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Abstract

Antibody amyloidogenesis is the aggregation of soluble proteins into amyloid fibrils that is one of major causes of the
failures of humanized antibodies. The prediction and prevention of antibody amyloidogenesis are helpful for restoring and
enhancing therapeutic effects. Due to a large number of possible germlines, the existing method is not practical to predict
sequences of novel germlines, which establishes individual models for each known germline. This study proposes a first
automatic and across-germline prediction method (named AbAmyloid) capable of predicting antibody amyloidogenesis
from sequences. Since the amyloidogenesis is determined by a whole sequence of an antibody rather than germline-
dependent properties such as mutated residues, this study assess three types of germline-independent sequence features
(amino acid composition, dipeptide composition and physicochemical properties). AbAmyloid using a Random Forests
classifier with dipeptide composition performs well on a data set of 12 germlines. The within- and across-germline
prediction accuracies are 83.10% and 83.33% using Jackknife tests, respectively, and the novel-germline prediction accuracy
using a leave-one-germline-out test is 72.22%. A thorough analysis of sequence features is conducted to identify
informative properties for further providing insights to antibody amyloidogenesis. Some identified informative
physicochemical properties are amphiphilicity, hydrophobicity, reverse turn, helical structure, isoelectric point, net charge,
mutability, coil, turn, linker, nuclear protein, etc. Additionally, the numbers of ubiquitylation sites in amyloidogenic and non-
amyloidogenic antibodies are found to be significantly different. It reveals that antibodies less likely to be ubiquitylated
tend to be amyloidogenic. The method AbAmyloid capable of automatically predicting antibody amyloidogenesis of novel
germlines is implemented as a publicly available web server at http://iclab.life.nctu.edu.tw/abamyloid.
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Introduction

Antibody-based therapy characterized by its high specificity to

targeted antigens has been adopted for treatments of cancer,

autoimmune disease and inflammatory. Monoclonal antibodies

are usually derived from murine and suffer from short half-life and

undesirable immunogenicity that largely reduce the therapeutic

effects [1,2]. Humanized antibodies are developed to overcome

the above-mentioned problems by grafting murine variable

domains, the specificity-determining residues, and complementar-

ity-determining residues [3,4,5,6]. However, the humanization

process might decrease thermal stability of antibodies that could

affect their affinities to targets and lead to amyloid fibril formation

[3,7,8]. The experiments for humanizing antibodies are expensive

and time-consuming. Consequently, it is desirable to develop an

accurate method for predicting antibody amyloidogenesis.

Several important properties have been found to be related to

amyloidogenesis. Alternating patterns of polar/hydrophilic and

nonpolar/hydrophobic amino acids promote amyloid-like struc-

tures [9,10,11,12]. Amphiphilicity is found to be important in

determining the beta-sheet structure of amyloid fibrils [13] and is

a common property of amyloids [14,15]. Hydrophobicity is

correlated with aggregation [16,17,18,19,20]. Reverse turn is an

important feature of the Alzheimer’s b-amyloid protein [21,22].

The helical structure of intermediates is important for amyloid

formation [23,24]. For the isoelectric point, b-lactoglobulin

aggregates into spherical aggregates at the isoelectric point and

amyloid fibril away from the isoelectric point [25]. The change of

net charge is also found to be correlated with protein aggregation

[10,17,26].

Previous studies show that fibril formation is influenced by the

sequence and stability of proteins [27,28,29,30]. The correlation

between sequence variations and amyloidogenesis enables the

sequence-based prediction of antibody amyloidogenesis. Several

studies were proposed to predict amyloidogenic potential of

polypeptides [31,32,33,34] and amyloidogenic regions

[21,35,36,37,38,39,40]. However, they are not able to give a clear

prediction on whether a humanized antibody will be amyloido-

genic or not.

Recently, a computational method was proposed to predict

amyloidogenesis in antibodies by using Naı̈ve Bayes classifiers and
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decision tree methods with reasonably high prediction accuracies

[41]. However, there are two shortcomings in utilizing this method

[41]. (1) The necessary alignment procedure needs experts to

manually adjust the alignment. Also, the decision trees of their

study are manually designed. (2) The germline-specific method

establishes individual models for each known germline. Germlines

represent the basic and inherited antibody repertoire of an

individual. The derivative sequences are produced by rearranging

and mutating the protein sequences of germlines during the

response to foreign antigens. However, the antibody amyloidogen-

esis as a global property of an antibody should be germline-

independent. Therefore, it is desirable to develop an alignment-

free and across-germline method for automatically predicting

antibody amyloidogenesis of novel germlines from sequences.

