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Abstract

We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a
biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to
intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the
construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously
published navigation system based on computational models of the rodent hippocampus. We analyze the performance of
the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model
operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office)
environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require
the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We
argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar
based spatial orientation and map building.
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Introduction

Bats have evolved sophisticated echolocation systems [1–3],

which they use for a wide range of tasks such as spatial orientation,

acquisition of food items, navigating complex and cluttered

environments, etc. [4–6]. While researchers have already uncov-

ered some of the principles that govern bat sonar, many open

questions remain. One of those open questions, receiving more

interest recently [7–10], concerns spatial orientation and the

construction of spatial maps by bats using their sonar systems.

The problem of building spatial maps autonomously has been

documented extensively in the robotics literature. Algorithms for

Simultaneous Localization and Mapping (SLAM) combine infor-

mation from proprioceptive sensors (shaft encoders, inertial

systems, etc.) and exteroceptive sensors (vision sensor, laser range

sensor, etc.) to estimate the position of the robot. At the same time

a feature-based map of the environment is constructed, i.e.

mapping objects onto parametric representations such as points,

lines, circles, corners, etc [11]. Traditionally, this is done using

probabilistic methods such as Kalman filters [12], Extended

Kalman filters [13], or particle filters [14]. Most of these methods

attempt to generate metric maps of the environment but methods

for generating topological maps have also been investigated

[15,16]. While some of the original SLAM work used sonar

sensors [17,18], they have mostly been replaced by sensors

providing richer and/or more fine-grained information such as

optical sensors (camera’s [19], laser range sensors [20]) or

millimeter RADAR [21].

We argue [22] that the sparse and coarse grained environment

descriptions resulting from standard robotic sonar sensors are a

consequence of limiting in-air sonar technology to simple range

sensors [23]. We propose that biosonar, on the other hand, is

capable of supporting highly intelligent interactions with complex

environments because it extracts much more information from the

echoes. For example, the bat’s sonar system recruits facial features

such as the noseleaf [24] and outer ears [25,26] to perform

spectrospatial filtering on the emitted calls. Because of these

interactions of the sound field with the bat’s head morphology

reflector location is encoded in a diverse set of monaural and

binaural cues [7]. We have coined the term Echolocation Related

Transfer Function (ERTF) for this spectrospatial filtering to

emphasise that an active perception system can introduce such

cues both during emission and reception. In [27] an information

theoretic approach is described to quantify the amount of

information (in bits) about the reflector location that can be

extracted from the ERTF cues present in the echo signal. Based on

this theory we have developed a biomimetic sonar system that is

capable of localizing multiple reflectors in 3D using a single sonar

emission [28].

Parallel to the traditional robotic simultaneous localization and

mapping systems based on probabilistic methods, biologically

inspired solutions have also been proposed. A highly successful

example thereof is the RatSLAM system [29–31], which draws

inspiration from the rat’s hippocampal representation of space.

Neuro-physiological experiments [32] show that the mammalian

hippocampus and the bat’s hippocampus in particular [9,33]

contain so called place cells. These cells are thought to encode the
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absolute position of the animal in its environment [34]. Loosely

inspired by the rat’s hippocampal mechanisms the RatSLAM

system proposes a pose cell network, i.e. a continuous attractor

network [35,36], as a means to perform path integration. The pose

estimate, i.e. robot position and orientation, resulting from this

path integration is kept consistent by combining information from

odometry, i.e. the measurement of self-motion, and vision.

Different from traditional robotic SLAM techniques, RatSLAM

does not require the data from the vision sensor to be segmented

into a discrete set of object descriptions. Instead the visual data is

used as a signature, a ‘fingerprint’, associated with a particular

place in the environment. We propose to change RatSLAM into

BatSLAM by replacing the vision sensor with a biomimetic sonar

sensor.

The BatSLAM model for map building based on biomimetic

sonar should be viewed as an experiment in synthetic psychology

[37,38]. The robotic implementation operating in the real world

shows that the RatSLAM architecture combined with a biomi-

metic sonar system suffices for an autonomous agent to map office

environments. In particular, it shows that consistent topological

maps with semi-metric properties can be constructed using only

motor commands and biomimetic sonar ‘fingerprints’. It also

shows that if these sonar ‘fingerprints’ are sufficiently informative

there is no need for further interpretation of them in terms of

discrete objects positioned in the environment. As is often the case

in biomimetic investigations, our goal is twofold. We want to show

that biomimetic sonar sensing can support robots to interact

intelligently with complex environments. In addition, we want to

propose BatSLAM as a functional model of localization and map

building by bats.

