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Abstract

MicroRNAs (miRNAs) are a class of small (19–25 nt) non-coding RNAs. This important class of gene regulator downregulates
gene expression through sequence-specific binding to the 39untranslated regions (39UTRs) of target mRNAs. Several
computational target prediction approaches have been developed for predicting miRNA targets. However, the predicted
target lists often have high false positive rates. To construct a workable target list for subsequent experimental studies, we
need novel approaches to properly rank the candidate targets from traditional methods. We performed a systematic
analysis of experimentally validated miRNA targets using functional genomics data, and found significant functional
associations between genes that were targeted by the same miRNA. Based on this finding, we developed a miRNA target
prioritization method named mirTarPri to rank the predicted target lists from commonly used target prediction methods.
Leave-one-out cross validation has proved to be successful in identifying known targets, achieving an AUC score up to 0. 84.
Validation in high-throughput data proved that mirTarPri was an unbiased method. Applying mirTarPri to prioritize results
of six commonly used target prediction methods allowed us to find more positive targets at the top of the prioritized
candidate list. In comparison with other methods, mirTarPri had an outstanding performance in gold standard and CLIP
data. mirTarPri was a valuable method to improve the efficacy of current miRNA target prediction methods. We have also
developed a web-based server for implementing mirTarPri method, which is freely accessible at http://bioinfo.hrbmu.edu.
cn/mirTarPri.
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Introduction

MicroRNAs (miRNAs) are a class of small (19–25 nt) non-

coding RNAs that reduce the abundance and translational

efficiency of mRNAs. These non-coding RNAs play a major role

in human regulatory networks and diverse biological phenomena

[1–3]. Information about miRNA targets can be used for the study

of complex RNA regulatory networks, disease diagnosis and

pharmacogenomics [4–6]. Because of the absence of a high-

throughput model for specific miRNA target recognition, better

methods for the identification of miRNA targets are urgently

needed. Several computational target prediction approaches, such

as TargetScan, PicTar, miRanda, PITA, DIANA-microT and

RNAhybrid, have been developed to predict target genes [7–13].

These methods are mostly based on characteristics of miRNA seed

region such as sequence matches, G-U wobble and thermody-

namic duplex stability. Although the seed region is evolutionarily

conserved, it is not reliable by itself to identify miRNA targets. It

has been shown that approximately 70% of predictions are false

positive targets [11,14]. Identification of true positive targets from

the large predicted target lists is complex, expensive and laborious

[15]. Therefore, novel approaches for prioritizing target lists from

traditional prediction methods are needed to construct a workable

target list for subsequent experimental studies.

Several machine-learning-based classification methods have

been developed to improve the accuracy of miRNA target

prediction, such as TargetBoost [16] and miTarget [17]. A

previous study has shown that miTarget didn’t consider conser-

vation information in order to avoid a loss of sensitivity; however,

as a consequence, the number of false positive targets remains high

[18,19]. Moreover, because of a lack of negative controls, current

machine learning approaches rely on artificially generated

negative examples for training purposes, which also results in

a high false positive rate [20]. In addition, several target prediction

methods that incorporated expression data have been developed

[21–24]. However, there are a certain number of documented

miRNAs that suppress the translational activities of the target

mRNA. In this case, there is no direct effect on the expression level

of the target mRNA; thus, these type of targeting pairs cannot be

observed in gene expression profiles [25,26].

Some observed phenotypes are likely to be caused by complex

regulation of several targets regulated by a single miRNA [27,28].

To further understand the regulatory mechanisms of miRNAs in

complex cellular systems, functional associations have been
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identified between target genes based on accumulated functional

genomics data sets [29,30]. Several studies have revealed that

miRNA targets were often involved in highly correlated functional

modules (i.e., they shared similar biological functions or were close

to each other in protein-protein interaction (PPI) networks) [31–

33]. These target genes are often regulated simultaneously and

share the same expression patterns [34–36].

In previous work, we have prioritized human cancer miRNAs

based on genes’ functional consistency [37]. In this study, we

developed a miRNA target prioritization method named mirTar-

Pri that used functional genomics data to rank predicted target

lists. Leave-one-out cross validation has proved to be successful in

identifying 1,799 validated miRNA-target pairs with an AUC

score up to 0.84. Validation of microarray and pulse-labeing

SILAC data has proved that mirTarPri was an unbiased method.

Applying mirTarPri to prioritize the results of commonly used

target prediction databases, including TargetScan, PicTar,

miRanda, PITA, DIANA-microT and RNAhybrid allowed us to

find more positive targets. We have made mirTarPri available on

a web-based server, and a full list of prioritized miRNA target lists

from the six prediction databases is freely accessible at http://

bioinfo.hrbmu.edu.cn/mirTarPri.

