As before, the set of

equations (14) corresponds to the picture of non-interacting

populations derived by our approximation of weakly non-ergodic

regime valid for large but finite observational times.

Under this approximation, the total population can be obtained

by integrating over p,

X (t)~

ð?
0

dpXp(t)~

ð?
0

dpXp(0)e
{k

eff
(p)t

, ð15Þ

where we used the solution of (14) assuming p to be independent of

time, consistent with the slow fluctuations limit. By multiplying

and dividing by X (0), and using the definition w(p,t)~Xp(t)=X (t)

at time t, we immediately obtain

X (t)~X (0)

ð?
0

dp w(p, 0) e
{keff (p)t

,

Figure 3. Protein, division time, and growth rate distributions in the slow fluctuations case. Parameter values for the simulation (a,b,c)
are k1 = 1.6?1025, k2 = 1.0, c1 = 0.01, c2 = 4?1025 (all units in sec21), T0 = 2100 (sec), k = 0.01 (nM) 21, V0 = 1.7 fl. The full curve in panel (a) corresponds to
the Gamma distribution (8) with parameters a = 0.045 and b = 96.78 fitted as described in the text. The full curves in panels (b) and (c) correspond
respectively to the division time distribution, Eq. (12), and growth rate distribution, Eq. (13), evaluated with the same parameters. Parameter values
for the simulation (d,e,f) are k1 = 1.6?1024, k2 = 1.0, c1 = 0.01, c2 = 4?1025 (all units in sec21), T0 = 2100 (sec), k = 0.01 (nM) 21, V0 = 1.7 fl. The full curve in
panel (d) corresponds again to the Gamma distribution (8) with parameters a = 0.5 and b = 112.68 fitted as described in the text, and the full curves in
panels (e) and (f) correspond to Eqs. (12) and (13), evaluated with these same parameters. The good agreement between direct simulations and the
predictions (12) and (13) supports the validity of the slow fluctuations approximation, leading to Eq. (10). The peak on the right in the growth rate
distribution corresponds to the majority of cells growing at the maximal growth rate.
doi:10.1371/journal.pone.0054272.g003

ð16Þ
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with w(p,0) the protein probability distribution at the beginning of

antibiotic exposure. This is the so-called static disorder approx-

imation [32], which is indeed an approximation of the exact time

dependent dynamics, but nonetheless captures well the biphasic

features of the antibiotic killing in the regime of weak ergodicity

breaking.

Notice that in absence of antibiotic, for k0~0, the long-time

dominant contribution in the static disorder approximation, Eq.

(16), comes from the zero protein exponential, with a divergent

weight, and therefore Eq. (16) reduces to describing cells growing

at the maximal growth rate. The opposite situation is realized

when k0w1, since the slower exponential decays, with p large, are

the ones that dominate at long times.

We also performed explicit simulations of antibiotic killing.

When a%1 and b&1, we find that the population killing curve

shows a clear biphasic behavior (Fig. 5(b)): an initial exponential

killing is followed by a slower tail representing killing of cells at a

much lower rate. This is in contrast to the ergodic regime, where

no sign of biphasic behaviour is apparent (Fig. 5(a)). In Fig. 5(b),

we also show that, for fixed mean burst size b, decreasing the mean

number of bursts a produces a qualitative increase of the biphasic

behavior; while for fixed a%1, increase of the mean burst size b
causes the slow tail to become flatter. These simulation results fit

very well with the prediction from the static disorder approxima-

tion, Eq. (16). In this case the parameters a and b were estimated as

described above from the protein distribution, and fed into the

static disorder approximation (16). No other fitting parameters

were required.

Discussion

Understanding the emergence of different phenotypes in clonal

populations is a fundamental issue in cell biology that is relevant to

many biomedical phenomena.

The ubiquitous existence of gene feedback, and more in general

non-linear gene regulation, certainly plays a role in setting the

stage [8]. For instance, in the context of understanding the role of

stochasticity in cell-to-cell communications by quorum sensing, the

Authors of [33] show by analysis and simulations how unimodal

and bimodal distributions of signaling molecules can emerge for

different values of the diffusion coefficient. This result descends

remarkably only from the interplay of transcriptional noise and

diffusional processes. Gene feedback circuits provide in general

single-cell multistability, which is the first ingredient for realizing

population heterogeneity in genetically identical cells. The

epigenetic landscape, characterized by hills and valleys, is a useful

pictorial representation of these dynamics.

However, the identification of different metastable states, and

their basins of attraction, is not enough by itself to account for the

emergence of different phenotypes. Stochastic processes allow cells

to explore all possible available states, and may mask the

underlying dynamics, by making the system hop quickly from

state to state. What we mean and measure as a specific phenotype

relies instead on the idea that the fluctuations responsible for state

hopping must be slow enough for cells to maintain a biological

individuality over typical observational times. In the epigenetic

landscape picture, cells need to perform slow transitions among

the different available valleys, so as to become in principle

observable while spending time in any of them.