Results

Spatial sensitivity patterns of the biomimetic sonar
system

For the exteroceptive sensory input to BatSLAM we propose to

capture the echo signals through microphones inserted in replica’s

of real bat pinnae. See the Methods section for a detailed

description of the biomimetic sonar system (Figure 1) used in the

experiments. As known from spatial hearing investigations with

bats [26], the spectrospatial sensitivity of a biosonar system is an

important source of information regarding reflector location.

Figure 2 illustrates the effect of the different components of the

biomimetic sonar sensor on the overall spectrospatial sensitivity. It

shows the simulated spatial sensitivity patterns for the emitter, the

left (right) pinna and the left (right) Echolocation Related Transfer

Function (ERTF). The ERTF is the multiplication of the emitter

and receiver spatial sensitivity patterns as represented in the

frequency domain. The binaural, interaural intensity difference,

patterns are derived by subtracting right and left ERTFs.

These results show that informative spectrospatial cues are

introduced both at emission and reception. Furthermore,

comparing the monaural ERTF patterns with the interaural

intensity difference patterns indicates that a binaural system can

extract spatial information from a larger field of view. Finally, the

ERTF results shown in figure 2 also indicate that the biomimetic

sonar system is highly focused towards the frontal region. This can

be understood by observing that the Polaroid transducer emits

significant amounts of energy in a fairly small, forwardly directed,

region only. As a consequence, the spectral features contained

within the weaker echoes returning from more peripheral

directions will be mostly masked by noise and thus uninformative.

An information-theoretic analysis [27] along the lines of the one

described in [39] can be used to quantify these statements.

Mapping an office environment
Through the ERTF the sonar system maps the set of echoes

from three dimensional reflector positions onto a two dimensional

time-frequency representation, i.e. the cochleogram (see Methods).

The smoothed cochleograms, denoted as local view templates, are

fed into the otherwise unmodified RatSLAM algorithm together

with the motor commands to generate a so-called experience map

(see Methods). The experience map is a graph where the vertices

Figure 1. Detail of the used sonar system. The sonar system
consists of an emitter and two receivers embedded in plastic replica of
the bat’s pinnae. a) Overview of the different functional blocks of the
sonar system: digital subsystem with USB interface and 2 analog to
digital converters; receiver subsystem containing 2 amplifiers and
microphones; emitter subsystem containing digital to analog converter,
high voltage amplifier and Polaroid transducer. b) Photograph of the
constructed sonar head, showing the Polaroid transducer (1) and the
microphones inserted in the pinna replica’s (2). The position of the
microphones is indicated by the black arrows.
doi:10.1371/journal.pone.0054076.g001
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represent unique places in the environment and the edges

represent the robot displacements, as derived from odometry.

While the experience map is essentially a topological map, the

experiences are also assigned positions in experience space. These

positions are initially based on information from the path

integration module and subsequently refined upon loop closure

(see Methods). As noted in [30] experience space is a manifold to

the real world. This means that while it resembles Euclidean space

on a local scale this need not be the case on a global scale.

Small-scale mapping accuracy. In the first experiment, we

quantify the local accuracy of the metric information in the

experience map by mapping a controlled small-scale environment.

In addition to the biomimetic sonar, a Hagisonic StarGazer [40]

indoor localization system was mounted on the mobile robot.

Using the indoor localization system, the real position of the robot

was recorded for every sonar measurement collected along the test

path. In total, 400 sonar measurements were recorded, with a

mean displacement of 18 cm between two sonar measurements.

The system generated 207 local view templates and 302

experience nodes. Figure 3 e) shows the Stargazer trajectory in

red, and the robot trajectory estimated by the BatSLAM system in

blue. The Pearson Correlation Coefficient [41] between the two

trajectories (correlating the concatenated X and Y coordinates of

both trajectories) is 0.994. This indicates that the true positions of

the robot correspond very well with the assigned positions in

experience space. Subsets a–b) show the BatSLAM trajectory

during the first loop. Correct loop closure detection indicates

recognition of previously visited places. Subsets c–d) show further

convergence of the map over the next few loops. These results

show that locally accurate metric representations can be built by

BatSLAM.

