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Abstract

The effects of hydrodynamic and thermal slip boundary conditions on the double-diffusive free convective flow of a
nanofluid along a semi-infinite flat solid vertical plate are investigated numerically. It is assumed that free stream is moving.
The governing boundary layer equations are non-dimensionalized and transformed into a system of nonlinear, coupled
similarity equations. The effects of the controlling parameters on the dimensionless velocity, temperature, solute and
nanofluid concentration as well as on the reduced Nusselt number, reduced Sherwood number and the reduced
nanoparticle Sherwood number are investigated and presented graphically. To the best of our knowledge, the effects of
hydrodynamic and thermal slip boundary conditions have not been investigated yet. It is found that the reduced local
Nusselt, local solute and the local nanofluid Sherwood numbers increase with hydrodynamic slip and decrease with thermal
slip parameters.
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Introduction

Most physical processes (e.g. in boilers, or in a combustion

engines, heat exchangers technology) involve heat generation.

Normally, fluids are used to handle and transfer this heat.

However, conventional heat transfer fluids (e.g. water, ethylene

glycol, engine oil etc) have poor heat conductivity and require high

velocities or heat transfer coefficients to efficiently transfer this heat

from a given surface. To overcome these problems, Choi [1] used

ultrafine nanoparticles (,100 nm in diameter) with base fluids and

introduced nanofluids. Modern technologies facilitate the manu-

facturing of nanometer-sized particles. Various materials such as

oxide ceramics (Al2O3, CuO), metal oxides (alumina, silica,

zirconia, titania), carbide ceramics (SiC, TiC), chemically stable

metals (gold, cupper, silver), carbon in various forms (diamond,

graphite, carbon nanotubes) are often used to make ultrafine

nanoparticles. Due to small sizes and very large specific surface

area of the nanoparticles, nanofluids have better thermophysical

properties such as high thermal conductivity, minimal clogging in

flow passages, long term stability and homogeneity. Due to these

improved thermophysical properties; nanofluids have diverse

applications in many industries [2].

The proposed analytical model of Buongiorno [3] for convective

transport in nanofluids contains Brownian diffusion and thermo-

phoresis. This model was used by Khan and Aziz [4] to investigate

the boundary layer flow of a nanofluid past a vertical surface with

a constant heat flux. Kuznetsov and Nield [5] extended the

classical problem of natural convection of a regular fluid over an

isothermal vertical plate to the flow of a nanofluid. The gap

between the work of Kuznetsov and Nield [5] and Khan and Aziz

[4] has been filled by Aziz and Khan [6] by applying generalized

thermal convective boundary condition to study natural convec-

tive nanofluid.

Researchers are paying their attention to investigate the double

diffusive phenomena because of their many applications in

chemical engineering, solid-state physics, oceanography, geophys-

ics etc. Kuznetsov and Nield [7] studied the double-diffusive

nanofluid convection in porous media. They employed Buon-

giorno model for the nanofluid and the Darcy model for the

porous medium. They used conventional no slip boundary

conditions and similarity analysis technique in their analysis. In

another paper the well known Cheng-Minkowycz [8] problem was

extended by Kuznetsov and Nield [9] for the double-diffusive

natural convective boundary layer flow of a nanofluid in a porous

medium. Recently, Khan and Aziz [10] investigated a similar

problem under prescribed surface heat, solute and nanoparticle

fluxes.

The above literature review reveals that all studies are restricted

to conventional no slip boundary conditions. But the no-slip

assumption is no longer applicable when fluid flows in MEMS and

NEMS and the conventional no slip boundary conditions must be

replaced by slip boundary conditions [11]. Nield and Kuznetsov

[12] presented an analytic solution for forced convection

flow in a parallel-plates channel or a circular duct occupied by a
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hyper-porous medium saturated with a rarefied gas in the slip-flow

regime. The wall was subjected to uniform flux boundary

conditions. They concluded that velocity slip increases heat

transfer whilst the temperature slip reduces heat transfer.