There may be multiple sources of static heterogeneities in the

population. Rugged landscapes [11], extrinsic noise, such as

heterogeneity in the number of ribosomes or RNA polymerases

[4], or diffusional processes [33], are among them. In this paper

we instead propose that slowdown of protein fluctuations can in

fact produce stable heterogeneities in the population. In particular,

key to our results is the introduction of protein controlled division

times at the single cell level, which effectively acts as a mechanism

that reduces the efficiency of protein mixing during cell division

[14].

As a result, the phenomenon of ergodicity breaking takes place.

Ergodicity breaking is a concept that is borrowed from the physical

and mathematical sciences, where it plays a major role in

dynamical systems theory and statistical mechanics. It has been

introduced already in the Biology literature for instance in [2] to

account for non-genetic variability in the evolution of cancer cells.

Here we revisit the concept by introducing the related notion of

weak ergodicity breaking, which we show to be responsible for the

emergence of growth rate phenotypes. However, we suggest that

this notion can actually be more general, and may offer a general

way of linking temporal noise at the single cell level to static

heterogeneities at the population level. Our definition of weak

ergodicity breaking relies on the observational time being finite.

Figure 4. Protein, division time, and growth rate distributions
in the slow fluctuations case and fast translation. Parameter
values for the simulation are k1 = 1.0?1024, k2 = 5.0, c1 = 0.01, c2 = 4?1025

(all units in sec21), T0 = 2100 (sec), k = 0.01 (nM) 21, V0 = 1.7 fl. The full
curve in panel (a) corresponds to the Gamma distribution (8) with
parameters a = 0.69 and b = 579.8 fitted as described in the text. The full
curves in panels (b) and (c) correspond to Eqs. (12) (division times
distribution) and (13) (growth rate distribution) respectively, evaluated
with the same parameters. In this parameter regime, weakly non-
ergodic components dominate the dynamics. The second peak on the
left of the growth rate distribution represents a minority of cells
growing at slow growth rate, while the peak on the right corresponds
instead to the majority of cells growing at the maximal growth rate.
doi:10.1371/journal.pone.0054272.g004
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However, if the system is characterized itself by an infinite

relaxational time, the definition of weak ergodicity breaking can be

extended to include infinite observational times [9,10]. The

pictorial description of this intriguing situation is that the phase

space would be connected, but it would take an infinite time for

the system to explore it, and therefore to equilibrate. This specific

situation may in fact be realized, either by the types of systems

investigated here, or more in general in systems exhibiting inverse

power law relaxational dynamics, characterizing often processes

with memory.

The emergence of weakly non-ergodic components can account

for the phenomenon of bacterial persistence. We here extend our

growth model to include the effect of bactericidal agents, and show

how the resulting dynamics is consistent with most or all of the

available data on persistence. Firstly, it is entirely consistent with

the established link between increased level of persistence and

slow-growing and starved cells [1]. The model is also consistent

both with the observation that overproduction of any gene which

slows growth appears to increase persistence [34]; and the finding

that a plethora of genes and mechanisms can modify persistence

levels [35–38]. It is also consistent with the failure to construct/

identify regulatory mutants that exist in either pure persister or

non-persister states; since there is no regulatory circuit driving the

transition between states.

The ergodicity-breaking model of persistence is distinctive in

that it requires neither ‘persistence genes’, nor ‘persistence states’.

The model has many interesting implications for the evolution and

maintenance of persistence. Both the mean number of bursts a and

the mean burst size b are potentially evolvable parameters whose

values, at the level of the individual gene, will influence the

distribution of growth rate and drug tolerance, at the level of

population. We note that, for the class of models analyzed here,

(with growth controlled by an inhibitory gene), high rates of

persistence are optimally achieved by placing growth rate under

the control of an inhibitory gene that is transcribed at low levels

and translated at high levels. However, our model is general, such

that tuning of any gene controlling negatively growth rate will

potentially be capable of modifying persistence levels.

We emphasize that our model does not exclude other

mechanisms contributing to persistence. In our model the

emergence of persistence is not genetically regulated. We do not

assume the existence of mechanisms that by reacting to

environmental conditions activate (or deactivate) synthesis of

growth controlling proteins. Even though such mechanisms may

be in place, we make instead the hypothesis that these are not

necessary to explain persistence. Our view is that the population of

persisters, pre-existing to antibiotic exposure, is anyway present

because of stochastic fluctuations of any growth-inhibiting protein,

and is not related to the specific regulated tuning of the expression

of any specific gene. In this respect, subpopulations of normal and

persister cells emerge naturally as a consequence of the growth

phenotypic heterogeneity resulting from the mechanism of

ergodicity breaking. We also believe that our model has significant

implications for efforts to develop novel strategies to more

efficiently kill, or prevent the formation of, persister cells in

infectious disease and the environment.