Large-scale mapping. To evaluate the large-scale mapping

performance of BatSLAM we performed a second mapping

experiment in a typical, unmodified, office environment. The

biomimetic sonar system mounted on a mobile robot (height:

50 cm, pointing forward, elevation zero degree) was driven

through the environment for approximately 45 minutes, while

collecting sonar measurements. Consecutive measurements are

separated by a mean displacement of 13.5 cm. The large scale of

the environment precluded the use of the indoor localization

system in this experiment. Figure 4 a) shows the experience map

produced by BatSLAM. This result should be compared with

Figure 4 b) showing the map resulting from applying naive path

integration to the robot commands. We conclude that using only

robot odometry does not, as expected, generate a useful map of the

environment. However, the same odometry data combined with

cochleogram data is turned into a consistent map by BatSLAM. A

video detailing the gradual construction of the large scale map is

uploaded as additional material.

Figure 4 a) also shows the actual floor plan of the office space

superimposed, i.e. manually shifted and rotated but not scaled, on

the experience map. From this result we conclude that even at this

larger scale the metric properties of the positions in experience

space still correspond quite accurately with those of the real world.

This allows for metric path planning approaches using distance

information to generate efficient paths in the real-world when

applied to the positions in experience space.

Cochleograms as place descriptions. During the large-

scale mapping experiment, the system collected 6000 sonar

snapshots. Based on these 6000 sonar measurements, the

BatSLAM system generated 4300 experiences in the experience

map and stored 3300 local view templates. To allow a ‘fingerprint’

Figure 2. Sonar System directivity patterns. The emitter radiation patterns, the spatial sensitivity patterns for the left and the right ear, the ERTF
for the left and right ear and the ERTF Interaural Intensity Difference patterns on a logarithmic scale. The grid lines are spaced 30u, the contour lines
3 dB. Note that the left and right pinna patterns are not exact mirror images, due to the asymmetric morphology of the scanned specimen.
doi:10.1371/journal.pone.0054076.g002
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based mapping scheme like BatSLAM to construct accurate and

stable maps these local view templates have to fulfill two

conditions.

First, the local view templates should be distinctive of particular

places in the environment. As shown by the re-use histogram in

figure 5 this condition is clearly fulfilled for the large majority of

the cochleograms. Most collected cochleograms are associated

with a unique place in the environment. A few cochleograms are

linked with a much larger number of places. Indeed, as some

places in the environment will generate similar sonar measure-

ments, BatSLAM can associate different experiences, correspond-

ing with different places in the real world, with the same local view

template. This effect is illustrated in figure 5. In this figure the

nodes in the experience map have been colored according to the

number of times the associated local view template occurs

anywhere else in the map. Zooming in on the actual cochleo-

grams, figure 5b)–c) shows two non-distinctive local view templates

and the different locations in the map where they re-occur. The

first time a particular local view template is encountered is

indicated by a red dot on the map, all subsequent occurrences are

marked by black dots. The other two local view templates,

figure 5d)–e), show that both very simple and very complex

cochleograms can be highly distinctive of the places they

correspond with. These results show that the office environment

observed through the biomimetic sonar system gives rise to several

regions of highly ambiguous ‘fingerprints’.

In addition, the local view templates should have properties that

change continuously in the neighborhood of the place they are

distinctive of. This second condition is important for efficient loop-

closure detection. It guarantees that similar robot poses, i.e. robot

position and orientation, give rise to similar cochleograms thereby

facilitating the recognition of already existing experiences, i.e.

loop-closure. Figure 6 shows the spatial extent of the region

associated with a particular local view template. First, the

cochleogram corresponding with a particular position ½XvtYvt�
and orientation of the robot was recorded. The robot was

subsequently moved to other neighboring positions (½XrYr�) and

orientations while collecting new cochleograms. Figure 6 shows

the euclidean distance between the first local view template and

the current one as a function of the robot displacement (r, q). The

first local view template is recorded at a typical location on the

map, indicated by a red circle. For this position, the euclidean

distance between the local view templates rises fairly quickly as the

robot moves away from its original position. Note that with a

mean displacement between consecutive sonar measurements of

13.5 cm approximately two sonar measurements fall within a

typical similarity region assuming the robot heading does not

change by more than 20 degrees in between measurements.