Kuznetsov and Nield [13] studied thermally developing forced

convection in a porous medium occupied by a rarefied gas in

parallel plate channel or circular tube with walls at constant heat

flux. All of the above investigators applied the conventional no slip

boundary conditions but there are some situations where no slip

conditions lead to unrealistic behavior—for example, the spread-

ing of a liquid on a solid substrates–, corner flow and the extrusion

of polymer melts from a capillary tube (see Thompson, P.A.,

Troian [14]). No slip condition must be replaced by slip condition

when fluid flows around microfluidic and nanofluidic (Nguyen and

Wereley [15] Li [15–16]). The hydrodynamic and thermal slip

occurs simultaneously (Karniadakis et al. [17]). The difference

between the fluid velocity at the wall and the velocity of the wall

itself is directly proportional to the shear stress. The proportional

factor is called the slip length. The corresponding slip boundary

condition is uj jwall~ls
Lu

Ly

����
����, where ls the slip length (Hak [18]). For

gaseous flow the slip condition of the velocity and the jump

condition of the temperature are uj jwall~l
2{sv

sv

Lu

Ly

����
����z

3m

4rTgas

LT

Lx

����
���� and Twall~

2{sT

sT

2k

kz1

l

Pr

LT

Ly
, sv and sT are the

tangential momentum coefficient, the temperature accommoda-

tion Coefficients (Maxwell [19]). Some relevant papers on slip

flows are Khare et al. [20], Petravic and Harrowella [21], Kim et

al. [22], Martin and Boyd [23], Fang and Lee [24], Mathews and

Hill [25], Kuznetsov and Nield [26].

The present study attempts to pinpoint the effects of the

momentum and thermal slips boundary conditions on the double-

diffusive free convective flow of a viscous incompressible nanofluid

past a semi-infinite flat heated vertical plate in the moving free

stream, which up to date have not been elucidated in the

literature. In an effort to achieve these goals, we used similarity

transformations to transform the governing partial differential

equations into the corresponding similarity equations, before

solving numerically by an implicit finite difference method. The

effects of governing parameters on the similarity variables are

investigated and analyzed with the help of graphical representa-

tions.

Analysis

Consider a two dimensional steady free convective boundary

layer flow of water based nanofluid along a semi-infinite flat solid

stationary vertical plate in the moving free stream. The coordinate

system and flow configuration is depicted in Fig. 1. The

temperature, solute concentration and nanoparticle concentration

at the wall are denoted by TwCw,ww. The ambient values of the

temperature, solutal and nanoparticle concentration are assumed

to be T?, C? and w?. The field variables are velocity

components �uu, �vv, the temperature T , the solute concentration C
and nanoparticle concentration w. It is assumed that

TwwT?, CwwC?, wwww? and hence a momentum, thermal,

solutal and nanoparticle concentration boundary layer formed

near the solid wall. In Fig. 1, i represent momentum boundary

layer and ii represent thermal, solute, nanoparticle concentration

boundary layers, in reality boundary layers represented by ii are

not the same. We neglect viscous dissipation and Joule heating

terms in the thermal equation. The Oberbeck–Boussinesq

approximation is used. We include the cross diffusion terms. It is

assumed that the hydrodynamic and thermal slip occur at the fluid

solid interface. With these assumptions and the standard boundary

layer approximations, the governing boundary layer equations in

dimensional form can be written as [7].

L �uu

L�xx
z

L�vv

L�yy
~0, ð1Þ

Lp

L�xx
~m

L2�uu

L�yy2
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� �
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The appropriate boundary conditions are

�uu~N1 n
L�uu

L�yy
, �vv~0 , T~TwzD1

LT

L�yy
, C~Cw, w~wW

at �yy~0, �uu~�uue~c �xx1=2, T?T?, C?C?, w?w? as �yy??,

ð7Þ

We define variables as follows: t~(r c)p=(r c)f : ratio of

nanoparticle heat capacity and the base fluid heat capacity,

Figure 1. Physical model and coordinate system. (a) Fixed plate
in the quiescent fluid [7]; (b) Fixed plate in the moving fluid (present).
doi:10.1371/journal.pone.0054024.g001
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a~k=(r c)f : thermal diffusivity of the fluid, rf : the density of the

base fluid, m,k: viscosity and thermal conductivity of the nanofluid,

rp: density of the particles, g: acceleration due to gravity, bT ,bC :

volumetric thermal expansion coefficient and volumetric solutal

expansion coefficient of the nanofluid, DTC : Dufour type

diffusivity, DS : solutal diffusivity, and DCT : Soret type diffusivity,

DB: the Brownian diffusion coefficient, DT : the thermophoretic

diffusion coefficient, N1: hydrodynamic slip factor with dimension

(velocity)21 and D1: thermal slip factor with dimension length, c is

a constant with dimension m1=2=s and this fact will be used in

section 2.1.

Nondimensionalization
It is suitable to express Eqs. (1)–(7) in dimensionless form, and

for this purpose, we define the following dimensionless quantities:

x~
�xx

L
, y~

�yy Ra1=4

L
, u~

�uu L

a Ra1=2
, v~

�vv L

a Ra1=4
, h~

T {T?