Materials and Methods

Validated and Predicted miRNA Target Dataset
We downloaded lists of human miRNAs and their associated

targets from three high-quality online miRNA reference databases:

TarBase (v.5c) [38], miR2Disease (version Jan, 2010) [39] and

miRecord (version Nov, 2010) [40]. These databases store

manually curated collections of experimentally supported miRNA

targets. After combining these databases, 1,799 miRNA-target

pairs were collected in our study. The predicted miRNA targets

were downloaded from commonly used prediction databases:

TargetScan (version 5.1), PicTar (version Mar, 2007), miRanda

(version Nov, 2010), PITA (version 6.0) and DIANA-microT

(version 3.0). Since RNAhybrid did not provide predicted results,

we used RNAhybrid (version 2.1) software to predict miRNA

target sites on human transcripts using default parameters. The

human transcript sequences were downloaded from Ensembl

(GRCH37) [41].

Gene Ontology Dataset
Gene Ontology (GO) comprises three orthogonal ontologies,

biological processes (BP), molecular functions (MF) and cellular

components (CC), which provide a controlled vocabulary for

describing genes or their encoded products with predefined terms

[42]. GO terms and their relationships are represented in the form

of a Directed Acyclic Graph (DAG). We downloaded the gene-

annotation dataset for Human (version May, 2011), Arabidopsis

thaliana (version Feb, 2012) and Mouse (version Apr, 2012) from

the official GO website.

PPI Network Datasets
We downloaded PPI data from six databases: HPRD (release

9.0) [43], BIND (release 1.0) [44], MINT (version 2.5) [45],

BioGrid (version 3.1.90 ) [46], IntAct (version 2.0) [47] and

OPHID (version 1.95) [48]. OPHID is an integrated network that

contains data from the other five datasets. Self-loops of one protein

and round-trips between two proteins were refined to one

interaction.

Measurement of Functional Similarity and Network
Closeness
A basic and critical step in our method was to measure the

functional associations between miRNA targets. For each target-

gene pair, mirTarPri measured their associations in two ways:

functional similarity based on GO annotations [49] and network

closeness based on PPI networks [29].

Semantic similarity was used to assess the degree of relatedness

between two words or entities in taxonomy. It could be

alternatively evaluated based on the notion of information content

[50]. When biological entities were described using a common

schema, such as an ontology, semantic similarity could be used as

a measure to compare them by means of their annotations. GO is

well organized and structured as DAG corresponding to orthog-

onal categories. Nodes in the graph represent terms that describe

gene product function. Previous studies have demonstrated that

semantic similarity base on GO annotations could be used to

quantify the functional similarity between gene products

[49,51,52]. Here we used the theory of information content (IC)

to define semantic similarity measure from Resnik. The similarity

of two terms was calculated that they shared common information

in an ontology represented as a DAG, which was always indicated

by the specific common ancestor. The use of IC was a reliable way

to measure how specific and informative a term was. The IC value

of a term, t, could be calculated as the negative log likelihood:

IC(t)~{ log n=N

Where n is the number of genes mapped to term t, and N is the

total number of genes in the whole human genome. Quantifying

IC in this way makes intuitive sense; as the IC value increases, the

term function becomes more specific [50]. The functional

similarity (FS) score between two target genes, g1 and g2, was

previously defined and used as the IC value of the most

informative common ancestor among the terms mapped by g1
and those by g2 [52,53], as shown in the following equation:

FS(g1,g2)~ max
t[T(g1,g2)

IC(t)

Here, T(g1,g2) denotes the set of all common ancestor terms

mapped by g1 and g2. A higher FS score indicates that two genes

share more information in common and are more similar. The

average functional similarity (AFS) score between a candidate

target, g and a group of n experimentally validated targets, G, was

defined as follows:

AFS(g,G)~

Pn

i~1

FS(g,gi)

n

Where gi is a member of groupG.

Network closeness (NC) score of two target genes g1 and g2 was

defined as reciprocal of shortest distance (DIS) between gene

products nodes on network using Dijkstra’s algorithm:

NC(g1,g2)~
1

DIS(g1,g2)
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Figure 1. Conceptual schematic of the mirTarPri procedure. First, each candidate target gene is mapped to GO terms from orthogonal
ontologies to measure its AFS score relative to known targets. The candidate targets are then ranked according to their AFS scores. Second, each
candidate target gene is mapped to the PPI network to measure an ANC score relative to known targets. The candidate targets are then ranked
according to their ANC scores. Finally, the two rankings based on the AFS and ANC scores are combined into a single rank using the Q statistic
method.
doi:10.1371/journal.pone.0053685.g001
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The average network closeness (ANC) score between a candidate

target, g , and a group of n experimentally validated targets, G, was

defined as follows:

ANC(g,G)~

Pn

i~1

NC(g,gi)

n

Where gi is a member of group G.