Figure 3. Small-Scale BatSLAM Mapping accuracy. Mapping
result in a small scale environment using BatSLAM and a local
positioning system as baseline. Subsets a–d) show intermediate
trajectories generated by BatSLAM during the first few loops. In subset
e) the red trace shows the robot trajectory measured with the Stargazer,
the blue trace shows the robot trajectory in experience space as
generated by BatSLAM.
doi:10.1371/journal.pone.0054076.g003

Figure 4. BatSLAM Mapping Result. Mapping result of an unmodified office environment using BatSLAM. a) The detailed experience map of the
environment with the floor plan of the office building for reference. b) The map generated by applying a path integration algorithm directly to the
motor commands.
doi:10.1371/journal.pone.0054076.g004

BatSLAM: SLAM Using a Biomimetic Sonar System

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e54076



Hence, the spatial sample rate of the sonar system seems well

adjusted to guarantee loop-closure detection. The second local

view template, indicated with a red cross in figure 6, originates

from an ambiguous region, i.e. a region resulting in very similar

cochleograms, in a long corridor. In this case, the euclidean

distances between the local view templates change more slowly as

the robot moves away from its original position. In particular,

translations along the length of the corridor without rotations of

the robot result in very similar local view templates. These results

are to be expected from the structure of the corridor, i.e. two

parallel walls with very little distinctive features along their length.

Large ambiguous regions could be a problem for BatSLAM as

the robot can only rely on odometric information while moving

within such an ambiguous region. However, from the results

shown in figure 5 a), we conclude that the ambiguous regions have

both a limited extent and a low frequency of occurrence. These

results explain why BatSLAM can build robust and accurate maps

of its environment relying on cochleograms that are not all

uniquely distinctive.

Discussion

From the results of the mapping experiments we conclude that

BatSLAM is able to create consistent maps of large scale,

unmodified, office environments. Furthermore, the constructed

maps converge over time to fairly accurate metric maps supporting

efficient, i.e. distance based, navigation through such environ-

ments. These results mirror the conclusions reached in [31] using

vision sensing and large scale outdoor environments. By showing

that sonar can support such intelligent interactions with complex

environments BatSLAM makes possible a range of technical

applications. Indeed, sonar, despite its limitations (specular

reflections, sparse readings, etc. [22]) has distinct advantages over

optical systems in low-visibility situations. Such situations occur in

underwater environments but also in environments containing

smoke or dust particles [42]. While traditional probabilistic SLAM

systems with sonar sensors have been around for a long time [43],

they typically require unrealistically large numbers of sonar

readings to converge on usable maps. BatSLAM, by making more

efficient use of the information contained in the sonar measure-

ments, allows localization and navigation with realistic numbers of

sonar readings [22] in a timescale appropriate for an autonomous

Figure 5. BatSLAM Mapping Ambiguities. The amount and the spatial distribution of ambiguity within the local view templates is shown to
illustrate the performance of the BatSLAM system in typical office environments. a) The detailed experience map of the environment with the floor
plan of the office building for reference. The color coding indicates the amount of ambiguity that exists for that particular position (see text). The red
dots in b)–d) indicate the position where a particular local view template is encountered the first time. The black dots indicate where that same local
view template is encountered again. The cochleograms show the actual local view template data. e) A local view template that is encountered only
once.
doi:10.1371/journal.pone.0054076.g005
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robot. The mapping experiments also show that interpreting the

environment in terms of individual objects is not necessary to

generate stable and consistent maps from sonar data. As a direct

consequence however, a task like find object X cannot be solved

directly with this system. BatSLAM can bring the robot to a

particular place if it is known that object X is near that place but

the search for the object itself needs to be done through other

means.

We do not make any claims about the biological accuracy of the

details of the proposed implementation for bat environment

mapping. However, we propose that BatSLAM, being both

explicit and biologically plausible, is a useful first-order model of

bat localization and mapping. Clearly, the information required,

i.e. the steering commands and the output of the cochlear model

[44], is available to the bat. Furthermore, regarding the

components of the hippocampal core model, place cells [9] have

also been found in the bat hippocampus. Hence, the only

component for which there is no direct evidence is the experience

map, i.e. a topological map of the environment with semi-metric

properties. However, bats are known to be capable of middle-scale

navigation defined in [4] as ‘the ability of bats to reach goals

beyond the operating range of the echolocation system but within

their home territory’. This capability requires a mechanism for

building and maintaining a spatial representation of the home

territory. Hence, indirect evidence for the use of a map is provided

by the observation that many bats follow distinct and temporally

stable flyways when flying between roosts and feeding grounds

[45]. Specific experiments would have to be designed to

distinguish between a purely topological representation as

proposed in [4] and a semi-metric representation as proposed

here. Maze experiments that block the originally learned path to a

target and observe whether the alternative paths chosen by the

bats are based on metric information or not could make this

difference clear.