Finally, the model of ergodicity breaking as an engine for

driving growth rate heterogeneity may be more general, and have

wider implications for our understanding of the emergence of

cellular phenotypes. Cell growth rate is an important parameter

determining response of cells to a range of stresses, signaling

molecules and drugs, such as cancer chemotherapeutic agents.

Indeed, cancer chemotherapy demonstrates a very similar

phenomenon to bacterial persistence: a subpopulation of geneti-

cally identical but drug-tolerant cells [39]; which may thereby be

driven by a similar mechanism as the model of bacterial

persistence described here. Moreover, emergence of weakly non-

ergodic components is not necessarily restricted to growth rate

control but may be a more general mechanism for the emergence

of distinct cellular phenotypes in isogenic populations.

Methods

Analysis of the Growth Rate Distribution
Here we show that the growth rate distribution (13) presents two

modes for av1 and 1zaz1=kbð Þ2{8=kbw0.

At high growth rates, for m close to m0, the behavior of the

growth rate distribution (13) depends on the mean number of

bursts a. For aw1, it is straightforward to verify that x(m)?0 for

m?m0. For av1, we have instead.

Figure 5. Killing curves showing the phenomenon of persistence. Killing curves result from direct Gillespie simulations and are here
compared with the static disorder approximation, Eq. (16). (a) Ergodic regime. Parameters are the same as in Fig. 1, with k0 = 5. In this case, no
biphasic behaviour is apparent. The dashed red line corresponds to the slope of a single exponential killing with keff ~m0(k0{1)=(1zkSpT) and
SpT~ab~43.2 nM. Panel (b) shows different parameter sets characterizing the weakly non-ergodic regime. Parameter sets for the simulation were:
(Red) k1 = 2.0?1027, k2 = 1.0, c1 = 0.01, c2 = 4?1025 (all units in sec21), T0 = 2100 (sec), k = 1.0 (nM) 21, V0 = 1.7 fl, k0 = 5; (Blue) k1 = 1.0?1026, k2 = 1.0,
c1 = 0.01, c2 = 4?1025 (all units in sec21), T0 = 2100 (sec), k = 1.0 (nM) 21, V0 = 1.7 fl, k0 = 5; (Black) k1 = 1.0?1026, k2 = 10.0, c1 = 0.01, c2 = 4?1025 (all units
in sec21), T0 = 2100 (sec), k = 1.0 (nM) 21, V0 = 1.7 fl, k0 = 5. The values for the mean number of bursts a, and for the mean burst size b were fitted from
the corresponding protein distribution and used to evaluate the static disorder approximation (16), indicated with dashed lines. The corresponding
values of a and b are reported in the legend box for ease of reading. Notice the regularly spaced jolts, more apparent during the fast killing phase,
corresponding to the majority of cells dividing at regular intervals T0. The biphasic behaviour of the killing curve depends qualitatively on both a and
b. The lower the mean number of bursts a, the longer the initial killing phase, and the smaller the persister population, while the larger the mean
burst size b, the flatter the persister tail. In general, within the present model persistence requires small a’s and large b’s.
doi:10.1371/journal.pone.0054272.g005
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x(m)&
1

m0(kb)aC(a)

m0

m
{1

� �a{1

?? for m?m0 and av1, ð17Þ

which shows that a peak appears at m~m0. This peak is expected,

because it corresponds to the peak at p&0 of the Gamma

distribution for av1, accounting for the majority of cells

presenting negligible protein concentration, and growing therefore

at the maximal growth rate.

The behavior at low growth rates of the growth rate distribution

(13) is also simple to compute. In order to search for non-

monotonic behavior of the function x(m), and for other modes, we

can carry out the first derivative of (13), and compute its roots. The

calculation is straightforward, and leads to the two following

values:

m~
m0

4
1zaz

1

kb

� �
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zaz

1

kb

� �2

{
8

kb

s2
4

3
5: ð18Þ

For these to be distinct and real, we need to require the

discriminant to be positive, namely:

D(a,b)~ 1zaz
1

kb

� �2

{
8

kb
w0: ð19Þ

When this is the case, the roots will also be both positive. Since

the function x(m) is non-negative in ½0,m0�, with x(0)~0, this

shows that for any combination of values a and bwith av1 and

satisfying the reality condition (19), the function x(m) presents a

maximum, followed by a minimum, followed by the divergent

value identified by (17). This implies that further to the mode at

m~m0, another mode is present at low growth rates, and is

identified by (18) when av1 and (19) is verified. We show in Fig. 6

a contour plot of Eq. (19) for k = 0.01, which identifies the

combined values of the mean number of burst a and the mean

burst size b such that two modes are present. It is interesting to

note that two regions of b allow for two modes to be present,

namely either b fairly small or b fairly large. However the region

characterized by very small b shows in general tiny slow growth

peaks (data not shown), while the region with large b presents more

pronounced peaks. This is consistent with the picture that the

parameter b ‘‘separates’’ the ergodic components, pushing cells

either in the slow growing state, or in the fast growing one.