Tf {T?
,

c~
C {C?

Cw{C?
, f ~

w{w?

ww{w?
:

ð8Þ

Here Ra~ 1{w?ð Þ g bT rf? DT L3=a n is the Rayleigh number

based on the characteristic length L. We introduce the stream

function y defined as u~
Ly

Ly
,v~{

Ly

Lx
into Eqs. (2)–(7) to reduce

the number of equations and the number of dependent variables

leaving the following four dimensionless equations.
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subject to the boundary conditions

L y

Ly
~N1n

Ra1=4

L

L 2y

Ly2
,

L y

Lx
~0, h~1zD1

Ra1=4

L

Lh

Ly
,

c~1, f ~1 at y~0 ,

L y

Ly
?x1=2, h?0, c?0, f?0 as y??:

ð13Þ

Our analysis reveals that c~
a
ffiffiffiffiffiffi
Ra
p

L3=2

� �
.

Similarity transformations and similarity equations
Consider the following similarity transformations developed by

group method (Uddin et al. [27])

g~
yffiffiffi
x4
p , y~ x3=4 s gð Þ, h~ h gð Þ, c~ c gð Þ, f ~ f gð Þ: ð14Þ

In Eq. (14), g is the similarity variable, and s(g), h(g), c(g) and

f (g) are the dimensionless stream, temperature, solutal concen-

tration and nanoparticle concentration functions respectively.

Using Eq. (14) and Eqs. (9)–(12), leads to the similarity

equations,

s’’’z
1

4 Pr
3s s’’{2s’2
� �

zhzNc c{Nr f ~ 0, ð15Þ

h’’z
3

4
s h’zNb h’ f ’zNt h’2zNd c’’~0, ð16Þ

c’’z
3

4
Le s c’z Ld h’’~0: ð17Þ

f ’’z
3

4
Ln s f ’z

Nt

Nb
h’’~0, ð18Þ

subject to the boundary conditions

s(0)~0, s’(0)~a s’’(0), h(0) ~1z b h’(0), c(0)~1,

f (0)~1, s’(?){1~ h(?)~c(?)~f (?)~0,
ð19Þ

Here primes denote differentiation with respect to g and the

parameters are defined by Pr~n =a (Prandtl number),

Nc~bC DC=bT DT (regular double diffusive buoyancy ratio),

Nr~ rp{rf ?


 �
Dw= rf? bDT (1{w?) (nanofluid buoyancy

ratio), Nb~t DB Dw= a (Brownian motion parameter which is

the ratio of Brownian diffusion and thermal diffusion),

Nt~t DT DT=a T? (thermophoresis parameter),

Nd~ DTC DC=a DT (modified Dufour parameter), parameter,

Le~a =Ds (regular Lewis number), Ld~DTDTC =DSDC (Dufour

Lewis number), Ln~a =DB (nanofluid Lewis number),

b~D1 Ra1=4x{1=4=L(thermal slip parameter),

a~N1 n Ra1=4x{1=4=L (momentum slip parameter). For true

similarity solutions momentum and thermal slip parameters must

be proportional to x1=4. It can be noticed that for quiescent free

stream, s’(?)~0, conventional no slip boundary conditions (a~0)

and isothermal plate (b~0) our problem reduces to that found by

Kuznetsov and Nield [7].

The quantities of practical interest, in this study, are the local

Nusselt number Nu�xx, the local Sherwood number Sh�xx and the

local nanofluid Sherwood numberSh�xx,n, which are defined as

Nu�xx~{
�xx qw(�xx)

k Tw{T?ð Þ , Sh�xx~{
�xx qm(�xx)

DS Cw{C?ð Þ ,

Sh�xx,n~{
�xx qnp(�xx)

DB ww{w?ð Þ :
ð20Þ
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Following Kuznetsov and Nield [7], the reduced local Nusselt

number Nur, reduced local Sherwood number Shr and the

reduced local nanofluid Sherwood number Shrn can be written as

Nur~Ra
{1=4
�xx Nu�xx~{h’(0), Shr~Ra

{1=4
�xx Sh�xx~{c’(0),

Shrn~Ra
{1=4
�xx Sh�xx,n~{f ’(0):

ð21Þ

Results and Discussion

Equations (15)–(18) subject to the boundary conditions, Eq. (19),

were solved numerically using a fourth-fifth order Runge-Kutta-

Fehlberg method. The step size was taken as Dg~0:001 and the

convergence criteria was set to 1026. The asymptotic boundary

conditions given by Eq. (19) were replaced by using a value of 5 for

the similarity variable gmax as follows.