A necessary condition for an agent to follow a route or localize

itself on a map of an environment is that the agent has access to

unique descriptions of the places in that environment. In [4] it is

suggested that these places are uniquely characterized by the

spatial configuration of a set of landmarks that can be individually

recognized. Different from this suggestion, BatSLAM generates

such unique place descriptors by combining rough robot

displacement estimates, i.e. motor commands, with often ambig-

uous cochleogram encoded views of the environment. We find

indirect evidence for such a joint odometry-sonar based represen-

tation of the environment in the typical routes followed by bats

during middle-scale navigation. The observed flight routes, i.e.

fairly straight segments traversed at constant speed interspersed

with discrete direction changes [4,45], provide optimal conditions

for odometry based position and orientation estimation. The

spectrospatial filter of a binaural sonar maps a set of three

dimensional reflector positions onto the corresponding cochleo-

gram. For a realistic spectrospatial filter the mapping can be

inverted to extract position information about individual objects in

the environment. This process is straightforward for isolated

echoes from a single object [28]. When echoes from multiple

objects overlap the extraction of position information becomes ill-

posed and needs to be regularized [46]. It is not known whether

bats perform similar processing on incoming echoes to extract

individual object position estimates. In the absence of more

specific evidence we have opted not to decode cochleograms into

object based environment descriptions. Instead, we use cochleo-

grams as ‘fingerprints’ for particular locations in an environment.

Hence, no mechanisms to identify and localize individual

reflecting objects are included in BatSLAM. Information about

Figure 6. Local View Similarity Regions. The euclidean distances as a function of robot displacement for a typical position on the map (red
circle), and for an ambiguous position on the map (red cross). The coordinate system used for the calculation is shown for clarity. The blue curves
indicate the similarity regions, i.e. the outer boundary of the region wherein the local view templates are being recognized as similar to the original
local view template.
doi:10.1371/journal.pone.0054076.g006
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the environment is only implicitly encoded by spectro-temporal

features of the cochleogram representation ([27,47]). The exper-

iments described in [8] already show that bats can rely on sonar

only for spatial orientation. The success of BatSLAM shows that

sonar based localization and mapping in bats could possibly be

explained without the need for assuming object identification and

localization capabilities.

Extrapolating from the uniqueness of the complex cochleogram

shown in figure 4e) we conjecture that a more panoramic view of

the environment results in more stable place recognition and

mapping. In that case, the ERTF results shown in figure 2 suggest

that further improvements in performance can be expected from

the use of an emitter with a broader beamwidth. Indeed, the

widths of both measured [48] and simulated [24] emission beams

indicate that bats have broader emission beams than the sonar

sensor used here [49]. However, at least some bats reduce the

width of their emission beam [48] depending on the context. Our

analysis of the effects noseleaves have on the emission beams in

broadband bats [24] points out two advantages in doing so. First,

by focusing the energy into a smaller focal area, the bat will be able

to detect weaker echoes from targets in this focal area than it

would otherwise. Secondly, a more narrow emission beam

enhances the difference in energy between peripheral echoes

and echoes from the focal area. This way, the target echo in the

focal region will be less distorted by clutter echoes from the

periphery. Hence, narrow beamwidth emissions, by maximally

Figure 7. BatSLAM model processing steps. After signal reception by microphones inserted in the ear canals of plastic pinna replica’s, the
signals are processed by a functional model of a mammalian cochlea. The resulting cochleograms are smoothed and subsampled before being
passed to the hippocampal core model as local view templates. The model constructs a database of local view templates. The similarity between the
current local view template and the ones in the database determines the activity pattern over the view cell network. The pose cell network combines
motor commands (proprioception) and cochleograms (exteroception) to produce an estimate of the current robot pose (position and orientation).
An experience map is built from experience nodes representing unique combinations of the activity state of the pose cell network and that of the
view cell network and linked by transitions representing robot displacements. The experience map (bottom right) is a robust and stable topological
map of the environment with semi-metric properties. If only proprioception and path integration is used without environmental information from
the sonar sensor, no consistent map can be constructed (bottom left).
doi:10.1371/journal.pone.0054076.g007
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excluding interference from other object echoes, seem more

appropriate when target centered tasks are performed. It would be

interesting to compare the beamwidths of bats in the wild when

traveling along flyways as opposed to bats localizing a landing site.

