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Abstract

Supply of anthropogenic nitrogen (N) to the biosphere has tripled since 1960; however, little is known of how in situ
response to N fertilisation differs among phytoplankton, whether species response varies with the chemical form of N, or
how interpretation of N effects is influenced by the method of analysis (microscopy, pigment biomarkers). To address these
issues, we conducted two 21-day in situ mesocosm (3140 L) experiments to quantify the species- and genus-specific
responses of phytoplankton to fertilisation of P-rich lake waters with ammonium (NH4

+), nitrate (NO3
2), and urea ([NH2]2CO).

Phytoplankton abundance was estimated using both microscopic enumeration of cell densities and high performance
liquid chromatographic (HPLC) analysis of algal pigments. We found that total algal biomass increased 200% and 350%
following fertilisation with NO3

2 and chemically-reduced N (NH4
+, urea), respectively, although 144 individual taxa exhibited

distinctive responses to N, including compound-specific stimulation (Planktothrix agardhii and NH4
+), increased biomass

with chemically-reduced N alone (Scenedesmus spp., Coelastrum astroideum) and no response (Aphanizomenon flos-aquae,
Ceratium hirundinella). Principle components analyses (PCA) captured 53.2–69.9% of variation in experimental assemblages
irrespective of the degree of taxonomic resolution of analysis. PCA of species-level data revealed that congeneric taxa
exhibited common responses to fertilisation regimes (e.g., Microcystis aeruginosa, M. flos-aquae, M. botrys), whereas genera
within the same division had widely divergent responses to added N (e.g., Anabaena, Planktothrix, Microcystis). Least-squares
regression analysis demonstrated that changes in phytoplankton biomass determined by microscopy were correlated
significantly (p,0.005) with variations in HPLC-derived concentrations of biomarker pigments (r2 = 0.13–0.64) from all major
algal groups, although HPLC tended to underestimate the relative abundance of cyanobacteria. Together, these findings
show that while fertilisation of P-rich lakes with N can increase algal biomass, there is substantial variation in responses of
genera and divisions to specific chemical forms of added N.
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Introduction

Human activities such as farming and industrial fixation of

atmospheric nitrogen (N) have tripled the supply of N to the

biosphere since 1960 and are expected to double present levels of

N influx by 2050 to meet future demands for food production

[1,2]. In particular, application of N fertilisers will exceed 275 Tg

N year21 and will be concentrated in regions where centuries of

farming may have saturated soils with phosphorus (P) [3,4],

increased P export to lakes [5], and overloaded surface waters with

P [6]. In these regions, lakes already exhibit poor predictive

relationships between P influx and algal abundance [7], contin-

uously high concentrations of dissolved P despite abundant

phytoplankton [3,8], insufficient biological fixation of N to support

primary production [9,10], and strong positive correlations

between N influx and total algal or cyanobacterial abundance

[6,11]. Taken together, these findings suggest that persistent

fertiliser application has weakened the regulatory role of P [12,13],

and that pollution with N may further degrade water quality in P-

rich lakes [11].

At present, most evidence shows that freshwater eutrophication

ultimately arises from persistent increases in P influx from urban

and other anthropogenic sources [14–16]. However, synthesis of

laboratory studies [17,18], in situ mesocosm experiments [19,20],

whole-ecosystem manipulations [21] (but see) [22], catchment-

scale mass balances [11,23], regional surveys [24] and palaeo-

limnological reconstructions [6,11] also demonstrates that rises in

N influx can independently increase algal biomass, alter the

proportion of diazotrophic cyanobacteria, and increase toxicity of

some algae, particularly in lakes with total P (TP) concentrations

over 100 mg P L21 and N : P mass ratios below ,20: 1 [25]. Lack

of reconciliation between these two robust data sets has resulted in

vigorous and occasionally acrimonious debate over the unique and
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interactive roles of N in regulating baseline lake productivity

[26,27] and cultural eutrophication [13,28,29].

Continuing uncertainty over ecosystem consequences of N

pollution may arise in part because of comparatively limited

understanding of how effects of N may vary with phytoplankton

identity, nutritional capability and status, and the chemical form of

added N [18,30,31]. At a coarse taxonomic level, preliminary

evidence suggests that fertilisation of eutrophic waters with

ammonium (NH4
+) or urea ([NH2]2CO) increases the in situ

abundance of non-N-fixing cyanobacteria [20,25] which exhibit

efficient light use [32] and superior NH4
+ uptake kinetics [33], as

well as chlorophytes which can sustain rapid growth using diverse

N sources if sufficient light is present [34,35]. In contrast, the

competitive advantage of diazotrophic cyanobacteria can be lost

following N fertilisation because N uptake suppresses formation of

heterocysts and nitrogenase enzyme complexes needed for

biological fixation of N2 [20,36]. Finally, addition of nitrate

(NO3
2) to P-rich waters can favour production of diatoms if silica

(Si) is available [37,38], possibly due to non-saturating uptake

kinetics for this compound [39]. However, despite these broad

generalizations, substantial uncertainty surrounds the in situ

response of individual species or genera of phytoplankton to

fertilisation with N [40–42] due to low taxonomic resolution of

prior N studies (division-level), substantial overlap among algae in

in vitro nutrient-uptake capabilities (N half-saturation constant,

Ks, = 1–14 mg N L21) and maximum growth rates (N-sufficient

Vmax = 0.2–8.0 ln units day21) [30,31,43], and the high degree of

environmental simplification in laboratory and microcosm studies

[44].