Multiple Data Rank Fusion
We combined ranks from separate functional genomics data

using the following Q statistic formula, which was implemented

and used in a previous multiple rank fusion study [54]:

Q(r1,r2,:::rN )~VNN!,V0~1,Vk~
Xk

i~1

({1)i{1 Vk{i

i!
riN{kz1

where ri is the rank ratio for data source i, N is the number of data

sources used, and r0~0. The time complexity of this formula is

o(N2).

Enrichment Score
To measure the performance of mirTarPri for prioritizing

commonly used miRNA target predictions, we used an enrich-

ment-fold method to quantify the efficiency of mirTarPri. We used

the enrichment-fold score (ES) defined as n=2=ranko [55] for

a ranked list of n genes. For instance, if mirTarPri gave the highest

rank to a known target gene that was ranked first in a list of 100

genes by the target prediction databases, the enrichment score was

50. If the gene was given a rank of 100, the enrichment score was

0.5. An enrichment score of 1 indicated a middle rank.

Random Gene Set
In the analysis of functional similarity and network closeness

between validated targets, we used random gene sets as controls. If

a miRNA had n experimentally validated targets, we randomly

selected n genes from the whole human genome. Then, the FS

score and NC score were calculated for each gene pair in the

randomly selected group. For each miRNA, 1000 random groups

were generated. In each leave-one-out cross validation, 99 genes

were also randomly selected from the whole human genome.

Principle of mirTarPri
We hypothesized that the positive functional associations

between genes that were targeted by the same miRNA could be

quantified and used to improve the prioritization of miRNA target

prediction results. In this study, we proposed a method named

mirTarPri. Using this method, candidate targets that are

prioritized for a specific miRNA according to semantic similarity

and proximity to experimentally validated targets. There are three

major steps to prioritize using mirTarPri. The first step (Figure 1A)

maps the experimentally validated and candidate targets of each

miRNA to GO terms from one of three orthogonal ontologies. For

a candidate target, the AFS score is calculated for this candidate

and the experimentally validated group. The candidate target list

is ranked according to its AFS score. In the second step (Figure 1B),

experimentally validated and candidate targets for each miRNA

are mapped to the PPI network. Then the ANC score is calculated

for each candidate and rank them accordingly. In the third step

(Figure 1C), the two ranks based on the AFS and ANC scores are

combined for each candidate target into a single rank using

multiple rank fusion method. For each rank, the Q statistic method

generates an integrated score. This rank indicates the overall

priority for each candidate target list.

Results

Systematic Analysis of Functional Similarity between
Experimental Validated miRNA Targets
Previous studies have revealed that miRNA target genes in the

same module shared similar GO annotations [32]. It has also been

reported that miRNAs had different propensities to target genes

involved in different biological processes or functional categories

[11,25,31]. For example, the miR-17-18-19-20 gene cluster was

involved in solid tumors [56]. Genes targeted by this miRNA

cluster overwhelmingly played important roles in growth control,

including both oncogenes and genes that repressed growth [11].

To determine whether these functional associations could be used

as a scoring method, targets were mapped to three orthogonal

gene ontologies (BP, MF, or CC). For each pair of target genes

from each group (i.e., targeted by the same miRNA), we calculated

the FS score (see Materials and Methods). The FS score indicated

functional similarities between two gene products by combining

the semantic similarities of their associated terms [49]. We found

a high level of functional similarity between target genes for each

orthogonal ontology. The average FS score of each gene pair

targeted by the same miRNA was significantly higher than those of

randomly generated gene pairs (Figure 2A). For each miRNA

targeting n genes, we randomly generated a set of n genes as

simulated targets. The fold-change value and significance level of

the average FS score generated using BP terms exceeded those for

MF and CC (Table 1). BP represents a sophisticated functional

ontology containing more than 8,000 terms, which is approxi-

mately 2.5 and 7.6 times greater than the MF (approximately

3,000 terms) and CC (approximately 1,000 terms) ontologies,

respectively. The AFS score between each miRNA target and

simulated gene were compared using a Mann-Whitney U-test, and

the P-values for the three orthogonal ontologies were statistically

significant.

For example, experimentally validated targets of hsa-miR-7

(EGFR, IRS1, IRS2, SNCA and PAK1) were mapped to phosphor-

ylation-related BP terms (Figure 3A). All five targets were mapped

to GO: 0016310 (phosphorylation, IC=3.74), and four of the five

targets were mapped to GO: 0043549 (regulation of kinase,

IC= 4.75). These results indicated that experimentally validated

targets of hsa-miR-7 shared similar biological functions. The same

tendencies were observed on MF and CC (Figure S1). In addition,

three of the five targets were mapped to GO: 0004672 (protein

kinase activity, IC=8.55) on MF, and four of the five targets were

mapped to GO: 0005829 (cytosol, IC= 3.24) on CC.

