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Abstract

The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although
augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells
remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene,
which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and
gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the
HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2
gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the
repression of enhanced gluconeogenesis effectively extends the cellular lifespan.
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Introduction

Aging is a complex process that is associated with the gradual

loss of physiological functions, which are regulated by genetic and

environmental factors. Recent studies in genetically tractable

model systems including yeast, worms, flies and mice demonstrate

that longevity can be modulated by single gene mutations

[1,2,3,4,5,6]. Calorie restriction (CR) is the most effective in-

tervention known to extend lifespan in a variety of metazoan

species [7,8]. CR has also been shown to delay the onset or reduce

the incidence of many age-related diseases, including cancer,

diabetes and cardiovascular disorders [8,9,10]. CR may work by

reducing the level of reactive oxygen species (ROS) as a result of

the slowed energy metabolism [7,8]. Although the mechanism by

which CR extends longevity and ameliorates age-associated

diseases remains unclear, energy metabolism has a key role in

longevity via the CR pathway. The central carbon metabolism

pathway, which includes the glycolysis/gluconeogenesis and

tricarboxylic acid (TCA) pathways, uses various carbon sources,

such as glucose and glycerol, to produce ATP molecules. The

accumulation of metabolic intermediates produced by enhanced

gluconeogenesis has been reported to be an age-induced change in

budding yeast [11]. However, the role of augmented gluconeo-

genesis in cellular aging remains unclear.

Sir2 family proteins (sirtuins) are evolutionally conserved and

were originally discovered and studied in yeast as a component of

the Sir1/2/3/4 silencing complex [12,13]. The mammalian

orthologs of SIR2 encode nicotinamide adenine dinucleotide

(NAD+)-dependent protein deacetylases and ADP-ribosylases

[14]. Previous studies have shown that the sirtuins play important

roles in cellular longevity in yeast and in regulating the stress

response, cell survival and energy metabolism in multicellular

organisms [15]. Earlier studies showed that sirtuins play important

roles in CR-induced lifespan extension [16,17] and in regulating

the stress response, cell survival and energy metabolism, suggesting

a role for sirtuins in age-related metabolic diseases [15,18,19]. The

Sir2 homologs in yeast include Hst1, Hst2, Hst3 and Hst4 [20]. Of

these, Hst1 exhibits the highest homology with Sir2 and mediates

transcriptional regulation independent of the SIR silencing

complex [20]. Hst2 functions in concert with Hst1 to down-

regulate subtelomeric gene expression [21] and plays a role in

regulating rDNA silencing and recombination [22,23]. Hst3 and

Hst4 together maintain telomeric silencing and cell cycle pro-

gression [20]. Hst3 and Hst4 deacetylate histone H3 on lysine 56

(H3-K56) in chromatin during S phase to the next G1 phase to

prevent the genomic instability caused by the continuous

acetylation of H3-K56 [24].

Recent studies have shown that several longevity factors and

pathways are highly conserved among eukaryotes [3]. The

budding yeast S. cerevisiae provides an efficient model for exploring

the molecular mechanism of longevity regulation. Budding yeast

propagate by asymmetric cell division, in which the partitioning

between the two resulting cells is unequal morphologically and

molecularly. The larger cell is designated as the mother cell, and

each yeast cell can only undergo a certain number of cell divisions,

known as the replicative life span (RLS). The process of

approaching the limit of cell divisions is recognized as replicative

aging. Similar to higher eukaryotic cells, aged yeast cells exhibit
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a declining division potential and reduced fitness. Another type of

yeast lifespan is chronological lifespan (CLS), which measures the

length of time that cells remain viable in a non-dividing state.

Yeast cells enter the non-dividing stationary phase (or post-diauxic

phase) when nutrients are limited. This quiescent state has been

suggested to resemble the G0 state in higher eukaryotes [25].

Several longevity factors have been identified through RLS and

CLS studies [26,27,28,29,30]. The yeast rDNA loci consist of

a stretch of approximately 9 kb rDNA repeats. Homologous

recombination between adjacent repeats is known to result in the

excision of repeat units and the formation of extrachromosomal

rDNA circles known as ERCs. ERCs are autonomously replicating

and preferentially accumulate in the aging mother cell [31]. Sir2

counteracts ERC formation via the establishment and/or main-

tenance of sister-chromatid cohesion at the rDNA loci [32]. Sir2

also plays a role in stress resistance and the regulation of newborn

cell fitness by conferring a superior ROS management to the

daughter cell to protect the progeny from aging [33]. Similar to

cells harboring deficiencies in DNA damage repair, cells with

deletions of both the HST3 and HST4 genes display short RLSs

due to the genome instability that accumulates with each cell

division [34,35,36]. Interestingly, hst3D cells reduce CLS [37]. It is

unclear why the quiescent hst3D cell exhibits a reduced chrono-

logical lifespan under nutrient starvation.