In this study, we conducted 21-day long mesocosm (3140 L)

experiments in summer and autumn to quantify the in situ response

of over 140 individual phytoplankton taxa to enrichment of P-rich

freshwaters with NH4
+, NO3

2 and urea. Effects of N addition on

total algal abundance and gross community composition in this

experiment have been analysed previously using high performance

liquid chromatography (HPLC) and reported in [25]. Instead the

unique objectives of the present study are four-fold: 1) to use

microscopic analysis to quantify interspecific variation among

algae in the response to N amendments; 2) to determine how

phytoplankton-specific responses vary with the chemical form of

added N; 3) to evaluate the influence of the taxonomic resolution

of microscopic analysis (division, genus, species) on interpretation

of N effects on phytoplankton, and; 4) to compare changes in

phytoplankton assemblages derived from microscopic enumera-

tion of cell densities and chromatographic analysis of algal

pigments. As suggested elsewhere, biomarker-based analyses might

be biased by limited taxonomic resolution, phylogenetic variation

in cellular pigment content, or changes in ambient environmental

conditions (light, temperature, nutrient availability) which unique-

ly influence the cellular quota of pigments [45–47]. Improved

understanding of the nature of taxon-specific responses to N influx

may help protect aquatic ecosystems against future pollution with

agricultural N [2], optimise wastewater treatment procedures [28],

and resolve on-going debate concerning the respective roles of N

and P in regulating cultural eutrophication [48].

Methods

Study Site
The experiments were conducted in Wascana Lake (Fig. 1), an

unstratified, 0.5 km2, 7-m deep basin located within the central

urban park of the City of Regina, Saskatchewan, Canada

(50u26.179N, 104u36.919W). Regional evaporation (,60 cm

year21) exceeds precipitation by two-fold, the climate is classified

as sub-humid continental, and mean monthly air temperatures

vary by up to 35uC (19uC in July, 216uC in January) [49].

Wascana Lake is fed by Wascana Creek, a permanent stream

which drains a 1400 km2 agricultural basin [49]. Snow melt

during March–April typically accounts for 80% of annual runoff in

the region [50] resulting in seasonally variable, but generally low,

water residence in the lake (decadal mean ,0.07 yr) [49].

Wascana Lake has been monitored biweekly (May–Aug) since

1996 and exhibits elevated but annually-variable mean (6SD)

summer concentrations of Chl a (39648 mg L21), soluble reactive

P (SRP) (1926161 mg P L21), total dissolved P (TDP)

(2996208 mg P L21), NO3
2 (1196217 mg N L21), NH4

+

(946203 mg N L21), total dissolved N (TDN) (13276726 mg N

L21), and dissolved organic carbon (DOC) (16.264.0 mg C L21).

Consequently, mean mass ratios of TDN : SRP are low (6.966.6).

Typical plankton phenology includes a progression from a spring

community composed of diatoms, cryptophytes, and copepods

(Diacyclops thomasi, Leptodiaptomus siciloides), through a pronounced

June clearwater phase with high densities of large-bodied

Cladocera (D. magna, D. pulicaria, D. galeata mendotae) [51], to a

summer and autumn community composed of small-bodied

zooplankton (Eubosmina coregoni, Bosmina longirostris, Diaphanosoma

birgei, Daphnia retrocurva, Ceriodaphnia, Chydorus, rotifers) and abun-

dant cyanobacteria [8,49]. Overall, cryptophytes, chrysophytes

and chlorophytes comprise ,20% of summer algal biomass.

Instead, N-fixing Aphanizomenon flos-aquae and Anabaena spp. are

Figure 1. Map of Wascana Lake, Saskatchewan, Canada. Map shows a) the continental location, b) the gross drainage area (1400 km2) and c)
depth contour map with the location of the mesocosm experiment (shaded box).
doi:10.1371/journal.pone.0053277.g001
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abundant immediately after the clearwater phase, Microcystis spp.

are common in the warm (.25uC) surface waters during August,

Planktothrix agardhii is dominant during late-August through

September, and Phormidium (and Cyclotella) spp. increase thereafter.

Consequently, late-summer concentrations of the cyanobacterial

toxin microcystin (MC) can be 10-fold greater than the upper

limits recommended by the World Health Organization for

drinking water (1 mg MC L21).

Mesocosm Experiments
Three-week long mesocosm experiments were conducted

during both August and September of 2008, as described in

[25]. Briefly, 2-m wide by 1-m deep, cylindrical, opaque white

poly-weave enclosures (3140 L) were open to the atmosphere,

closed to the sediments, and located in a sheltered embayment

(Fig. 1). Enclosures were filled passively (drawn up from depth),

attached to anchored floating frames, and assigned treatments at

random. No attempt was made to circulate these well-mixed

mesocosms or to modify zooplankton densities, although minnow

traps were added to each enclosure and checked routinely to

remove planktivorous fish. Advantages and limitations of this

experimental design for eutrophication studies are detailed in [20]

who studied division-level effects of urea on algal communities and

[25] who also contrasted urea with nitrate and ammonium effects,

but did not analyse species- and genus-level responses.

Each experimental treatment consisted of three replicates to

which N was added on days 0, 7, and 14 as sodium nitrate

(NaNO3), ammonium chloride (NH4Cl) or urea ((NH2)2CO). All

trials received 6 mg N L21 per week, whereas unamended

enclosures served as controls. Nitrogen additions were intended

Figure 2. Biomass responses of total algal response to fertilisation with nitrogen in mesocosms conducted in August and
September. Time series include; a) total phytoplankton biomass (mg wet mass L21), b) Chl a (mg L21) and c) the ratio of Chl a : total phytoplankton
biomass. Symbols represent mean and standard error (6 SE, n = 3) for each nitrogen treatment, including amendments with NH4

+ (shaded triangle,
coarse dashed line), NO3

2 (shaded square, medium dashed line) and urea (shaded circle, fine dashed line), as well as unamended (control)
mesocosms (solid circle, solid line).
doi:10.1371/journal.pone.0053277.g002
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to increase soluble N : P to .22: 1 by mass to suppress N-fixing

cyanobacteria [52], were based on decadal mean concentrations of

SRP and TDN, and were within the range of N content observed

in regional lakes [50].