Exact Stochastic Simulations
The simulation of the model proposed here is based on an

extension of the Gillespie algorithm [30] so as to incorporate

protein dependent growth rates. The two-stage gene expression

model detailed in the text, which includes transcription, translation

and protein and mRNA degradation, has been simulated in

standard fashion following [30]. Instead protein controlled cell

division is non-standard, and has required a specific modification

of the algorithm.

We assume that at cell division all molecular species, except

DNA elements, are binomially split between two daughter cells. In

order to compute the instant of cell division, we monitored the cell

volume by using the following expression:

V2~
kn

W kn exp
kn

V1
{ log V1{g0t

� �� � : ð20Þ

In this expression W is the Lambert function (see next section),

n is the number of protein molecules, t is the Gillespie time, and

V1 and V2 are respectively the cellular volume at the previous and

at the present Gillespie iteration. We impose division if V2w2V0,

where V0 is the cellular volume just after cell division. In our

simulations we used V0~1:7:10{15 litres. The Lambert function

involved in Eq. (20) was computed numerically by using the f77

subroutine am05_xscss_lambertw [40], downloadable from

[http://dft.sandia.gov/functionals/AM05.html].

If a division occurs, we reset the simulation time t at the value

tzDt, where.

Figure 6. Contour plot showing the discriminant D(a,b) given
by Eq. (19). In this plot k = 0.01 (nM)21 has been assumed. Weakly
non-ergodic behaviour, characterized by the emergence of two modes
in the growth rate distribution, is predicted for a and b values such that
D(a,b) is positive.
doi:10.1371/journal.pone.0054272.g006

Figure 7. Behaviour of the volume growth law. Plot of Eq. (26) for
t1~0 and V (t1)~V (0)~V0 (blue curve) . Parameters were
V0~1:7:10{15 litres, k = 0.01 (nM) 21, g0~ ln 2=2100 (sec21), and the
protein copy number was rescaled to n~500:109=NA with
NA~6:022:1023 (Avogadro number). The dashed red line represents
the slope associated with the exponential asymptotic growth law
exp (g0t), shown for comparison. The shift between the two curves is
due to the arbitrary prefactor in front of the exponential. The Lambert
function introduces a deviation from exponential volume growth at
short times.
doi:10.1371/journal.pone.0054272.g007
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Dt~
kn

g0

1

V1
{

1

2V0

� �
z

1

g0
log

2V0

V1

� �
: ð21Þ

This expression is also derived in the next section.

The rest of the algorithm, involving transcription, translation

and degradation processes is standard as from [30].

The Lambert Function
The law of volume growth with protein control used in our

simulations can be derived in terms of Lambert functions. The

Lambert function is defined in general as the solution of the

equation [41]:

z~W (z) exp (W (z)): ð22Þ

In what follows, we will limit ourselves to the real-valued

Lambert function.

Let us consider Eq. (2) and make it explicit in the volume

variable:

dV (t)

dt
~

g0

1zk
n(t)

V (t)

V (t): ð23Þ

In order to solve this equation we need knowledge about the

time dependency of protein molecules numbers n(t). However,

during the Gillespie time t, or more in general for times over

which the protein content does not change, we can replace n(t)~n

in (23), and solve the equation formally. By setting ~VVi~1=V (ti) for

i~1,2, it is straightforward to rewrite (23) as.

*
V2 exp kn

*
V2

� �
~
*
V1 exp kn

*
V1{g0(t2{t1)

� �
, ð24Þ

whose formal solution can be expressed in terms of the Lambert

function as

*
V2~

1

kn
W kn

*
V1 exp kn

*
V1{g0(t2{t1)

� �h i
: ð25Þ

From this we immediately obtain.

V (t2)~
kn

W kn exp
kn

V (t1)
{ log V (t1){g0(t2{t1)

� �� � , ð26Þ

which leads to Eq. (20). In Fig. 7 we show a numerical evaluation

of the volume growth law (26) for n~500. It is interesting to note

that the asymptotic behaviour of the volume growth law (26) is

exponential, with a rate given by g0. In Fig. 7 we also plot this

asymptotic behaviour for comparison. This shows how the growth

law assumed here, eq. (26), deviates from the standard exponential

behaviour only at short times.

Eq. (21) can be easily obtained by imposing.

2V0~
kn

W kn exp
kn

V
{ log V{g0Dt

� �h i , ð27Þ

and using the definition of Lambert function (22). In eq. (27), V is

the last recorded value of the cellular volume.
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