In this study, we determined that the short CLS of hst3D hst4D
cells was due to age-enhanced gluconeogenesis. We isolated

several genes encoding metabolic enzymes to restore the CLS of

hst3D hst4D cells. Among these isolated genes, the deletion of the

TDH2 gene, which encodes an isoform of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), which is essential for

glycolysis/gluconeogenesis, reduced the amount of accumulated

metabolites from glucose metabolism in hst3D hst4D cells and

specifically repressed gluconeogenesis. Furthermore, the RLS was

extended in cells in which the TDH2 gene was deleted in a manner

similar to that induced by the CR pathway. Our data suggest that

Hst3 and Hst4 coordinately regulate age-enhanced gluconeogen-

esis to maintain the CLS, and that a reduction in age-enhanced

gluconeogenesis can extend the cellular lifespan.

Materials and Methods

Replicative Lifespan (RLS) Assay (Pedigree Analysis)
The RLS assay, known as pedigree analysis, was performed as

described previously [38]. Typically, a minimum of 50 mother

cells was counted for each strain tested. To compare the difference

of replicative lifespans between strains on statistics, we performed

the Wilcoxon Rank-Sum test.

Chronological Lifespan (CLS) Assay
CLS assays were conducted in 0.5% glucose synthetic complete

(SC) media [39] supplemented with a fourfold excess of the amino

acids for which the strains were autotrophic in the absence

(‘‘unbuffered’’) of 50 mM citrate-phosphate buffer [pH6.0]. Yeast

cells were cultured overnight in YPD at 25uC. The cells

(56106 cells/ml) were suspended in SC medium (0.5% glucose)

and cultured at 30uC. Cell viability was determined every 2 days.

To determine viability, the cells were washed with 500 ml of PBS
pH 7.3 and mixed with 500 ml of 15 mg/ml phloxin B solution

[40]. Cell viability was calculated from the number of red-stained

cells among the total cell number (n = 100). Almost all BY4742

cells were stained with phloxin B at the start in the presence of 2%

glucose, but not in 0.5% glucose. Therefore, we used SC medium

containing 0.5% glucose to perform the CLS assay by phloxin B

staining.

Growth Rate Assay in Liquid Culture
After being cultured overnight in YPD at 25uC, the cells

(56106 cells/ml) were suspended in SC medium (0.5% glucose)

and cultured at 25uC without shaking. The cell number was

determined every 24 h using a Z-1 Coulter Counter (Beckman-

Coulter Co., IN. USA). At least three replicates were analyzed for

each strain.

Preparation of Yeast Cell Extract
The cell extract was prepared according to a previously

described method [11,41]. Briefly, mid-log growth yeast cells

(16108 cells in total) cultured in YPD were harvested and washed

three times with PBS buffer (pH 7.3). The cells were suspended in

500 ml of metabolic enzyme extraction buffer (20 mM sodium

phosphate pH 7.5, 0.02% bovine serum albumin [BSA], 0.5 mM

ethylenediaminetetraacetic acid [EDTA], 5 mM ß-mercaptoetha-

nol, 25% glycerol, 0.5% Triton X-100). The cell suspension was

mixed with same volume of acid-washed glass beads (diameter of

less than 0.5 mm), and the cells were disrupted by vortexing.

Soluble proteins were obtained by collecting the supernatant after

centrifugation of the broken cell suspension at 14,000 rpm for

5 min at 4uC. The protein concentration was determined by the

Bradford protein assay with BSA as the standard.

GAPDH Glycolytic Assay
The GAPDH glycolytic assay was based on a previously

described method [42]. The assay was conducted at 30uC by

adding the cell extract (40 mg) to a substrate solution containing

100 mM Tris/HCl (pH 8.5), 1.5 mM NAD+, 5.0 mM sodium

phosphate (pH 7.0) and 3.2 mM D-glyceraldehyde-3-phosphate.

Changes in absorbance (340 nm) were monitored spectrophoto-

metrically (DU 800, Beckman Coulter Co.).

GAPDH Gluconeogenic Assay
The gluconeogenic substrate of GAPDH, 1,3-diphosphoglyce-

rate, was generated by the following previously described method

[42]. The reaction mixture was composed of 80 mM triethano-

lamine (pH 8.5), 8.0 mM MgSO4, 0.25 mM NADH, 2.4 mM

ATP, 12 mM 3-phosphoglycerate and 18.8 mg/ml budding yeast

phosphoglycerol kinase (Sigma-Aldrich, USA). The reaction was

conducted at 37uC for 30 min and stopped by heating at 100uC
for 5 min. The assay was performed at 30uC by mixing the cell

extract (4 mg), 0.05 mM NADH and 200 ml of the reaction

mixture containing 1,3-diphosphoglycerate. The changes in

absorbance (340 nm) were monitored with a spectrophotometer.