The latter is defined in [4] as a small-scale navigation task, i.e. ‘a

task in which the target of interest is within the perceptual range of

the bat’s echolocation system’. The reasoning above would predict

broader beamwidths for middle-scale navigation tasks than for

small-scale navigation tasks.

Many simplifications are involved in BatSLAM: 2D paths

instead of 3D paths through the environment, an office

environment instead of an outdoor environment, functional

models of hippocampal structures and of the bat’s sonar system

instead of detailed copies. Nevertheless, we would like to argue

that its success makes this model both a robust and easy to

implement SLAM system to be used in real-life robotic applica-

tions as well as a useful, first order, computational model of the

map building processes supporting middle-scale navigation in bats.

Methods

This section provides details on the computational model

implemented in the BatSLAM system. Figure 7 shows an overview

of the performed operations. After signal reception by the right

and left microphones inserted in the plastic pinnae, the signals are

passed through a functional model of a mammalian cochlea. The

resulting time-frequency representations of the echoes are denoted

by cochleograms. These cochleograms are smoothed and

subsampled before being passed on to the hippocampal core

model ( = RatSLAM) as local view templates. This part of the

model constructs a database of local view templates and generates

an experience map by fusing information from the motor

commands with the sonar data. After convergence, the output,

i.e. the experience map, represents a robust and stable topological

map of the environment with semi-metric properties. Note that the

map contains only the trajectory that the robot has traversed

throughout the experiment. The map does not contain a

representation of the individual objects in the environment that

generated the echoes.

Biomimetic Sonar System
We start with an overview of the biomimetic sonar system and

the signal processing applied to the incoming echo signals. For a

detailed description and analysis of its performance the reader is

referred to [28].

Sonar hardware. The different functional blocks that make

up the custom-made sonar system are depicted in figure 1. The

system consists of an Altera Cyclone I Field Programmable Gate

Array, which connects to a computer via an USB 2.0 interface,

allowing a maximum data transfer speed of 25MByte/sec. A MEX

Matlab [50] interface gathers the data from the USB bus and

presents it to the processing module. The emission subsystem

consists of a 12 bit digital to analog converter with a sampling rate

of 250 kS/sec connected to a high-voltage amplifier which in turn

drives a single Polaroid transducer [23]. The receiver subsystem

consists of 2 condenser microphones (Knowles FG-23329 [51])

with a diameter of 2.54 mm, inserted in the ear canal of plastic

replica’s of the outer ears of Micronycteris microtis scaled by a factor

of 1.5 with respect to their true dimensions. Each microphone

signal is amplified using a 6th order Butterworth anti-alias active

filter with cutoff frequency at 150 kHz. Finally, the right and left

microphone signals are digitized using 12bit analog to digital

converters running at 500 kS/sec. The pick-up of the sonar

emission by the receivers is removed by selecting the part of the

microphone signal after the emission has stopped.

For the emitted signal we chose a hyperbolic chirp, i.e. a

sinusoidal signal of 3 ms duration whose instantaneous frequency

is hyperbolically swept from an upper frequency of 100 kHz down

to a lower frequency of 20 kHz (the original frequency range of the

bat spans from 50 kHz to 150 kHz [24]). The plastic pinnae are

scaled by a factor of 1.5. This maps the interactions of the

soundfield with the morphology of the outer ears from the original

(higher) frequency range used by Micronycteris microtis [24] to the

lower operational frequency range of the sonar hardware. The

amplitude is modulated by a hamming window to minimize

transient effects in the transducers and analog filters. High

accuracy (0.1 mm) shape models of the Micronycteris microtis outer

ears were obtained by micro-CT imaging [52] and replicated

using 3D printing techniques.

Signal processing. Eqs. (1, 2) describe the echo filtering

process resulting in the left (HL
e (f ,h)) and right ear filter HR

e (f ,h)

HL
e (f ,h)~Hem(f ,h):Ha(f ,r):Hrefl(f ):HL

h (f ,h) ð1Þ

HR
e (f ,h)~Hem(f ,h):Ha(f ,r):Hrefl(f ):HR

h (f ,h): ð2Þ

Hem(f ,h) denotes the filter associated with the emission process

and HL
h (f ,h), HR

h (f ,h) the left and right receiver filters for

frequency f and direction h. The angle h denotes the unique

azimuth and elevation combination that specifies a reflector

direction relative to the sonar system. The filtering due to sound

propagation through air is taken into account by the factor

Ha(f ,r). This factor includes frequency independent attenuation

due to spherical spreading, frequency dependent absorption and

the propagation delay introduced by the finite speed of sound [53].