gmax~5,s’(5){1~ h(5)~c(5)~f (5)~0: ð22Þ

Figure 2. Momentum and thermal slip effect on dimensionless velocity for mono-diffusive and double diffusive water-based
nanofluids.
doi:10.1371/journal.pone.0054024.g002

Figure 3. Momentum and thermal slip effect on dimensionless temperature for mono-diffusive and double diffusive water-based
nanofluids.
doi:10.1371/journal.pone.0054024.g003
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The choice of gmax~5 ensured that all numerical solutions

approached the asymptotic values correctly. The effects of the

emerging parameters on the various dimensionless functions and

physical quantities are investigated and presented graphically in

Figs. 2, 3, 4, 5, 6, 7, 8. The results of the reduced Nusselt number

which is proportional to {h’(0) is compared for quiescent free

stream, when s0(?)~0, with Kuznetsov & Nield [7] for a special

case which is shown in Table 1 and found to be in good

agreement. This shows the validity of our numerical results for

other cases.

Figure 2a shows the effect of the hydrodynamic and thermal

slips on the dimensionless axial velocity for mono-diffusive for

water-based nanofluids past a static plate in the moving free

stream. It is apparent from Fig. 2a that the momentum slip

enhances the dimensionless velocity both for the isothermal and

non-isothermal plate. This is due to increase in the momentum slip

which increases the velocity. From the same Fig. it is further

apparent that the dimensionless velocity reduces with thermal slip

for both the convectional no-slip and slip boundary conditions. It

is clear that velocity is minimum for a = 0 (no slip condition).

Figure 2b shows the effect of same parameters on dimensionless

velocity for double-diffusive for water-based nanofluids. It is found

that dimensionless velocity enhances with the enhanced value of

the momentum slip. The physical reason is exact same as

explained for Fig. 2a. The effects of thermal slip on the

Figure 4. Momentum slip, thermal slip and solute Lewis number effect on dimensionless solute concentration for double diffusive
water-based nanofluids.
doi:10.1371/journal.pone.0054024.g004

Figure 5. Momentum slip, thermal slip and solute nanoparticle Lewis number effect on dimensionless nanoparticles concentration
for double diffusive water-based nanofluids.
doi:10.1371/journal.pone.0054024.g005
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dimensionless velocity for double-diffusive water-based nanofluids

are same as mono-diffusive water based nanofluid.

Figure 3a is a plot of dimensionless temperature distribution

with similarity independent variable g for two different values of

the thermal slip parameter for mono-diffusive water based

mamofluids. Note that the maximum temperature within the

boundary layer reduces with rising of the momentum slip for

mono-diffusive water-based nanofluids in case of either isothermal

(b~0) or non-isothermal (b=0) stationary plate. The maximum

temperature occurs for isothermal plate. As we have seen in Fig. 2

that momentum slip increases the velocity which in turn reduces

the temperature. This is what we can see from Fig. 3a. It is further

seen from Fig. 3a that thermal slip causes to decrease the

temperature in case of both no slip (a~0) and slip (a=0)
boundary condition. The physical reason is that more flow will

penetrate through the thermal boundary layer due to slip effect

with the increasing of b. Hence more heat will be transferred and

this will lead in the reduction of dimensionless surface tempera-

ture. Figure 3b exhibits the effects of thermal and momentum slip

on the dimensionless temperature for double-diffusive water based

nanofluids. The temperature is found to reduce with rising of the

momentum slip for both isothermal (b~0) or non-isothermal

(b=0) stationary plate. It is further seen from Fig. 3b that thermal

slip causes to decrease the temperature in case of both no slip

(a~0) and slip (a=0) boundary condition.

Figure 6. Momentum slip, thermal slip, regular double diffusive buoyancy and modified Dufour number effect on dimensionless
Nesselt number.
doi:10.1371/journal.pone.0054024.g006

Figure 7. Momentum slip, thermal slip, regular double diffusive buoyancy and modified Dufour number effect on dimensionless
Sherwood number.
doi:10.1371/journal.pone.0054024.g007