Glycogen Quantification Assay
The cell pellet harboring glycogen was prepared according to

the following previously described method [43]. The cells were

cultured at 30uC (25uC was used for hst3D hst4D and tdh2D hst3D
hst4D cells) for 3 h in either YPD or YPE liquid media. After

harvesting and washing three times with PBS buffer (pH 7.3), the

cells (16108) were suspended in 300 ml of 30% KOH and

incubated at 100uC for 2 h. The cell suspension was mixed with 2

volumes of 99% ethanol and centrifuged at 14000 rpm for 5 min

at 4uC. The cell pellet was dried and suspended in 100 ml of H2O.

The cell suspension (10 ml) was assayed with a Glycogen Assay Kit

(Biovision Co., USA) according to the manufacturer’s instructions.

The changes in absorbance (570 nm) were monitored with

a microplate reader (iMark, BioRad Co., USA).

Metabolic Control of Lifespan Extension
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Reactive Oxygen Species (ROS) Detection
The protocol was modified as previously described [44]. The

cells (56107) were washed with PBS (pH 7.3) and resuspended in

100 ml of PBS containing 5 mg/ml dihydroethidium (DHE). After

incubation at room temperature for 5 min, the cells were

harvested and suspended in 100 ml of PBS (pH 7.3). DHE-positive

cells were viewed under rhodamine fluorescence using a Leica

CTR6500 microscope with LAS AF software. The ratio was

calculated from the number of DHE-positive cells among the total

number of cells (n = 100).

Results

hst3D hst4D Cells Exhibit Reduced Chronological
Lifespan in a Manner Independent of the Regulation of
Histone H3-K56 Acetylation
As has been described previously [34,35,36], hst3D hst4D cells

exhibited a short RLS (Figs. 1A and S1). Interestingly, hst3D hst4D
cells also exhibited a short CLS following the accumulation of

reactive oxygen species (ROS) (Figs. 1B and S2). Recent research

shows that pH of the medium affects the cell viability in the CLS

assay [45], and we routinely employed SD medium in the absence

(‘‘unbuffered’’) of 50 mM citrate-phosphate buffer [pH6.0]. To

exclude the possibility that the pH alteration would cause to

reduce the CLSs of hst3D hst4D cells, we confirmed that hst3D
hst4D cells reduced the viability even in CLS assay using SC

medium even in the presence (‘‘buffered’’) of 50 mM citrate-

phosphate buffer [pH6.0] (Fig. S3). The short RLS of hst3D hst4D
cells is due to the persistence of H3-K56 acetylation in chromatin

that can trigger the genomic instability [24,36]. Next, we

examined whether the short CLS of the hst3D hst4D cells also

depended on histone H3-K56 acetylation. Rtt109 is a histone

acetyltransferase that acetylates histone H3-K56 [46,47,48], and

Asf1 is a histone chaperone that is necessary for the acetylation of

K56 of histone H3 [49,50]. We confirmed that the acetylation of

histone H3-K56 was not detected in asf1D, rtt109D, asf1D hst3D
hst4D and rtt109D hst3D hst4D cells (Fig. 1C). Cells containing

deletions of either RTT109 or ASF1 did not exhibit reduced CLS

(Fig. 1D). However, both asf1D hst3D hst4D and rtt109D hst3D
hst4D triple deletion mutants exhibited a reduced CLS identical to

that of the hst3D hst4D double deletion mutant (Fig. 1D). Thus,

these data suggest that the short CLS of hst3D hst4D cells is not due

to histone H3-K56 acetylation.

Metabolic Intermediates from Glucose Metabolism
Accumulate in hst3D hst4D Cells in a Pattern that is
Similar to that of Aged Cell
The CLS of yeast cells is monitored as cellular viability under

the starvation of nutrient, especially glucose. This observation

prompted us to hypothesize that the glucose metabolism might not

respond to nutrient starvation, and lead to reduce CLSs of the

hst3D hst4D cells. To evaluate this hypothesis, we analyzed the

profiles of the metabolites of glucose metabolism in wild type and

hst3D hst4D cells using capillary electrospray ionization time-of-

flight mass spectrometry (CE-TOFMS) [51]. Wild type and hst3D
hst4D cells were cultured under the same conditions employed in