Lastly, the filtering due to the interaction of the sound field with

the shape of the reflector is denoted by Hrefl(f ). In general, this

filter can change very rapidly depending on the pose of the

reflector relative to the direction of the incident sound field

([27,28]).

As all the signal operations are linear, the ERTF, which is the

combination of the emission and the reception spatial sensitivity

patterns can be written as

HL
ERTF (f ,h)~Hem(f ,h):HL

h(f ,h) ð3Þ

HR
ERTF (f ,h)~Hem(f ,h):HR

h(f ,h): ð4Þ

Hence, in the presence of multiple reflectors, the received signals

at the input of the cochleas for the left (sL
e (t)) and the right ear

(sR
e (t)) can be written as

sL
e (t)~

Xne

i~1

hL
e (t; hi) � hi

refl(t) � sc(t{di) ð5Þ

sR
e (t)~

Xne

i~1

hR
e (t; hi) � hi

refl(t) � sc(t{di): ð6Þ

In this expression sc(t) denotes the emitted call, hL
e (t; hi) and

hR
e (t; hi) the impulse responses of the ERTF filters for the left and

right ears respectively, di the delay introduced by the i-th reflector,
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hi the direction of the i-th reflector relative to the sonar system,

hi
refl the filtering due to the i-th reflector, and ne the total number

of ensonified reflectors in the environment.

In order to analyze the features of these binaural echo signals in

a biologically relevant time-frequency representation, we model

the processing performed by the bat’s cochlea. The operation of

the cochlea is approximated using a bank of gammatone bandpass

filters, followed by half-wave rectification, compression and a

lowpass filter. The gammatone response hgt(t; fc(n)) for the n-th

frequency channel with center frequency fc(n) and bandwidth

B(n), can be written as [54]

hgt(t; fc(n))~t3:e{2pB(n):tcos(2pfc(n):t) ð7Þ

Half-wave rectification gamfg followed by a 1st order lowpass filter

hLP(t) with a cutoff frequency of 200 Hz is applied to the outputs

of the gammatone filters hgt(t; fc(n)). The cochleogram represen-

tations S
gt
L (t,fc(n)) and S

gt
R (t,fc(n)) for the left and right ear can

then be written as

S
gt
L (t,fc(n))~gam sL

e (t) � hgt(t; fc(n))
� �

� hLP(t) ð8Þ

S
gt
R (t,fc(n))~gam sR

e (t) � hgt(t; fc(n))
� �

� hLP(t) ð9Þ

with the operator � denoting time-domain convolution. As a last

step, a logarithmic compression on the output data is performed,

to obtain the cochlear representation of the input data.

Sonar based local view templates
In BatSLAM, the cochlear representation of the input data is used

to construct local view templates. For the biomimetic sonar system to

replace the vision sensor in the original RatSLAM system, special

care in the preparation of these sonar based local view templates has

to be taken. First, the monaural cochleogram is subsampled in time

to make the system more robust for small variations in robot position.

Next, it is smoothed with a Gaussian filter to further increase the

system’s invariance to small position differences. Finally, the two

smoothed and subsampled monaural cochleograms are concate-

nated to form a single binaural cochleogram S
gt,SS
Bin

S
gt,SS
Bin ~½Sgt,S

L � GS,S
gt,S
R � GS� ð10Þ

with S
gt,S
L the left subsampled cochleogram, S

gt,S
R the right

subsampled cochleogram, and GS the Gaussian smoothing filter.

As the intensity differences between the left and the right ear are very

informative [47], the monaural cochleograms are not normalized.

Figure 2 shows the interaural intensity difference patterns for the

robotic setup, revealing that there is much spatial information

encoded by the differences between the left and the right echo

signals. However, for the system to be robust to small variations in

overall echo strength (due to emission strength fluctuations, medium

conditions, position and orientation errors), the binaural, smoothed

cochleogram S
gt,SS
Bin is normalized to have an energy content of one.