Systematic Analysis of Network Closeness between
Experimental Validated miRNA Targets
To evaluate whether miRNA targets are close to each other in

PPI networks, we treated the targets as nodes within a large

undirected graph and considered the network closeness of these

nodes. Previous studies based on human PPI networks have shown

that the genes encoding two interacting proteins tended to be

under similar miRNA regulation [33] and to have similar mRNA

expression profiles [34–36]. For every two target genes of each

group, we calculated NC score between them within the network.

Compared with simulated genes, the target genes in the network

occupied a narrow niche. The average NC score between

experimentally validated target genes was significantly higher (p-

value,1.0e-10) than that of simulated genes (Table 2). In

Improved Prioritization of MicroRNA Targets
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comparing six PPI networks, we found that the performance of

HPRD was higher than the others with 1.6-fold change (Mann-

Whitney U-test, p-value,3.80e-41, Figure 2B). For this analysis, we

used the same set of random genes mentioned above in the GO

functional similarity analysis; the P-values of all six networks were

statistically significant.

Using PPI network, we found that the validated targets (EGFR,

IRS1, IRS2, SNCA and PAK1) of hsa-miR-7 were close to each

other. In HPRD, the NC score between each experimentally

validated target was 0.5 or 1 (Figure 3B). The same tendencies

were observed on other networks (Figure S1).

Performance of mirTarPri
The above results indicated that that most of the gene groups

targeted by the same miRNA had higher FS and NC score than

random test groups. Therefore, the functional properties of these

targets could be used for target analysis. For each individual

functional genomics data (Gene Ontology and PPI network), to

assess the ability of our approach in recognizing experimentally

validated targets of corresponding miRNAs, we performed a large

scale leave-one-out cross validation. In each validation run, one

experimental validated target termed as ‘testing gene’, was deleted

from training sets and added to 99 randomly selected genes (see

Materials and Methods). mirTarPri then localized the rank

positions of these testing genes for each functional genomics data.

In validation tests of our study, if the testing miRNA-target

interaction was involved in known interactions used by the

algorithm, then current miRNA-target interaction was removed

from the known validated miRNA-target dataset in this validation

run. This procedure was applied to all following tests performed.

We calculated sensitivity (frequency of testing genes that were

ranked above a particular cut-off point) and specificity (the

percentage of genes ranked below the cut-off point) for these rank

positions. We plotted receiver operating characteristic (ROC)

curves considering the functional properties of the targets to

facilitate the comparison between different functional genomics

data. In a ROC curve, the sensitivity (true positive rate) is plotted

in function of the 1-specificity (false positive rate) for different

threshold. The AUC score is the most frequently used measure to

evaluate algorithm performance. For example, an AUC score of 1

suggests that every testing gene ranked prior to other genes

whereas a value of 0.5 indicates that the testing genes were

randomly ranked along the list.

For each functional genomics data source, mirTarPri reached

an AUC higher than 0.5, indicating that it was a sensitive and

specific means of ranking potential targets regardless of the data

source that was used (Figure 4A, Figure 4B, Figure S2A and Figure

S2B). Although the tested genes tended to rank highly in the

priority list, this was not always the case. To minimize variability

and increase ranking performance, mirTarPri integrated the BP

(blue curve in Figure 4A) and HPRD (green curve in Figure 4B)

ranks, which performed better than other AUC scores in their

functional context. A final rank was generated using the Q statistic

method (see Materials and Methods). This integrated rank

performed better than all other ranks and yielded the highest

AUC score (0.84). The AUC scores obtained using Gene Ontology

and human PPI network were 0.71 and 0.76, respectively,

compared with 0.49 for the randomly selected genes. The

integrated rank yielded the highest AUC of 0.84 (red curve in

Figure 2. Systematic analysis of functional similarity and network closeness between experimental validated miRNA targets. (A)
Comparison of average FS score between experimentally validated targets (left box of each pair, representing average FS score for every miRNA-
target gene pair) and randomly generated genes (right box of each pair) targeted by each miRNA based on three orthogonal ontologies of GO. (B)
Comparison of average NC score between experimentally validated targets (left box of each pair) and randomly generated targets (right box of each
pair) based on six PPI networks.
doi:10.1371/journal.pone.0053685.g002

Table 1. Functional similarity analysis of miRNA targets based
on GO.