the CLS assay. The metabolites were prepared from these cells,

and analyzed by CE-TOFMS. All intermediates of glycolysis/

gluconeogenesis and the TCA cycle that measured in this study

accumulated in the hst3D hst4D cells more than in the wild type

cells (Fig. 2A and Table S1). Several metabolites connecting with

glucose storage: glucose-1-phosphate (G1P), glucose-6-phosphate

(G6P) and fructose-6-phosphate (F6P), were accumulated in the

hst3D hst4D cells (Fig. 2A). The accumulation of these metabolites

is also observed in rapidly aging sip2D and aged wild type cells

[11]. To confirm the profiles of metabolites in hst3D hst4D cells are

reminiscent of those of aged cells, we analyzed the profiles of the

major energy metabolites in young and aged cells using CE-

TOFMS. Aged cells (median 16–20 cell divisions) and young cells

(zero or one cell division) were isolated using biotin-streptavidin

magnetic sorting [31,52]. Similar to the metabolic profile of hst3D
hst4D cells (Fig. 2A), the metabolites involved in glucose storage

(G1P, G6P and F6P) and many metabolites of the TCA cycle

accumulated in aged cells (Fig. 2B). The pronounced enhancement

of glucose storage in aged cells is brought by the augment

gluconeogenesis and the reduced glycolysis [11]. The accumula-

tion of the metabolites in the TCA cycle supports that the

gluconeogenesis pathway was enhanced, because these metabolites

can be utilized to synthesize glycogen via the gluconeogenesis

pathway (Figure 4C). Other metabolic processes, such as

nucleotide synthesis and amino acid synthesis, did not exhibit

global differences in the accumulation of metabolic intermediates

in aged and young cells (Fig. S4 and Table S2). Together, these

data suggest that the glucose metabolism of the hst3D hst4D cells,

which has been similar to those of aged cells, might be a cause to

reduce the CLSs.

Deletion of the TDH2 Gene Restored both the CLS and
Vegetative Growth of hst3D hst4D cells by Decreasing
the Metabolic Intermediates of Glucose Metabolism
Given that the accumulation of glucose metabolites resulted in

a shortened chronological lifespan in hst3D hst4D cells, we

hypothesized that reducing the accumulation of metabolic

intermediates within the hst3D hst4D cells could extend this

lifespan. One approach to reducing the amount of metabolites is to

delete the gene encoding a metabolic enzyme (Fig. S5; gene map

of glucose metabolism). We screened a glucose metabolism gene

deletion, which was able to restore the CLS of hst3D hst4D cells. As

shown in Figure 3A, the deletion of the TDH2 gene, which

encodes a yeast GAPDH [53], was able to completely restore the

lifespan of hst3D hst4D cells. We tested whether tdh2D deletion

could extend the RLS of hst3D hst4D cells. tdh2D could slightly, but

significantly on statistics, extended the RLS of hst3D hst4D cells

(Figs. S1 and S6). Similar to TDH2, we identified two other genes,

IDP1 and YAT1, whose deletion rescued the CLS of the hst3D
hst4D cells (Fig. 3B and C). Idp1 is a mitochondrial NADP-specific

isocitrate dehydrogenase that catalyzes the oxidation of isocitrate

to a-ketoglutarate [54]. Yat1 is a carnitine acetyltransferase that

localizes to the outer membrane of the mitochondrion and is

involved in the transport of acetyl-CoA from the cytosol into the

mitochondrion [55]. The decreasing pH of media reduces the cell

viability in CLS assay [45]. We confirmed that any tdh2, idp1 or

yat1 gene deletion did not increase the pH of medium to restore

the viability of hst3D hst4D cell in CLS assay (Table S4). Because

the biochemical analysis of GAPDH has been already established,

we mainly analyzed Tdh2 in this study, as described later. Aged

cells usually grow poorly even though the surrounding environ-

ment is suitable for cell growth. Similar to aged cells, the hst3D
hst4D cells grew poorly in synthetic complete (SC) medium, which

permitted normal growth of wild type cells (Fig. 3D). Interestingly,

tdh2D hst3D hst4D cells grew in SC medium as well as wild type

cells (Fig. 3D). Additionally, idp1D hst3D hst4D and yat1D hst3D
hst4D cells grew as well as wild type cells (Fig. S7A and B). Thus,

the deletion of genes involved in glucose metabolism not only

restored the CLS of hst3D hst4D cells but also the poor growth.

We analyzed whether the deletion of the TDH2 gene could

reduce the accumulation of metabolic intermediates of glucose

Metabolic Control of Lifespan Extension
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metabolism in hst3D hst4D cells. Using CE-TOFMS, we compared

the profiles of metabolic intermediates among wild type, hst3D
hst4D, tdh2D and tdh2D hst3D hst4D cells (Figs. 3E, S8 and Table

S3). As shown in Figure 3E, many metabolites that specifically

accumulated in hst3D hst4D cells (G6P, G1P, and F6P from

glycolysis/gluconeogenesis and many metabolites of the TCA

cycle) were indeed decreased in tdh2D hst3D hst4D cells. These data

suggest that the tdh2 gene deletion contributed to the decrease in

the accumulation of metabolic intermediates of glucose metabo-

lism in tdh2D hst3D hst4D cells.