Double-Diffusive Free Convective Flow

PLOS ONE | www.plosone.org 6 March 2013 | Volume 8 | Issue 3 | e54024



The dimensionless solute concentration profiles are shown in

Fig. 4(a) for mono-diffusive to show the effect of momentum slip

and solutal Lewis numbers for a nonisothermal plate (b=0). The

dimensionless solute concentration decreases with an increase in

momentum slip. It is clear that Lewis number reduces the

dimensionless solute concentration, as expected. The physical

reason is the increasing Le implies decreasing solute diffusivity

which consequently reduced concentration and increases the mass

transfer rate. Figure 4(b) is plotted to show the effect of thermal slip

and solutal Lewis numbers on the dimensionless solute concen-

tration for double-diffusive water-based nanofluids. Like momen-

tum slip, thermal slip is found to decrease the dimensionless solute

concentration. The effects of solutal Lewis numbers on solute

concentration for double-diffusive nanofluid are exactly same as

mono-diffusive naofluid.

The effect of momentum slip and nanoparticle Lewis number

on the dimensionless nanoparticle concentration for double

diffusive water-based nanofluids is displayed Fig. 5(a) whist the

effect of thermal slip and nanoparticle Lewis number is shown in

Fig. 5(b). Note that the dimensionless nanoparticle concentration is

a decreasing function of nanoparticles Lewis number in case of

both isothermal and non-isothermal plate for both mono and

double diffusive water-based nanofluids. This is for both hydro-

dynamic slip boundary condition or for conventional no slips

boundary condition.

The impact of momentum slip, thermal slip, buoyancy and

modified Dufour parameters on the dimensionless reduced local

Nusselt is displayed Fig. 6. The reduced local Nusselt number is

increased with regular double-diffusive buoyancy ratio parameter

(Fig. 6a) but it is decreased with modified Dufour parameter

(Fig. 6b). In both cases, it decreases with thermal slip in case of no

slip or slip boundary condition. This trends also observed by Nield

and Kuznetsov [11]. It is further found that hydrodynamic slip

increases the local Nusselt number both for isothermal and non-

isothermal plate, as expected. A similar conclusion was also drawn

by Nield and Kuznetsov [11].

Figures 7(a) and (b) aimed to shed the light on the effects of

momentum slip, thermal slip, buoyancy and modified Dufour

parameters on the reduced local Sherwood number. We found

that the reduced local Sherwood number is an increasing function

of double-diffusive buoyancy, modified Dufour and linear

momentum slip parameters both for isothermal and non-

isothermal plate. The reduced Sherwood number elevates in the

presence of nanoparticles. This is because of the contributions of

the Brownian motion, thermophoresis and the buoyant motion

increased by the difference in the densities of nanoparticles and the

base fluid.

Finally, the same behavior of the reduced nanofluid Sherwood

number is shown in Figs. 8(a) and 8(b) for double-diffusive

buoyancy and modified Dufour parameters. The reduced nano-

particle Sherwood numbers exhibited in Figs. 8(a) and 8(b) show

that the reduced nanofluid Sherwood numbers is a monotonic

increasing function of double-diffusive buoyancy and modified

Dufour and momentum slip parameters. Observe that the

Brownian motion, thermophoresis and the buoyant motion

prompted by the difference in the densities of nanoparticles and

Figure 8. Momentum slip, thermal slip, regular double diffusive buoyancy and modified Dufour number effect on dimensionless
nanoparticle Sherwood number.
doi:10.1371/journal.pone.0054024.g008

Table 1. Values of {h’(0) for various Pr when a~0 (no slip)
and b~0 (isothermal plate).

Pr ”h’(0)

Quiescent free stream [7]
Quiescent free stream
(present results)

0.01 0.162 0.1629

0.72 0.387 0.3909

1 0.401 0.4044

2 0.426 0.4293

10 0.465 0.4680

100 0.490 0.4909

1000 0.499 0.5010

doi:10.1371/journal.pone.0054024.t001

Double-Diffusive Free Convective Flow
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the base fluid have hardly any effect on the nanoparticle Sherwood

number when double-diffusion occurs.

Conclusions

The effects of hydrodynamic and thermal slips boundary

conditions on double-diffusive free convective boundary layer

flow, heat and mass transfer of a nanofluid past a stationary

vertical plate in moving free stream is investigated numerically. In

the light of the present investigation, following conclusions can be

drawn:

N The dimensionless velocity within the boundary layer increases

with momentum slip but decreases with the thermal slip for

both mono and double- diffusion processes in a nanofluid.

N The dimensionless temperature, solute and nanoparticle

concentration decrease with both the momentum and the

thermal slip.

N The dimensionless reduced local Nusselt, solute and nanofluid

Sherwood numbers increase with momentum slip and

decrease with thermal slip for double diffusion in nanofluids.
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