Sampling took place on days 0, 3, 7, 14 and 21 between 10 00 h

and 14 00 h, immediately after N addition on day 0, and before N

additions on days 7 and 14. Water was collected from mesocosms

using a 6-L Van Dorn bottle deployed centrally at 0.5-m depth. All

water samples were screened (247-mm mesh) in the field to remove

invertebrates, filtered through 0.45-mm pore membrane filters

within 2 hr, and stored in darkness at 4uC until analysed for

chemical solutes. Samples of 100 mL were collected from Van

Dorn bottles and preserved with Lugol’s iodine solution for

microscopic analysis of phytoplankton species composition and

abundance. In addition, particulate organic matter (POM) was

concentrated on GF/C glass fibre filters (nominal pore 1.2-mm),

and stored frozen (210uC) in darkness until analysis of biomarker

pigments using HPLC. Physical (Secchi disk transparency,

temperature) and chemical parameters (conductivity, dissolved

O2, pH) were also recorded in the field following standard

protocols [11,49] and are reported in [25].

Laboratory Analysis
Preserved phytoplankton were identified, enumerated and

measured using a Leica model DM IRB inverted light microscope

(Leica Microsystems, Concord, Canada) and the Utermöhl

sedimentation technique [53]. Aliquots of 2-mL were settled for

24 h prior to enumeration and analysis. Counts of cells, filaments

and colonies were conducted at 1006, 4006 or 10006
magnification, depending on the size and abundance of algal

units, and were identified following the taxonomic conventions of

[54–56]. Enumeration at 1006was made on every second transect

within 50% of the depositional area of slides, those at 4006on one

horizontal and one vertical transect, and counts at 10006 on 30

random fields of view, such that over 300 algal units were recorded

for each sample. Cell measurements were conducted for abundant

Table 1. Repeated-measures analysis of variance of total phytoplankton biomass, chlorophyll a, chlorophyll a : biomass ratio, and
biomass of major algal groups.

Response variable August September

p Post hoc p Post hoc

Total phytoplankton biomass

Treatment 0.041 NH, U, NO.U, NO, C 0.000 U, NH, NO.C

Interaction 0.042 0.000

Chlorophyll a

Treatment 0.043 NH, U, NO.U, NO, C 0.000 U, NO, NH.C

Interaction 0.016 0.000

Chlorophyll a : biomass ratio

Treatment 0.335 – 0.077 –

Interaction 0.457 0.000

Cyanobacteria

Treatment 0.110 – 0.000 NH, U, NO.C

Interaction 0.035 0.000

Chlorophytes

Treatment 0.048 NH, U, NO.U, NO, C 0.001 NH.U, NO, C

Interaction 0.053 0.000

Diatoms

Treatment 0.004 NO, U, C.C, NH 0.009 NO, U, C.U, C, NH

Interaction 0.000 0.000

Chrysophytes

Treatment 0.092 – 0.005 NH, U.U, C, NO

Interaction 0.032 0.004

Cryptophytes

Treatment 0.025 NO, U, C.U, C, NH 0.020 U, NO, C.NO, C, NH

Interaction 0.007 0.002

Dinoflagelates

Treatment 0.009 C, U, NO.NO, NH 0.345 –

Interaction 0.000 0.847

Probability (p) values were calculated for treatment and treatment-time interaction effects. Tukey’s HSD post hoc results represent mean treatment values ordered from
largest to smallest and significant differences (.) at a= 0.05, for urea (U), nitrate (NO), ammonium (NH), and the control (C). If a treatment falls on both sides of a ‘‘.’’
this indicates no significant difference from the treatments on either side. All phytoplankton biomass (mg L21) data, but not chlorophyll a concentrations (mg L21), were
log10(x+1) transformed prior to analysis to meet assumptions of normality. Probabilities were not corrected for number of comparisons. See Methods for additional
information.
doi:10.1371/journal.pone.0053277.t001
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taxa at 10006magnification on 30 randomly-selected individuals

from a composite sample representing all enclosures and sampling

events. Biovolume calculations followed [57] and were converted

to cellular biomass by assuming that 1 mm3 of volume was

equivalent to 1 mg of wet-weight biomass.

Phytoplankton pigments were extracted from POM using a

mixture of acetone : methanol (80: 15, by volume) and were

quantified using standard methods including spectrophotometry

[58] and HPLC analyses [59]. HPLC used an Agilent model 1100

system (Agilent Technologies Inc, Mississagua, Canada) fitted with

photodiode-array and fluorescence detectors and was calibrated

using authentic pigment standards. Chlorophyll a (Chl a)

concentrations were used to estimate total algal abundance (mg

L21), while other taxonomically-diagnostic pigments (nmol L21)

were used to quantify changes in siliceous algae (mainly diatoms

and chrysophytes) (fucoxanthin), cryptophytes (alloxanthin), dino-

flagellates (peridinin), chlorophytes (Chl b) and colonial cyanobac-

teria (myxoxanthophyll). Pigments from N-fixing cyanobacteria

(canthaxanthin, aphanizophyll) were near detection limits during

the 2008 experiments and were not included in further analyses.