BP CC MF

Number of terms 8373 1089 3398

Number of genes 14623 16418 15571

Mean FS score between
validated targets

2.9069 1.4978 1.6503

Mean FS score between
random genes

1.1086 0.8382 0.6837

Fold change 2.6221 1.7869 1.4138

U-test P value 2.38e-35 1.50e-23 3.81e-22

doi:10.1371/journal.pone.0053685.t001
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Figure 4C and Figure S2C). In addition, to determine whether it

was possible to use the same approach on data from other

organisms, we tested our validation method on Arabidopsis

thaliana by integrating BP ontology and MINT data. In total,

69 experimentally validated miRNA-target pairs were collected.

Our method achieved an AUC score of 0.90 and high precision in

cross validation (Figure S3).

Based on performance of mirTarPri in the context of multiple

functional genomics data, we used the BP-HPRD integrated

strategy for mirTarPri in experiment described below. Users of the

mirTarPri online software can choose multiple combinations of all

functional genomics data for different purposes.

mirTarPri is an Unbiased Method
It is well known that many of validated targets are involved in

cancer development. To test whether mirTarPri is capable to rank

non-cancer related targets, validation was performed with high-

throughput evidence obtained by microarray and pulse-labeing

SILAC (pSILAC) technique which was used in other miRNA

targets prediction validation works [12,36,57,58]. 727 miRNA-

target pairs identified by microarray or pSILAC from human

normal cells were tested in this step. Each test gene was added into

99 randomly selected genes and prioritized by mirTarPri. ROC

curve for validating these non-cancer-related targets was generated

with AUC score up to 0.82 (red curve in Figure 4D and Figure

S2D), slightly lower than 0.84 (red curve in Figure 4C). This result

indicated that mirTarPri was an unbiased method.

Prioritization of Existing Target Prediction Databases
To test the efficacy and precision of mirTarPri in predicting

miRNA targets, we compared mirTarPri with six commonly used

databases (TargetScan, PicTar, miRanda, PITA, DIANA-microT

and RNAhybrid) to demonstrate the improvements gained from

the multiple functional genomic data sets. If our method is

successful in improving target prediction, then the experimentally

validated targets will tend to be localized at the top of prioritized

lists based on functional similarities to the training genes used for

the corresponding miRNAs.

Rigorous evaluations of a prediction method require gold

standard data. In this step, a compendium of 1,556 miRNA-target

Figure 3. An illustration of functional similarity between genes targeted by the same miRNA. Five target genes (PAK1, SNCA, EGFR, IRS1
and IRS2) for hsa-miR-7 were mapped to BP terms (A) and the HPRD network (B). Five targets were mapped to the common term GO: 0016310 with
a significantly higher IC than that of random genes (p-value,0.01). Five target gene products (grey) were close to each other on the HPRD network,
and the average NC score was 0.59.
doi:10.1371/journal.pone.0053685.g003

Table 2. Analysis of the functional similarities of miRNA targets based on six PPI networks.

HPRD BioGrid IntAct MINT BIND OPHID

Interactions 39189 51355 39794 14342 9670 69495

Nodes 9465 10030 7752 5208 3309 11377

Annotated targets 1385 1362 1205 926 738 1541

Mean NC score between validated targets 0.34 0.28 0.28 0.24 0.21 0.36

Mean NC score between random targets 0.21 0.21 0.22 0.19 0.14 0.25

Fold change 1.62 1.33 1.27 1.26 1.5 1.44

U-test P value 3.80e-41 3.05e-12 1.40e-18 2.18e-14 8.14e-10 1.07e-37

doi:10.1371/journal.pone.0053685.t002
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pairs that were supported by strong experimental evidence

(reporter assay or western blot analysis) was downloaded from

mirTarBase (release 2.5) [59]. There were 560 overlapping cases

among the 1,556 pairs and 1,799 cases derived from TarBase,

miRecord and miR2Disease. The remaining 996 miRNA-target

pairs were used as gold standard data (Table S1), which were

predicted by each of the six methods tested in the present study.

Next, we prioritized the target lists using mirTarPri and mapped

the gold standard targets to the original lists from the six databases

and prioritized mirTarPri lists for corresponding miRNAs

(Figure 5).