Deletion of the TDH2 Gene Specifically Repressed the
Activation of Gluconeogenesis
Next, we investigated whether the tdh2 gene deletion could

specifically repress the gluconeogenesis pathway. We initially

examined the influence of the tdh2 gene deletion on cellular

GAPDH activities that play a pivotal role in glycolysis/gluconeo-

genesis. In the presence of NAD+, GAPDH promotes glycolysis to

catalyze the conversion of glyceraldehyde-3-phosphate (glyceral-

dehyde-3P) to glycerate-1,3-bisphosphate (glycerate-1,3P2)

(Fig. 4A: glycolytic activity). In the presence of NADH, GAPDH

promotes gluconeogenesis to catalyze the conversion of glycerate-

1,3P2 to glyceraldehyde 3P (Fig. 4A: gluconeogenic activity). We

prepared cell extracts from wild type, tdh2D, hst3D hst4D and tdh2D
hst3D hst4D cells cultured in medium containing glucose as the

carbon source and compared the glycolytic and gluconeogenic

activities of GAPDH among the cell extracts. The glycolytic

activities of GAPDH were similar in all of the cell extracts (Fig. 4B:

glycolytic activity). The gluconeogenesis pathway is usually

repressed in the presence of glucose, and therefore the gluconeo-

genic activity of GAPDH should be low. However, the gluconeo-

genic activity of GAPDH in the hst3D hst4D cell extract was

significantly higher than that in the wild type cell extract (Fig. 4B:

gluconeogenic activity). Interestingly, the gluconeogenic activity in

the tdh2D hst3D hst4D cell extract was approximately the same as

that observed in both the wild type and tdh2D cell extracts (Fig. 4B:

gluconeogenic activity). Thus, the gluconeogenic activity of

GAPDH was increased in hst3D hst4D cells. In addition, the

gluconeogenic activity of GAPDH in the hst3D hst4D cells was

repressed by the deletion of the TDH2 gene without affecting the

glycolytic activity.

We next addressed whether the tdh2 gene deletion repressed the

entire gluconeogenesis pathway in the hst3D hst4D cells by

suppressing the gluconeogenic activity of GAPDH. Budding yeast

cells employ gluconeogenesis to utilize non-fermentable carbon

sources such as glycerol or ethanol [56]. Ethanol is metabolized in

the TCA cycle, and the hexose phosphates produced by

gluconeogenesis are used for the biosynthesis of DNA, RNA and

proteins via the pentose phosphate pathway (Fig. 4C: cartoon).

Because gluconeogenesis-deficient mutant cells are unable to

Figure 1. hst3D hst4D cells reduce CLS independent of the continuous acetylation of histone H3-K56. (A) Replicative lifespan (RLS) of wild
type (BY4742), hst3D, hst4D and hst3D hst4D cells. The median lifespan is given next to each genotype. The difference between strains was performed
on statistical calculations (Fig. S1) (B) Chronological lifespan (CLS) analysis of wild type, hst3D, hst4D and hst3D hst4D cells. (C) Immunoblot analysis of
whole-cell protein extracts using antibodies either against acetylation of histone H3 on K56 or total histone H3 as a loading control. Cell extracts were
prepared from asynchronized wild type, asf1D, rtt109D, hst3D hst4D, asf1D hst3D hst4D and rtt109D hst3D hst4D cells. Each cell extract was resolved
by 15% SDS-polyacrylamide gel electrophoresis (PAGE) and analyzed by immunoblot using antibodies to detect K56-acetylated H3, and total histone
H3. (D) CLS analysis of wild type, hst3D hst4D, rtt109D, asf1D, rtt109D hst3D hst4D and asf1D hst3D hst4D cells.
doi:10.1371/journal.pone.0054011.g001
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utilize ethanol as a carbon source, we expected that the mutant