Concentrations of dissolved nutrients were conducted at the

University of Alberta Water Chemistry Laboratory following [60],

are reported in [25], and included TDP, SRP, TDN, NH4
++NH3

(as NH4
+ hereafter), and NO3

2+NO2
2 (as NO3

2 hereafter).

Concentrations of urea [61] and dissolved organic carbon (DOC)

[62] were determined at University of Regina Environmental

Quality Analysis Laboratory using standard protocols reported in

[25].

Numerical Analysis
Repeated measures analysis of variance (RM-ANOVA) was

used to estimate the statistical significance of differences in

phytoplankton abundance among treatments, as well as interac-

tions between time and treatment effects [20,25]. Briefly, data

were transformed (log10 [x+1]) as necessary prior to analysis and

appropriate critical F-statistics selected for experiments with four

treatment levels, three replicates and five sampling events (i.e.

Ftreatment = 4.07, Ftime = 2.78, Ftreatment6time = 2.18). Statistically-

significant differences among treatments were tested using Tukey’s

Honestly Significant Difference (HSD) post hoc test. No correction

was made for the number of comparisons as one of our intentions

was to quantify the general patterns of phytoplankton response to

N amendments, although we recognize that this approach may

inflate the number of apparently-significant algal responses. Least-

squares regression analysis was used to quantify the linear

relationship between microscopic- and pigment-based estimates

of phytoplankton abundance. RM-ANOVA and linear regressions

were conducted using software from SPSS version 11 (IBM,

Armonk, NY, USA) and SYSTAT version 10 (SYSTAT Software

Inc., Chicago, IL, USA), respectively.

Principal component analysis (PCA) was used to summarise the

main patterns of phytoplankton community response to N

fertilisation, and to evaluate how patterns of response varied with

the taxonomic resolution of microscopic analysis, including

division or class (division hereafter), genus and species. These

levels of classification were selected because they are commonly

used in limnological studies, but differ considerably in the total

effort required for microscopic analysis [56]. An individual genus

or species was included in PCA only if their mean biomass for the

experiment was .1% of the total algal abundance in at least one

of the twelve experimental enclosures. Estimates of algal abun-

dance were log10 (x+1)-transformed prior to analysis using

CANOCO version 4.5 software (Microcomputer Power, Ithaca,

NY, USA). As our intention was to evaluate algal response to N

Figure 3. Biomass responses of major phytoplankton groups to
fertilisation with nitrogen in mesocosms conducted in August
and September. Algal groups (mg wet mass L21) include; a)
cyanobacteria, b) chlorophytes, c) diatoms, d) chrysophytes, e)
cryptophytes and f ) dinoflagellates. Symbols represent mean and
standard errors (6 SE, n = 3) for each of the nitrogen treatments,
included amendments with NH4

+ (shaded triangle, coarse dashed line),
NO3

2 (shaded square, medium dashed line) and urea (shaded circle,
fine dashed line), as well as unamended (control) mesocosms (solid
circle, solid line).
doi:10.1371/journal.pone.0053277.g003
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fertilisation, categorical N treatments (e.g.,+or 2 urea) were

included as passive variables in each PCA, whereas other

environmental variables were not included in the ordinations.

This study obtained all necessary permits and approvals

required by Environment Canada, Saskatchewan Environment,

Transport Canada, and the Wascana Centre Authority (City of

Regina) and adhered to all ethical and environmental regulations

of the University of Regina and the Natural Sciences and

Engineering Research Council of Canada.

Results

Lake and Mesocosm Conditions
As presented in [25], nutrient concentrations in Wascana Lake

were elevated (,125–175 mg P L-1, ,1.2–1.6 mg N L-1), TDN :

TDP mass ratios were low (,10–15), and bottle bioassays revealed

that phytoplankton growth exhibited instantaneous limitation by

N supply during both August and September. As expected,

mesocosm fertilisation elevated TDN to 15–20 mg N L-1, but had

few measured effects on mesocosm water chemistry (pH,

conductivity, oxygen, etc.) other than a rapid decline in SRP

from ,100 mg P L-1 to ,5 mg P L-1, and a 50% decline in TDP,

by day 14 in all N-amended enclosures. Further details and

interpretations of water chemistry change are presented in [25].

Community Response to N fertilisation
Total algal biomass measured microscopically or using ubiqui-

tous Chl a increased ,200% and ,350% when fertilised with

NO3
2 and chemically-reduced N (urea, NH4

+), respectively

(Fig. 2). Biomass response to NH4
+ fertilisation during August

and all N amendments in September was statistically significant

(ptreatment ,0.05) relative to control enclosures (Table 1), although

there was no significant effect of treatment on the ratio of Chl a :

biomass (ptreatment .0.05).

The biomass response of algal divisions varied substantially with

both phylogenetic group and chemical form of added N (Fig. 3,

Table 1). In particular, abundance of cyanobacteria (Fig. 3a),

chlorophytes (Fig. 3b) and chrysophytes (Fig. 3d) increased 400–

800% following fertilisation with NH4
+ and secondarily urea,

changes which were significant during September (ptreatment

,0.005), but only marginally so during August (0.05,ptreatment

,0.11) due to high variability among NH4
+ enclosures. In

contrast, biomass of diatoms (Fig. 3c) and cryptophytes (Fig. 3e)

increased ,300% and ,600% in treatments receiving NO3
2 and

urea, respectively, but were suppressed by addition of NH4
+

(ptreatment ,0.025) (Table 1). Finally, dinoflagellates were ,500%

more abundant in control mesocosms and those receiving urea

during August relative to enclosures fertilised with NH4
+ or NO3

2

(ptreatment = 0.009), but showed little response to N additions during

the September experiment (Fig. 3f).