Of the 996 validated target genes, TargetScan, PicTar, PITA,

DIANA-microT, miRanda and RNAhybrid predicted 801, 255,

366, 294, 472 and 933, respectively. These predictions were

uniformly distributed along the ranked lists from each method. In

contrast, the same genes were preferentially distributed at the top

of the prioritized rank lists produced by mirTarPri (Figure 5). We

found that 111 of 801 (13.86%), 48 of 255 (18.82%), 54 of 366

(14.75%), 83 of 294 (28.23%), 121 of 472 (25.64%) and 175 of 933

(18.76%) validated targets fell within the top 10th percentile in the

original TargetScan, PicTar, PITA, DIANA-microT, miRanda

and RNAhybrid lists, respectively. In particular, we found that 374

of 801 (46.69%), 92 of 255 (36.08%), 149 of 366 (40.71%), 137 of

Figure 4. Cross validation results. (A) ROC curves based on the three orthogonal ontologies of GO. The maximum AUC score was 0.71 when
using BP. (B) ROC curves based on six PPI networks. The maximum AUC score was 0.76 when using HPRD. (C) ROC curve of mirTarPri integrated BP
and HPRD. After integrating multiple functional genomics data, the maximum AUC score of mirTarPri reached 0.84, which exceeded the AUC scores
using a single dataset. (D) ROC curve of mirTarPri in testing unbiased targets identified by microarray or pSILAC from human normal cells.
doi:10.1371/journal.pone.0053685.g004
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294 (46.60%), 223 of 472 (47.25%) and 434 of 933 (46.52%)

validated targets fell within the top 10th percentile of the mirTarPri

prioritized lists. The average numbers of predicted targets present

in each list were comparable and ranged from 700 to 20,000 (see

the mirTarPri website).

To quantify these results, we calculated the mean ES value of

the 996 gold standard targets based on the original ranks produced

by each target prediction method and the new ranks by mirTarPri

(Figure S4). After prioritization, the mean ES values for these

target genes were significantly increased: TargetScan, from 27.09

to 86.13 (3.18-fold); PicTar, 10.52 to 18.80 (1.79-fold); PITA,

13.66 to 34.75 (2.54-fold); DIANA-microT, 17.97 to 31.03 (1.73-

fold); miRanda, 22.49 to 52.50 (2.33-fold); and RNAhybrid, 45.60

to 110.73 (2.43-fold). Thus, mirTarPri performed better than these

traditional miRNA target prediction methods.

Comparison with Other Integrated Methods
Furthermore, mirTarPri was compared with other integrated

methods, such as myMIR, MAGIA and HOCTAR [15,58,60].

myMIR collected and filtered predictions from TargetScan,

miRanda, PicTar and DIANA-microT using the target accessi-

bility feature from PITA. MAGIA allowed Boolean combinations

to be retrieved from TargetScan, miRanda and PITA and

integrated miRNA-mRNA expression. HOCTAR ranked the

predictions of miRanda, TargetScan and PicTar on the basis of

their anti-correlated expression behavior relative to their re-

spective miRNA host genes. mirTarPri lists were generated by

pooling the prioritized miRanda, TargetScan and PicTar results.

996 miRNA-target pairs (gold standard data) were mapped to lists

for each method being compared and evaluated by ES. myMIR

and MAGIA predicted 334 and 474, respectively, out of the total

number of 996 strongly experimentally validated targets. HOC-

TAR predicted only 109 of these targets because it is based on the

analysis of expression correlations between host genes and the

targets of the corresponding intragenic miRNAs, but most

miRNAs are non-intragenic and have no host genes. In

comparison, mirTarPri predicted 725 out of the 996 strongly

experimentally validated targets and had the highest mean ES

(Figure 6A) and AUC score (Figure S5). These observations

indicated that mirTarPri performed better than other integrated

systems at recognizing and prioritizing miRNA target lists.

To further assess the performance of mirTarPri, we used data

generated by PAR-CLIP (Photoactivatable-Ribonucleoside-En-

hanced Crosslinking and Immunoprecipitation), an improved

cross linking approach for directly identifying transcriptome-wide

mRNA-binding sites for regulatory miRNA-containing ribonu-

cleoprotein complexes [61] and HITS-CLIP (high-throughput

sequencing of RNAs isolated by cross linking immunoprecipita-

Figure 5. The performance of mirTarPri in prioritizing previously validated miRNA targets. A comparison of lists provided by six miRNA
target prediction databases (TargetScan, PicTar, PITA, microT, miRanda and RNAhybrid) was made to lists prioritized by mirTarPri. The left panel
displays the rankings produced by six miRNA target prediction tools for a set of validated gold standard targets used as test cases (orange lines),
where the right panel displays the rankings after prioritization by mirTarPri (*). The distribution of validated target positions after prioritization by
mirTarPri was shifted toward the top 20th percentile compared with those prioritized by the other programs. All data are displayed in percentiles. The
position line is a deeper orange color when more than one validated target is placed in this position.
doi:10.1371/journal.pone.0053685.g005
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tion), a method to covalently crosslink native Argonaute protein-

RNA complexes in mouse brain [62]. These data were collected

and compiled by starBase [63]. In comparison with the other

methods, mirTarPri recognized the greatest number of 91,124

cases and had the highest prioritizing ES and precision (Figure 7).