cells would respond similarly to glucose starvation in the presence

and absence of ethanol. Under glucose starvation, yeast cells

rapidly accumulate glycogen, a branched polymeric glucose

reserve generated from G1P (Fig. 4C) [57,58]. Previous research

reported that tdh2D cell grows slower than wild type cell in the

presence of ethanol [59], which suggest that the gluconeogenesis

pathway does not work well in tdh2D cell. We analyzed the

accumulation of glycogen to determine if the gluconeogenesis

pathway was intact or deficient. When wild type cells were

cultured in the presence of ethanol, the amount of glycogen that

accumulated increased slightly compared to that in the presence of

glucose (Fig. 4D: wild type). Cells lacking the FBP1 gene encoding

fructose-1,6-bisphosphatase, which irreversibly converts F1,6P2 to

F6P, exhibit a defect in gluconeogenesis (Fig. 4C) [60]. As

expected, fbp1D cells accumulated a considerable amount of

glycogen in the presence of ethanol (Fig. 4D: fbp1D). Similar to

fbp1D cells, tdh2D cells also accumulated glycogen in the presence

of ethanol but not in the presence of glucose (Fig. 4D: tdh2D and

fbp1D). We confirmed that the expression of the FBP1 gene

involved in gluconeogenesis was normally induced in response to

non-fermentable carbon sources in the tdh2D cells (Fig. S9). These

findings indicate that the tdh2D cells were deficient in the

activation of gluconeogenesis in a manner similar to that observed

in fbp1D cells, although the gene transcription involved in

gluconeogenesis was induced normally.

Next, we examined whether the deletion of tdh2 could repress

gluconeogenesis in the hst3D hst4D background. Like hst3D hst4D
cells, tdh2D hst3D hst4D cells accumulated glycogen even in the

presence of glucose (Fig. 4D: hst3D hst4D and tdh2D hst3D hst4D).
Because several metabolites connected with glycogen synthesis

(G6P, G1P and F6P) were accumulated in tdh2D hst3D hst4D cells

more than in wild type cells (Fig. 3E), glycogen may be

synthesized. Similar to tdh2D cells, tdh2D hst3D hst4D cells

accumulated glycogen in the presence of ethanol, whereas hst3D
hst4D cells did not (Fig. 4D: tdh2D, hst3D hst4D and tdh2D hst3D
hst4D). Taken together, these data suggest that the tdh2 gene

deletion specifically represses gluconeogenesis in hst3D hst4D cells.

TDH2 Gene Deletion Extends the RLS in a CR-dependent
Manner
CR reduces the augmentation of gluconeogenesis in aged yeast

cells [11]. We examined whether the reduction of gluconeogenesis

by the deletion of the tdh2 gene contributed to the extension of the

cellular lifespan in a CR-dependent manner. The RLS of tdh2D
mother cells was significantly extended compared with that of wild

type cells (Figs. 5A and S1). To investigate the genetic pathway of

tdh2 gene deletion, we compared the lifespan of the tdh2 gene

Figure 2. hst3D hst4D cells accumulate a number of metabolic intermediates from glucose metabolism in a pattern similar to that of
aged cells. (A) The metabolic profiling data of glucose metabolites in wild type and hst3D hst4D cells were mapped onto known pathways. Each
graph was derived from the calculated amount of metabolic intermediates shown in Table S1. The cells were cultured in SC medium at 30uC for 3
days and analyzed by CE-TOFMS. (B) The metabolic profiling data of central carbon metabolism in both young and aged cells was mapped as in (A).
Each graph was derived from the calculated amount of metabolic intermediates shown in Table S2.
doi:10.1371/journal.pone.0054011.g002
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deletion in CR-mimicked mutant cells. In one CR model, the

deletion of the HXK2 gene encoding hexokinase reduces the

availability of glucose for glycolysis and extends the RLS [61]. In

another model of CR, the deletion of TOR1, which encodes

a phosphatidylinositol kinase (PIK)-related kinase and a subunit of

the TORC1 complex, drives cells into a nutrient-starvation mode,

extending their RLS [29,62]. Both hxk2D and tor1D single deletion

cells significantly had long lifespans (Figs. 5B, C and S1). However,

either the RLSs of hxk2D tdh2D or tor1D tdh2D deletion cell were

almost same as that of tdh2D cell (Figs. 5B, C and S1). Thus, tdh2

gene deletion can extend the RLS in a CR-dependent manner.

These suggest that CR extends RLS by suppressing age-enhanced

gluconeogenesis.