Species and Genus Response to N fertilisation
Phytoplankton assemblages in mesocosms consisted of 144

phytoplankton taxa, of which 51 responded significantly to N

treatments (Table S1), 45 exhibited an increase in biomass

following N fertilisation, and 14 had a wet-weight biomass of more

than 1 mg L21 on at least one sampling date (Fig. 4, Table 2).

Overall, the biomass-dominant species exhibited distinctive

responses to specific N compounds. For example, fertilisation

with NH4
+ consistently increased growth of Planktothrix agardhii

(Fig. 4a), a species which accounted for up to 60% of total biomass,

some members of the family Volvocaceae (Pandorina morum,

Pledorina illinoisensis, Gonium pectorale) (Fig. 4h) (up to 50% of

biomass) and Oocystis spp. (Fig. 4g) (,10% of biomass). Similarly

some algae were stimulated by both forms of chemically-reduced

N, including Phormidium spp., Monoraphidium spp., Scenedesmus spp.,

Coelastrum astroideum and Mallomonas caudata (Fig. 4b–f). In contrast,

species from the genera Cyclotella (Fig. 4l) and Cryptomonas (Fig. 4m)

(10–40% of biomass) were stimulated more by NO3
2 and urea

than by NH4
+, while the dinoflagellate Ceratium hirundinella (Fig. 4n)

(25–50% of biomass) and rare diazotrophic cyanobacteria

(Aphanizomenon flos-aquae, Anabaena viguieri, Anabaena spp.) grew

poorly in fertilised enclosures. Finally, some abundant algae

(Microcystis aeruginosa, Micractinium pusillum, Pediastrum spp.) (Figs 4i,

j, k) (10–40% of biomass) showed inconsistent responses to

fertilisation, with highest biomass recorded following amendment

with NO3
2 or urea in August, and with NH4

+ during September.

Influence of Taxonomic Resolution on Interpretation of N
effects

PCA captured 53.2–69.9% of variation in phytoplankton

community composition on the first two ordination axes when

phytoplankton was resolved to level of division, genus or species

(Fig. 5). Total explained variation decreased only slightly with

increased taxonomic resolution. In general, axis 1 explained more

variance in the September experiment (40.9–55.4%) than during

August trials (32.4–43.6%). During August, axis 1 was associated

positively with NH4
+ at all taxonomic levels and negatively with

NO3
2 and urea for PCAs with genus or species resolution, while

axis 2 was associated most strongly with control mesocosms at all

taxonomic resolutions. During September, axis 1 was correlated

positively with NH4
+ treatments and negatively with NO3

2

treatments at the division and genus levels, but was not related

linearly to any N treatment in the PCA of algal species. In

contrast, axis 2 was associated positively with the urea, control,

and NO3
2 treatments at the division, genus and species levels,

respectively, and negatively with the control, urea, and NH4
+ trials

at the division, genus and species levels, respectively.

PCA of algal divisions confirmed that total cyanobacterial

biomass was associated positively with NH4
+ treatments in both

experiments, while that of chrysophytes and euglenoids responded

positively to NH4
+ in September alone (Figs. 5a, b). In contrast,

chlorophyte, cryptophyte and diatom abundances were elevated in

mesocosms treated with urea and NO3
2 during August, but NO3

2

(diatoms) or urea alone (chlorophytes and cryptophytes) during

September. Finally, dinoflagellate abundance was associated

mainly with control enclosures in August, but not during

September.

Multivariate analysis at a finer taxonomic resolution demon-

strated that genera within algal divisions often exhibited individ-

ualistic responses to N treatments (Fig. 5c, d). Among cyanobac-

teria, Planktothrix was strongly associated with NH4
+ treatments in

both experiments, whereas Microcystis was abundant in enclosures

amended with urea and NO3
2 only during August, and Phormidium

was abundant in urea treatments during September. Similarly, the

chlorophytes Closterium and Pleodorina were associated positively

Figure 4. Biomass responses of important phytoplankton species to fertilisation with nitrogen in mesocosms conducted in Augusts
and September. Biomass presented as mg wet mass L21. Symbols represent mean and standard errors (6 SE, n = 3) for each of the nitrogen
treatments, including addition of NH4

+ (shaded triangle, coarse dashed line), NO3
2 (shaded square, medium dashed line) and urea (shaded circle, fine

dashed line), as well as unamended (control) mesocosms (solid circle, solid line).
doi:10.1371/journal.pone.0053277.g004
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with NH4
+ treatments during August; however, Micractinium and

Coelastrum were common in urea amendments during September,

while Monoraphidium and Pediastrum were associated with urea

treatments in both experiments and with NO3
2 in during August.

Divergent responses were also recorded for cryptophytes genera,

with Cryptomonas being associated positively with NO3
2 fertilisation

during August and urea treatments in both months, and Komma

exhibiting elevated abundance within control enclosures during

August. Finally, the chrysophyte Mallomonas exhibited the funda-

mentally different responses to those of Chromulina and Ochromonas.

PCA of common algal species (.1% of biomass) revealed low

variability among congeneric taxa in response to N treatments

(Figs. 5e, f). For example, Microcystis aeruginosa, M. botrys and M. flos-

aquae were all associated weakly with urea and NO3
2 treatments

during August. Similarly Cryptomonas ovata and C. erosa, as well as

Pediastrum duplex and P. boryanum, responded positively to NO3
2

and urea treatments, whereas Synedra acus and S. ulna were

common in NH4
+ treatments. Congruent ordination of congeneric

species was also evident for members of the genera Cyclotella and

Mallomonas.