We next divided the targets prioritized by mirTarPri into four

groups according to the number of miRNA binding sites that they

contained (1, 2, 3 or $=4). We found that targets with multiple

binding sites tended to be more highly prioritized by mirTarPri

(Figure S6). mirTarPri also performed well on mouse HITS-CLIP

data in recognizing and prioritizing 98,517 cases (Figure S7).

mirTarPri Online
We developed a web-based server for implementing the

mirTarPri method (Figure S9), which is supported by a Tomcat

6.0 sever and MYSQL 5.5 database. mirTarPri online is freely

accessible for non-commercial use at http://bioinfo.hrbmu.edu.

cn/mirTarPri (or http://210.46.85.180:8080/mirTarPri). The

mirTarPri working principles and users’ manual can be accessed

on the HELP page. mirTarPri provides two programs: (1)

Prioritizing inputted candidate target lists according to a miRNA.

Users can choose combinations of multiple functional genomic

data sets for different purposes; and (2) Searching for mirTarPri

Figure 6. Comparison with other integrated methods. (A) mirTarPri recognized the most targets of golden standard data and got the highest
ES of 8.25. (B) After prioritization of mirTarPri, ES of three methods were greatly increased.
doi:10.1371/journal.pone.0053685.g006

Figure 7. Comparison with other methods based on PAR-CLIP data. (A) mirTarPri recognized the most targets and had the highest ES of 7.34.
(B) Curves showing prediction precision versus sensitivity indicated that mirTarPri performed better than other methods.
doi:10.1371/journal.pone.0053685.g007
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prioritized miRNA target lists based on six prediction methods.

mirTarPri also allows downloading of corresponding datasets and

includes links to relative web sites.

Discussion

In this present study, we showed that target genes of the same

miRNA tend to share similar functional categories and tend to

cluster together in the PPI network. Taking advantage of these

functional similarities, we developed a method named mirTarPri

to integrate functional information and prioritized miRNA target

gene lists provided by commonly used target prediction databases,

and demonstrated that mirTarPri was a valuable tool for

improving of miRNA target prediction.

We extensively validated our method in a large-scale leave-one-

out cross validation study using 1,799 validated miRNA-target

pairs. For every functional data source, mirTarPri displayed

higher AUC for predicted target genes than randomly selected

genes. After integration, the BP-HPRD integrated rank provided

by mirTarPri yielded the highest AUC of 0.84, indicating specific

and sensitive in ranking candidate genes. Applying mirTarPri to

high-throughput data indicated that mirTarPri was capable to

rank both cancer and non-cancer related targets. For target

prediction, we used mirTarPri to prioritize the results of six

commonly used and well-established miRNA target prediction

databases (TargetScan, PicTar, PITA, DIANA-microT, miRanda

and RNAhybrid), which have previously been shown to be

effective. We evaluated the efficiency of our procedure by

analyzing a set of 996 previously validated miRNA-target pairs.

Thus, the prioritized results represented a remarkable improve-

ment. Comparison with other integrated systems indicated that

mirTarPri performed better than other integrated systems in

recognizing and prioritizing miRNA target lists. mirTarPri was

also a flexible way to rank other target prediction methods.

For miRNA target prediction, most efforts have concentrated

on the identification of seed-matching pairs. However, some

validated miRNA target sites do not contain a complete seed

match, indicating that perfect seed pairing is not a reliable

criterion for predicting miRNA-target interactions [14]. Un-

derstanding the regulatory mechanisms of miRNAs in functional

categories and complex interactions is essential for the discovery of

functional miRNA-target pairs in complex cellular systems.

mirTarPri can compensate for the limitations of seed-matching

models. To the best of our knowledge, mirTarPri is the first tool to

prioritize candidate miRNA target lists by systematically in-

tegrating multiple sources of functional genomics data. Therefore,

mirTarPri is a novel tool for predicting miRNA targets.

In our previous study, we performed a framework to prioritize

cancer risk miRNAs in a similar way used Gene Ontology data

only [37]. Although achieved remarkable success, it overlooked the

contribution from other functional data sets for studying gene sets

association. In this work, we fused multiple functional data sets

and used Q statistic method to integrate separate functional

correlation prioritization ranks into a single rank. This strategy can

handle missing annotated genes and minimize bias for well-

annotated targets. We also used fold-enrichment measurements to

convert the performance of mirTarPri in prioritizing candidate

gene lists into a quantifiable score.