This yields the normalized binaural smoothed cochleogram ~SS
gt,SS

Bin

~SSgt,SS
Bin ~

S
gt,SS
BinffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t

P
f DSgt,SS

Bin D2
q ð11Þ

We propose to use this version of the cochleogram as the current

local view template VTcur~~SSgt,SS
Bin . For every new sonar measure-

ment the corresponding local view template VTcur is tested to check

whether it has been experienced before or not. This test is performed

by calculating the euclidean distance di between VTcur and all the

stored local view templates in the database

di~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
(VTcur{VTi)

2
q

ð12Þ

with VTi denoting the i-th template in the database. If the minimal

euclidean distance is below a certain threshold t, the new

measurement is considered to match with the previous local view

template VTmin corresponding with this minimal distance. Through

the local view cell associated with VTmin energy/activity is injected

into the corresponding region of the pose cell network. The threshold

t is calculated adaptively using a scaled version of the RMS value of

the ensemble of all euclidean distances di

t~at
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�V �T
i~1 d2

i

nVT

s
ð13Þ

with nVT the number of local view templates in the database and at a

scaling factor to tune the system. In our experiments, at was set to

0.5. If the minimal euclidean distance remains above the threshold t,

the scene is considered as new. In this case, VTcur is added to the

database and a new local view cell associated with VTcur is added to

the local view cell network.

Spatial representation
At the core of the BatSLAM system (see figure 8) [30] resides a

functional model of the mammalian hippocampus. Cells that fire

when the agent (robot/animal) is in a particular state ( = pose),

characterized by the agent’s position and orientation, are arranged

in a three-dimensional grid (X, Y and h axis) to form a Continuous

Attractor Network (CAN) called the pose cell network. Informa-

tion about the robot’s ego motion is incorporated by shifting

activity packets within this network along the appropriate axes. In

the implementation presented here, the commands sent to the

motor subsystem of the robot, i.e. linear and rotational speed

(Vrob,vrob), are used as first order approximations of the actual

movements executed by the robot. The pose cell network

combines this odometric information with information about the

robot’s environment through its interaction with the local view cell

network. When the sensor system recognizes a particular scene,

the current local view template matches a template from the

database. As a consequence, the local view cell corresponding with

the database template injects activity into the pose cell network.

The injected activity activates mostly the pose cells, i.e. (X, Y and

h)-regions, where the scene (local view template) is most strongly

associated with. The links carrying the activity from the local view

cells into the pose cell network are strengthened using Hebbian

learning (see [29] for details). The dynamical properties of the

CAN system assure that only a single activation peak can be

maintained in the network thereby integrating the information

from both the proprioceptive and the exteroceptive sensors into a

unique robot pose estimate.

To make mapping of large areas possible without requiring

equally large pose cell networks, the pose cell network exhibits a

wrap-around topology. Consequently, activity in the same pose

cells can code for the robot’s presence at different places in the real

world. Hence, to guarantee unique correspondence between

places in the real world and the robot’s representation, the
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concept of an experience is introduced. Experiences represent

places in the real world. They are defined as tuples constructed by

the conjunction of the activity state of the pose-cell network P and

the activity state of the local view cell network V. A new

experience is created whenever the conjunction of current robot

pose and current local view template differs more than a threshold

value from all other experiences. Note that if the robot visits the

same place in the real world but has a very different orientation a

new experience will be created. In that case, neither the current

robot pose, as it includes the orientation, nor the current local view

template will match the ones recorded for the old experience

representing that place. However, the constraints of moving

through the environment are such that to pass through a place the

robot can often have only a limited range of orientations. In

practice, this mechanism limits the number of experiences

representing a particular place. Experiences are connected with

each other through transitions representing the estimated robot

displacements between the experiences. Hence, experiences form

a topological map of the real world, i.e. a graph with vertices

(experiences) connected by edges (transitions), the so-called the

experience map. However, the displacements associated with

transitions allow to add a position attribute to the experiences in

the graph. Indeed, upon creation of a new experience, its position

attribute can be calculated from the previous experience’s position

and the displacement corresponding with the transition linking the

two experiences. Adjusting the position attributes of the experi-

ences each time a previously visited place is recognized as such, the

position attributes of the experiences can be used to also form a

semi-metric map of the environment [31].

Supporting Information

Video S1 Mapping of an office environment using
BatSLAM. This video shows the construction of a map in a

normal office environment. The experience map shows the

constructed map, and the current sonar data is represented in

the panel ‘‘current cochleogram’’. The raw odometry information

is displayed as well, indicating the erroneous robot position

estimation when only odometry information is used. Finally, the

panel ‘‘Frame vs View Template’’ indicates which local view

template is associated with the current robot pose.
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Figure 8. BatSLAM Core System. Overview of the core system that makes up the BatSLAM mapping module. Pose cell networks interact with
local view cell networks to generate robust position estimates of a mobile agent. Sensor data extracted from the sonar system (indicated by Current
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