Comparison of Microscopy and HPLC
Changes in phytoplankton biomass determined by microscopy

were correlated significantly (ptreatment ,0.005) with variations in

concentrations of taxonomically-diagnostic pigments for all major

algal groups (Table 3). The strongest correlations were observed

for Chl b-chlorophytes (r2 = 0.42–0.63), myxoxanthophyll-colonial

cyanobacteria (r2 = 0.31–0.52), and fucoxanthin-siliceous algae

(r2 = 0.29–0.46), although significant linear relationships were

recorded for alloxanthin-cryptophytes (r2 = 0.18–0.28) and peridi-

nin-dinoflagellates (r2 = 0.13–0.36).

Patterns of temporal change in gross community composition

(division level) were also very similar when analysed by microscopy

or HPLC (Fig. 6). Overall, HPLC analysis tended to underesti-

mate cyanobacterial contributions to the phytoplankton commu-

nity, whereas chlorophytes and cryptophytes composed a greater

fraction of total abundance when based on biomarker pigments.

Similarly, siliceous algae (diatoms+chrysophytes) were slightly

overrepresented by pigment analysis in the September experiment,

but not during trials conducted in August (Fig. 5e, f).

Discussion

Three-fold expansion of agricultural fertilisation [1], exponen-

tial growth of cities [2], high infrastructure costs to eliminate waste

N [63], and scientific debate concerning the role of N in

eutrophication [13,28] have combined to prolong N pollution

and degrade some freshwater ecosystems [11,64]. In part,

uncertainty over best management practices may arise because

we do not often distinguish clearly how algal response to N

pollution differs among taxonomic groups, whether the response of

individual taxa varies with the chemical form of N, or how

differences in analytical approach (microscopy, pigment biomark-

ers) affect the interpretation of N effects on water quality. Analysis

of experiments herein demonstrates that growth of .30% of

phytoplankton species in eutrophic lake waters was stimulated

Table 2. Repeated-measures analysis of variance for the
response of selected phytoplankton taxa to added nitrogen.

Response variable August September

p Post hoc p Post hoc

Planktothrix agardhii

Treatment 0.003 NH.U, NO, C 0.000NH, NO, U.C

Interaction 0.015 0.001

Phormidium spp.

Treatment 0.103 – 0.014U, NH, NO.NO, C

Interaction 0.101 0.010

Monoraphidium spp.

Treatment 0.174 – 0.041NH, U, NO.U, NO, C

Interaction 0.524 0.002

Coelastrum astroideum

Treatment 0.056 – 0.117 –

Interaction 0.364 0.222

Scenedesmus spp.

Treatment 0.013 U, NH, NO.NO, C 0.011NH, U.U, NO, C

Interaction 0.144 0.002

Mallomonas caudata

Treatment 0.001 NH, U.U, NO.NO,
C

0.001NH,U.U, NO.NO, C

Interaction 0.006 0.046

Oocystis spp.

Treatment 0.244 – 0.010NH, U.U, C, NO

Interaction 0.523 0.746

Volvocaceae

Treatment 0.059 – 0.000NH.U, C, NO

Interaction 0.247 0.000

Microcystis aeruginosa

Treatment 0.122 – 0.092 –

Interaction 0.003 0.046

Micractinium pusillum

Treatment 0.047 NO, U, NH.U, NH,
C

0.000NH.U.NO, C

Interaction 0.024 0.063

Pediastrum spp.

Treatment 0.249 – 0.004NH, U.U, NO.NO,
C

Interaction 0.262 0.000

Cyclotella spp.

Treatment 0.013 NO, U, C.C, NH 0.012NO, U, C.U, C, NH

Interaction 0.002 0.000

Cryptomonas spp.

Treatment 0.084 – 0.023U, NO.NO, C, NH

Interaction 0.018 0.002

Ceratium hirundinella

Treatment 0.003 C, U.U, NO.NO,
NH

0.906 –

Interaction 0.006 0.995

Probability (p) values were calculated for treatment and treatment-time
interaction effects. Tukey’s HSD post hoc results represent mean treatment
values ordered from largest to smallest and significant differences (.) at
a= 0.05, for urea (U), nitrate (NO), ammonium (NH), and the control (C). If a

treatment falls on both sides of a ‘‘.’’ this indicates no significant difference
from the treatments on either side. All phytoplankton biomass (mg L21) data
were log10(x+1??transformed prior to analysis to meet assumptions of
normality. Probabilities were not corrected for number of comparisons.
doi:10.1371/journal.pone.0053277.t002
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Figure 5. Principal component analysis of experimental phytoplankton assemblages at the a) division, b) genus, and c) species
level of taxonomic resolution. Genera and species were selected if their cumulative biomass over the course of each experiment was more than
1% of the total for any of the 12 enclosures. Algal densities were log10(x +1)-transformed as needed, and categorical nitrogen treatments (e.g.,+or –
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significantly by N fertilisation (Table S1), and that the differential

response of algal divisions to each chemical form of N (Fig. 3)

resulted from distinct responses of algal genera rather than from

unique responses of congeneric species (Fig. 5) consistent with

[65]. Specifically, fertilisation with NH4
+ increased total algal

abundance ,350% (Fig. 2) and cyanobacterial biomass over

500% (Fig. 3a) because Planktothrix agardhii accounted for up to

60% of phytoplankton biomass and its growth increased nearly

six-fold following addition of chemically-reduced N (Fig. 4a). In

contrast, Microcystis aeruginosa responded mainly to NO3
2 addition,

particularly when waters were warm [20,66]. These experiments

also documented significant correlations between microscopic-

and HPLC-based estimates of algal abundance (Table 3) consistent

with previous calibration exercises [45,46,67]. As well, the highly

similar patterns of temporal change in assemblage composition

(Fig. 6) infer that pigment-based investigations accurately repre-

sent how N can degrade lake ecosystems [6,11,20,25]. When

considered in the context of previous laboratory [17,18],

mesocosm [19,20], whole-lake [21,68], catchment [11,23,24]

and palaeolimnological studies [6,11], the present analysis

confirms that pollution with diverse forms of N can degrade P-

rich lakes by promoting toxic cyanobacteria such as Microcystis and

Planktothrix, but shows that there is no unique response of

‘cyanobacteria’ as has been suggested in management studies

[28,48].