Discussion

Our study suggests that the metabolites in glucose metabolism

accumulated in hst3D hst4D cells are due to the enhanced

gluconeogenesis. However, hst3D hst4D tdh2D cells have still

accumulated several metabolites in glucose metabolism (Fig. 3E),

even though deletion of TDH2 gene repressed the activation of

gluconeogenesis. To fix DNA damages occurred in the progression

of DNA replication forks which are caused by persistent

acetylation of histone H3 in K56 in chromatin, hst3D hst4D cells

grow slowly [24]. Therefore, hst3D hst4D cell results in expansion

of the cell volume by accumulating various metabolites, which are

common to cells mutated in chromosomal DNA replication and

cell cycle progression (data not shown). Accumulation of several

metabolites in hst3D hst4D tdh2D cells may be derived from a kind

Figure 3. Deletion of the TDH2 gene restores both CLS and vegetative growth and reduces the metabolic intermediates of glucose
metabolism in hst3D hst4D cells. (A) The CLSs of wild type, hst3D hst4D, tdh2D and tdh2D hst3D hst4D cells. (B) The CLSs of wild type, hst3D hst4D,
tdh2D and tdh2D hst3D hst4D cells. (C) The CLSs of wild type, hst3D hst4D, tdh2D and tdh2D hst3D hst4D cells. (D) Growth curves of wild type, hst3D
hst4D, tdh2D and hst3D hst4D tdh2D cells in SC medium. (E) The metabolic profiling data of central carbon metabolism in wild type, hst3D hst4D,
tdh2D and hst3D hst4D tdh2D cells were mapped onto known pathways. Each graph was derived from the calculated amount of metabolic
intermediates shown in Table S3.
doi:10.1371/journal.pone.0054011.g003
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of side effect that hst3D hst4D tdh2D cells has expanded to the same

cell volume of hst3D hst4D cells (data not shown).

Why the gluconeogenesis pathway is activated in hst3D hst4D
cells is still unclear. Many metabolic enzymes in glucose

metabolism, the TCA cycle, the urea cycle, and fatty acid

metabolism are acetylated in human liver tissue [63]. In Salmonella,

metabolic enzymes in glucose metabolism are acetylated exten-

sively and differentially in response to different carbon sources,

and the relative activities of key enzymes controlling the balance

between glycolysis and gluconeogenesis are particularly regulated

by acetylation [42]. Persistent acetylation of metabolic enzymes

that should be deacetylated by Hst3 and Hst4 may lead to a defect

in the control of the flux between glycolysis and gluconeogenesis.

Target proteins of Hst3 and Hst4 that control glucose metabolism

and chronological lifespan should be identified in future studies.

In this study, we isolated Idp1 and Yat1 together with Tdh2,

which restored the CLS and poor growth of hst3D hst4D cells when

deleted. It is unclear if either Idp1 or Yat1 can suppress

Figure 4. Deletion of the TDH2 gene can selectively repress the activation of gluconeogenesis. (A) The roles of GAPDH in both glycolysis
and gluconeogenesis. (B) Measurement of GAPDH activity. The glycolytic and gluconeogenic activities of GAPDH were monitored using cell lysates
prepared from asynchronous cells. (C) A cartoon showing the utilization of ethanol (EtOH) as a non-fermentative carbon source via gluconeogenesis.
(D) Glycogen accumulates in gluconeogenesis-deficient cells (fbp1D) and tdh2D cells. The amount of glycogen prepared from cells cultured in liquid
medium containing either glucose or EtOH was quantified. All graphs show the mean values of measurements performed in triplicate. The error bars
denote the standard deviation. Note that certain error bars are too small to be visible.
doi:10.1371/journal.pone.0054011.g004
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augmented gluconeogenesis in the same manner as Tdh2,

although a less direct mechanism may be possible. For example,

the deletion of either the Idp1 or Yat1 gene has been proposed to

reduce the amount of metabolites to be supplied in glycogen

synthesis via gluconeogenesis, which would effectively lead to

a reduction in gluconeogenesis. The roles of Idp1 and Yat1 in

gluconeogenesis remain to be elucidated.

We also demonstrated that the tdh2 gene deletion was able to

restore the RLS of hst3D hst4D cells on statistics, but the effect was

marginal (Figs. S1 and S6). Because the short RLS of the hst3D
hst4D cells is due to the genomic instability [36], the reduction in

gluconeogenesis mediated by the tdh2 gene deletion may not be

sufficient to restore the shortened RLS caused by the genomic

instability.

It will be interesting to extend our findings to other species,

particularly multicellular organisms. In C. elegans, a null allele of

Clk-1, which encodes a protein with homology to an activator of

gluconeogenesis in budding yeast (Cat5p), leads to lifespan

extension [64]. This finding is consistent with the correlation

between reduced gluconeogenesis and increased lifespan observed

in yeast ([11] and our study). CR extends lifespan in many species

and has been shown to ameliorate many age-associated disorders,

such as diabetes and cancer [17]. Testing whether the inactivation

of a metabolic enzyme suppresses augmented gluconeogenesis

instead of CR would be valuable, and the results could be applied

to extend lifespan and ameliorate age-associated disorders.

Supporting Information

Figure S1 P-value matrices for each figure (Fig. 1A, 5 and S6).

Each matrix contains the Wilcoxon Rank-Sum p-value for a 2-

tailed test in which the lifespan data for the strain in the

corresponding column. Significant p-value (p,0.05) is colored

yellow. P-values were calculated using ystat2008 software.