There were 94 miRNAs that had a single experimentally

validated target in our collection after combining data from

TarBase, miR2Disease and miRecord. Because leave-one-out

cross validation can only be carried out with more than two

targets, these single-target miRNAs were not included in the leave-

one-out cross validation process. Apart from this, all miRNAs were

included in the following prioritization and comparison. Based on

the single-target miRNAs, mirTarPri also successfully prioritized

gold standard and CLIP targets (Figure S8).

mirTarPri prioritized existing miRNA target predictions based

on multiple functional genomic data sets. Although no novel

targets will be found in prioritized target lists, mirTarPri

performed better than myMIR, MAGIA, and HOCTAR at

recognizing positive targets and reducing the false-positive rates in

the upper ranks. Currently, our method is suitable for prioritizing

candidate targets for miRNAs with known targets. Fortunately, the

number of experimentally validated miRNA targets has increased

rapidly in recent years and many have known targets [59].

Therefore, with the continued growth of known miRNA target

data, our method will be increasingly useful in future studies. We

believe that mirTarPri will play an important role as a pre-

processing step to guide ‘wet’ lab experimental designs.

In conclusion, we presented a computational method for

efficiently prioritizing miRNA candidate target lists. We believe

that our method will significantly contribute to the fast-growing

number of publicly available functional data sources and to the

development of comprehensive biological categories for functional

characterization.

Supporting Information

Figure S1 An illustration of the functional similarity
between genes targeted by hsa-miR-7. Five target genes

(PAK1, SNCA, EGFR, IRS1 and IRS2) were mapped GO: BP

(A), MF (B), CC (C) and PPI network: HPRD (D), BIND (E),

BioGrid (F), IntAct (G), MINT (H),OPHID (I). Four targets were

mapped to common terms GO: 0005634 and GO: 0005829 in BP

(A), The same trends were observed for the MF and CC. Five

target gene products (light blue) were close to each other on the

HPRD network, and the average shortest distance was 1.70 (D).

The same trends were observed for other networks: the target

genes in PPI networks occupied a narrow niche.

(TIF)

Figure S2 Curves showing prediction precision versus
sensitivity was also generated for leave-one-out cross
validation. (A) Analysis based on the three orthogonal ontologies

of GO. BP performed better than other ontologies with high

precision. (B) Analysis base on six PPI networks. HPRD performed

better than other networks with high precision. (C) pROC curve of

mirTarPri integrated BP and HPRD. (D) pROC curve of

mirTarPri in testing unbiased targets identified by microarray or

pSILAC from human normal cells.

(TIF)

Figure S3 Leave-one-out cross validation results for 69
Arabidopsis thaliana genes based on integrated BP
ontology and MINT data. (A) ROC curve for the validation

with an AUC of 0.90. (B) pROC curve for the validation showing

high prediction precision versus sensitivity.

(TIF)

Figure S4 Quantity comparison of mirTarPri (red) with
six target predictions in prioritizing previously validat-
ed miRNA targets (blue). The values were calculated using the

enrichment-fold method.

(TIF)

Figure S5 (A) ROC curves for mirTarPri in comparison with

three other methods using 996 gold standard data. (C), (E), (G)

After prioritization of mirTarPri (*), AUC scores of three methods

were greatly increased than Before prioritization. (B), (D), (F), (H)

Corresponding curves showing prediction precision versus sensi-
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tivity. The precision of these three methods was increased after

prioritization (*).

(TIF)

Figure S6 PAR-CLIP identified targets were categorized
according to the miRNA binding number they contained.
Targets with multiple binding sites tended to be prioritized

forward by mirTarPri.

(TIF)

Figure S7 Comparison with other methods based on
mouse HITS-CLIP data. (A) mirTarPri recognised the most

targets and had the highest ES of 5.96. (B) Curves showing

prediction precision versus sensitivity indicated that mirTarPri

performed better than other methods. For HOCTAR, MAGIA

and myMIR only consider on human miRNA target prediction,

mirTarPri was not compared with these methods for mouse

HITS-CLIP data.

(TIF)

Figure S8 Based on single-target miRNAs, mirTarPri
successfully prioritized gold standard and PAR-CLIP
targets. For the gold standard targets, mirTarPri had the highest

ES of 9.40 (A) and the highest precision (B). For the PAR-CLIP

data, mirTarPri had the highest ES of 6.79 (C) and highest

precision (D).

(TIF)

Figure S9 An overview of the mirTarPri online frame-
work. (1) Prioritize user input candidate target list based on

multiple functional genomics data; (2) Search mirTarPri priori-

tized miRNA target prediction databases; (3) Download corre-

sponding data sets; (4) Links to relative functional data sources;

and (5) Downloadable description of the mirTarPri working

principle and users’ manual.

(TIF)

Table S1 Detailed information for 996 gold standard
targets tested by mirTarPri.

(XLS)
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