Response of Predominant Phytoplankton to N
fertilisation

Addition of NH4
+ to P-rich lake water favoured a community

composed predominantly of nondiazotrophic Planktothrix agardhii, a

taxon known to produce high levels of microcystin [69,70].

Elevated growth of P. agardhii likely reflects its lower Km for

reduced N [33], higher maximum uptake rates [71] relative to

other taxa [38], and the general preference of cyanobacteria for

chemically-reduced forms of N [17,36]. In addition, low energetic

requirements for NH4
+ assimilation would have allowed P. agardhii

to maintain a high biomass and shade out competitors, thereby

perpetuating a competitive advantage for this low-light-adapted

taxon [72,73]. Continued dominance of P. agardhii into mid-

September was also consistent with algal phenologies seen in other

unstratified lakes [6] and with this species’ higher tolerance to low

temperatures relative to that of Microcystis [66,74]. Such selective

stimulation of Planktothrix growth by N can also result in five- to 10-

fold increases in water-column concentrations of microcystin

[20,25], as transcription of toxin synthesis genes is also up-

regulated by N assimilation [75].

Nitrate amendment favoured initial growth of large centric diatoms

such as Cyclotella spp. (Figs. 3c, 4l), before giving way to colonial

Microcystis spp. during August (Fig. 4i). As shown elsewhere, members of

the genus Cyclotella are often abundant in NO3
–rich eutrophic waters

[37,38,76], possibly because they exhibit higher affinity for NO3
2 [77]

and non-saturating uptake kinetics for that compound [39]. However,

under conditions in which their growth becomes limited by the supply

of P, Si or light [37,78], diatoms can be replaced by dense blooms of

slower-growing Microcystis spp. [43]. Members of this latter genus can

exhibit relatively low Km [33] and high Vmax [79] for NO3
2 under

in vitro conditions, are capable of substantial storage of P [10], and use

vertical migration to optimize energy receipt [80]. However, we

recommend caution when interpreting the mechanisms underlying

these rapid (,7 day) changes in algal composition both because our

experimental design may favour limitation of diatom growth by Si [20],

and because Microcystis abundance is also suppressed by water

temperatures less than 20uC [66,81]. Consequently, although our

mesocosms are suitable for evaluation of many pelagic processes [20],

we suggest that further in situ experimentation be conducted to evaluate

controls of diatom abundance, including use of mesocosms which

include benthic habitats.

Addition of urea to eutrophic environments stimulated the

growth of many phytoplankton taxa (Table S1; Figs 4, 5), similar

to findings from earlier laboratory [18,30,82] and field studies

[20,83]. Preference for urea as a N source may be widespread

among algae because this compound enters cells by passive

diffusion or light-independent transporters [84], transports two

NH4
+ for every molecule acquired [85], is assimilated into organic

matter without intracellular chemical reduction [36], and releases

CO2 following assimilation, partly reducing the need for active

uptake of HCO3
2 at high pH [86]. In fact, energetic costs for

assimilation of chemically-reduced N species are less than half that

associated with atmospheric N or dissolved NO3
2 [17], consistent

with our observation that total algal biomass was ,1.5-fold higher

when phytoplankton received NH4
+ or urea than when NO3

2 was

added (Fig. 2). However, despite expected energetic benefits of

urea and NH4
+, the wide variety of phytoplankton species

response to different chemical forms of N (Fig. 3, 4) demonstrates

that factors other than simple energetic costs of assimilation must

also influence algal response to N, including temperature [20,25],

nutrient co-limitation [31,37], or cellular stoichiometry [77,87].

Interestingly, all forms of N amendment increased growth of

chlorophyte algae (Figs 3b, 5e), including 26 of 69 taxa (Table S1).

Chlorophytes are sometimes associated with N-enriched eutrophic

environments [19], particularly those of shallow lakes where light may

penetrate to benthic substrates [21,34]. In general, green algae are

urea) were included as passive variables. All samples were included in each PCA; however, to simplify presentation, sample ordination points are not
presented and only select taxa are identified. Coloured arrows indicate cyanobacteria (blue), chlorophytes (green), cryptophytes (red), diatoms
(yellow), dinoflagellates (brown), and chrysophytes (purple). Proportion of total variation explained by first (x) and second (y) principle axes are
presented.
doi:10.1371/journal.pone.0053277.g005

Table 3. Least-squares regression analysis of the linear
relationship between microscopic and chromatographic
estimates of phytoplankton abundance.