(TIFF)

Figure S2 ROS accumulate specifically in hst3D hst4D cells. The

number of DHE-positive cells was counted by fluorescence

microscopy, and the distribution of DHE-positive cells was

calculated (n= 100).

(TIF)

Figure S3 hst3D hst4D cells reduce CLS in medium ‘‘buffered’’.

Wild type and hst3D hst4D cells cultured in SC medium in the

presence ‘‘buffered’’ of 50 mM citrate-phosphate buffer [pH6.0]

and 2% glucose. Viability (cultured for 4 days) was measured as

colony formation units and calculated as the ratio for the start (0

day). Data represent averages and standard deviations of more

than four biological replicas.

Figure 5. TDH2 gene deletion extends the RLS in a manner similar to that of the CR pathway. (A) The RLSs of wild type and tdh2D cells. (B)
The RLSs of wild type, tdh2D, hxk2D and hxk2D tdh2D cells. (C) The RLSs of wild type, tdh2D, tor1D and tor1D tdh2D cells. The difference between
strains was performed on statistical calculations (Fig. S1).
doi:10.1371/journal.pone.0054011.g005
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(TIFF)

Figure S4 The entire metabolic profiling data set, including

central carbon metabolism, for aged cells relative to young cells

was mapped onto the network. Each graph was derived from the

calculated amount of metabolic intermediates listed in Table S1.

The blue and red columns indicate young and aged cells,

respectively.

(TIFF)

Figure S5 Map of the central carbon metabolic pathway in

budding yeast, based on the information from the Saccharomyces

genome database (http://www.yeastgenome.org/). The gene(s)

involved in each metabolic reaction are shown in red.

(TIF)

Figure S6 The deletion of the TDH2 gene results in the inability

of hst3D hst4D cells to extend their RLS. The RLSs of wild type,

tdh2D, hst3D hst4D and hst3D hst4D tdh2D cells. The median

lifespan is given next to each genotype. The difference between

strains was performed on statistical calculations (Figure S1).

(TIFF)

Figure S7 The deletion of either the IDP1 or YAT1 gene can

restore the growth of hst3D hst4D cells. (A) The growth curve of

wild type, hst3D hst4D, idp1D, and hst3D hst4D idp1D cells in SD

medium. (B) The growth curve of wild type, hst3D hst4D, yat1D,
and hst3D hst4D yat1D cells in SD medium.

(TIF)

Figure S8 The entire metabolic profiling data set, including

central carbon metabolism, for hst3D hst4D cells relative to wild

type cells was mapped onto the network. Each graph was derived

from the calculated amount of metabolic intermediates listed in

Table 3. Blue column: wild type; red: hst3D hst4D; green: tdh2D;
orange: tdh2D hst3D hst4D.
(TIFF)

Figure S9 FBP1 expression is induced in both wild type and

tdh2D cells in response to ethanol (EtOH). RNA was prepared

from cells treated with either glucose or EtOH as a carbon source.

Reverse transcription polymerase chain reaction (RT-PCR) was

employed to measure the ratio of FBP1 mRNA to ACT1 mRNA.

All graphs represent the mean of triplicate experiments. The error

bars denote the standard deviation.

(TIFF)

Method S1

(DOCX)

Table S1 The metabolic intermediates in aged and young cells.

The signal peaks of the metabolic intermediates were converted

and normalized to the resultant relative area values, including

glucose metabolism intermediates, TCA cycle intermediates, and

amino acids. The ratio of the resultant relative area values for aged

and young cells is also given.

(XLSX)

Table S2 The metabolic intermediates in wild type and hst3D
hst4D cells. The calculated amounts of the metabolic intermediates

of central carbon metabolism are given. The ratio of the resultant

relative area values for wild type and hst3D hst4D cells is also given.

(XLSX)

Table S3 The metabolic intermediates among wild type, tdh2D,
hst3D hst4D and tdh2D hst3D hst4D cells. The signal peaks of the

metabolic intermediates were converted and normalized to the

resultant relative area values, including glucose metabolism

intermediates, TCA cycle intermediates, and amino acids. The

ratio of the resultant relative area values for aged and young cells is

also given.

(XLSX)

Table S4 The pH of media of wild type, hst3D hst4D, tdh2D,
yat1D, idp1D, hst3D hst4D tdh2D, hst3D hst4D yat1D and hst3D hst4D
idp1D. Cells were cultured in SD medium in the absence

‘‘unbuffered’’ of 50 mM citrate-phosphate buffer. The pH of

fresh medium is set as pH6.0. Cells were cultured at 30uC for 8

days, and pH of media was measured.

(TIFF)
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