Model August September

Pigment Algal group r2 p r2 p

Chlorophyll a Total biomass 0.641 0.000 0.418 0.000

Myxoxanthophyll Colonial cyanobacteria 0.313 0.000 0.523 0.000

Chlorophyll b Chlorophytes 0.630 0.000 0.416 0.000

Fucoxanthin Chrysophytes and
diatoms

0.292 0.000 0.458 0.000

Alloxanthin Cryptophytes 0.280 0.000 0.181 0.000

Peridinin Dinoflagellates 0.355 0.000 0.129 0.005

Phytoplankton biomass was measured by microscopy, while concentrations of
taxonomically-diagnostic biomarker pigments were analysed by
spectrophotometry (chlorophyll a) and high performance liquid
chromatography (all other pigments). Data were log10(x+1) transformed prior to
analysis (df = 58). Algal biomass was summed according to distribution of
indicator pigments prior to statistical analysis.
doi:10.1371/journal.pone.0053277.t003
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thought to have high light requirements [32] and, if sufficiently

illuminated, are competitive with other phytoplankton due to high

rates of cell division and diverse mechanisms of N assimilation [88].

However, the lack of consistent response among green algal genera to

individual forms of N (Fig. 4) suggests that pronouncements of division-

level response of chlorophytes to pollution with N are premature [48],

and that further research is needed to evaluate the complex

relationships between lake depth, irradiance regime, and N influx as

factors regulating growth of chlorophyte algae [34].

Figure 6. Mean relative abundance of the major phytoplankton groups in the mesocosms subject to addition of nitrogen. Treatment
include addition of ammonium, nitrate, urea and no nitrogen (control) (n = 3). Phytoplankton abundance was determined by microscopic
enumeration of biomass and by high performance liquid chromatography of algal pigments in experiments conducted during August and
September 2008. Algal groups (and pigments) include dinoflagellates (peridinin), cryptophytes (alloxanthin), diatoms and chrysophytes (fuoxanthin),
chlorophytes (chlorophyll b) and colonial cyanobacteria (myxoxanthophyll).
doi:10.1371/journal.pone.0053277.g006
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Effects of Taxonomic Resolution on Interpretation of N
effects

Comparison among PCAs (Fig. 5) revealed that generalisations

concerning algal response to N addition depended on the

taxonomic resolution of the microscopic analysis. Within the algal

divisions, genera exhibited high variability in response to added N

(Fig. 5c, d), likely reflecting substantial differences in morphology,

growth capabilities and nutrient uptake kinetics (see above). Given

the wide range in Km and Vmax observed in studies of isolated

algae and natural communities [41,89,90], it has been inferred

that variations among genera mainly reflect substantial differences

in colony size (mm-mm) and cell volume [91] for many divisions

[42,43]. In contrast, similar responses of closely-related species to

N amendments (Fig. 5e, f) may occur because the fundamental

niche of individual taxa has not yet diverged from shared lineages

[65,90,92], recent speciation has conserved important morpho-

logical and physiological traits [93] which control of nutrient use

[91], or local ecological interactions have already selected for

congeneric species with similar ecological attributes. However,

irrespective of the precise mechanism, the highly similar responses

of congenetic species to added N (e.g., Microcystis aeruginosa, M. flos-

aquae, M. botrys) combined with the low congruence of genera

within a given division (e.g., Anabaena, Planktothrix, Microcystis,

Aphanizomenon) (Table S1), suggests that important ecological

insights on the role of N in lake eutrophication may be obtained

without laborious identification of all phytoplankton to species

identity [92], assuming patterns observed herein generalise well to

other lakes.

Effects of Analytical Method on Interpretation of N
effects

Empirical (Fig. 6) and statistical (Table 3) comparison of

phytoplankton community composition derived from phytoplank-

ton analysis by microscopy and HPLC demonstrates that changes

in concentrations of biomarker pigments were influenced mainly

by variation in abundance of the predominant algae rather than

by the precise species composition of phytoplankton, irradiance

regime or nutrient availability [46,59,67]. Although cellular

pigment content (e.g., Chl a cell21) increases directly with N

availability and inversely with irradiance levels in the laboratory

[47], cellular quotas did not appear to be the main factor

regulating HPLC-based inference of algal abundance and

pigment-biomass correlations were of a similar magnitude to

those quantified in earlier studies [46,59,67]. That said, we

recognize that the uneven distribution of some indicator pigments

among genera within some functional groups (e.g., aphanizophyll

among N-fixing cyanobacteria) [59] may complicate pigment-

based interpretations of algal community change unless augment-

ed by microscopic enumeration of critical samples [6]. Fortunate-

ly, the generally high correspondence between microscopic and

chromatographic analyses (Fig. 6), combined with the widespread

use of similar HPLC and microscopic protocols [59,94], suggests

that previous investigations based solely on biomarker pigments

have provided robust and reliable information about N effects on

aquatic ecosystems.

Despite evidence that growth of 45 phytoplankton species

(31.5% of taxa) was stimulated by addition of dissolved N to P-rich

lake waters (Table S1, Fig. 5), further research is required to

evaluate the reasons for limited response of the remaining 99 taxa,

including 6 species whose growth was suppressed by N amend-

ments (Fig. 4n). For example, bottle bioassays of the nutritional

status of algae in Wascana and other regional lakes [20,25]

suggests that addition of NH4
+ during May can suppress primary

production when phytoplankton are composed mainly of diatoms,

chrysophytes and cryptophytes [49] and that additional seasonal

analysis of N effects is warranted. Further, improved understand-

ing of the effects of N influx on the relative proportion of

chlorophytes and non-N-fixing cyanobacteria is also needed [34],

and would benefit from analysis of gross community changes along

a gradient of N addition, as well as from comparisons of

chlorophyte response in lakes of differing depths or water clarity

(see above). Taken together, such refinement of our understanding

of the phytoplankton-specific responses to N pollution may

provide the best means of averting future damage to aquatic

ecosystems arising from doubled N influx by 2050.

Supporting Information

Table S1 Phytoplankton taxa and response to nitrogen fertilisa-

tion in August and September experiments.
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