In this study, three types of germline-independent sequence

features are used to encode antibody sequences including amino

acid composition, dipeptide composition and physicochemical

properties. The use of germline-independent sequence features

enables analysis and prediction of antibody amyloidogenesis across

germlines that is important to further applications for antibodies of

novel germlines. The dipeptide composition feature performs best

in all within-, across- and novel-germline predictions. A prediction

method named AbAmyloid based on the Random Forests classifier

and dipeptide composition feature is proposed.

For many existing germlines, there are not enough correspond-

ing derivatives to design germline-dependent prediction methods

at present. Because of lack of reference sequences, it is also difficult

to predict amyloidogenesis of novel germlines. However, a method

capable of predicting antibody amyloidogenesis of novel germlines

can be helpful to antibody designs. AbAmyloid with an accuracy of

72.22% on 12 germlines using a leave-one-germline-out test is

a potentially good prediction method of antibody amyloidogenesis

for novel germlines. As the number of germlines in the training

data sets increases, the prediction accuracy is expected to be

higher from our results.

The feature importance is analyzed to provide good un-

derstanding of correlations between the germline-independent

sequence features and antibody amyloidogenesis. Additionally, the

predicted ubiquitylation sites by the UbiPred program [42] are

found to be correlated with antibody amyloidogenesis that

antibodies less likely to be ubiquitylated tend to be amyloidogenic.

Results and Discussion

Performance of Methods for Predicting Aggregation
Prone Regions

Several studies were proposed to predict aggregation prone

regions that include AGGRESCAN [32], PASTA [37], TANGO

[40], etc. AGGRESCAN calculates the prediction score for

aggregation ‘‘hot spot’’ using the aggregation-propensity values for

each of the 20 amino acids derived from previously experimental

data. TANGO is a statistical mechanics algorithm to predict b-

aggregation propensities. PASTA calculates the energy of b-

pairings to predict protein aggregation. We apply these three

general methods to predict all sequences in the AA-432 dataset

and calculate the prediction performance using the score for the

most aggregation prone region. Performance comparison is shown

in Table 1.

The accuracy, sensitivity and specificity of PASTA are 57.18%,

0.886 and 0.156 using the default threshold value 24.0,

respectively. The accuracy, sensitivity and specificity of AG-

GRESCAN using the score of the most aggregation prone region

with the default threshold value 20.02 are 56.94%, 1.000 and

0.000, respectively. The accuracy, sensitivity and specificity of

TANGO using the score of the most aggregation prone region

with the default threshold value 5% are 54.40%, 0.911 and 0.059,

respectively. The results indicate that the three methods for

predicting aggregation prone regions get low values of specificity.

These general methods trained using only amyloidogenic proteins

aim to predict which regions of a sequence are potentially

amyloidogenic. Therefore, it is not easy to distinguish between

amyloidogenic and non-amyloidogenic antibodies with highly

similar sequences [41].

In addition, we normalize the scores of different methods into

the numeric range of 21 to 1. Considering their different

predictive thresholds, the Receiver Operator Characteristic

(ROC) curve and area under the ROC curve (AUC) are used to

evaluate the performance of all predictors that are shown in

Figure 1 and Table 1. The AUCs of AGGRESCAN, TANGO

and PASTA are 0.528, 0.519 and 0.612, respectively. The results

indicate that some regions are prone to aggregation in both

amyloidogenic and non-amyloidogenic sequences. However, it is

still hard to determine whether the sequence is amyloidogenic or

not.

Within-germline Prediction of Antibody Amyloidogenesis
Informative features are critical for designing an accurate

classifier and providing good understanding of antibody amyloi-

dogenesis. Three types of germline-independent sequence features,

amino acid composition (AAC), dipeptide composition (DPC) and

physicochemical properties (PPs) are utilized to encode antibody

sequences. An efficient Random Forests method is adopted to

evaluate the three types of features and their combinations in

terms of Jackknife test accuracy. All sequences of a given germline,

except that one sequence used for independent test, are used to

develop a germline model. Therefore, each germline dataset

generates one independent model, shown in Figure 2(A). Perfor-

mance comparison among various types of features and methods

for the within-germline prediction using a Jackknife test is shown

in Table 2. The best accuracy 83.10% of using the feature DPC

shows superiority of DPC in predicting antibody amyloidogenesis.

The other two features AAC and PPs with accuracies of 78.24%

and 76.85%, respectively, perform worse than DPC.

Using combinations of the three feature types might yield better

prediction performance. Therefore, four combinations of feature

types are also assessed. The highest accuracy of 81.71% is

achieved by using the combination of AAC and DPC. The

combination of AAC, DPC and PPs performs well with the second

highest accuracy of 80.79%. The results show that DPC is highly

relevant to predicting antibody amyloidogenesis. The overall

accuracy of the DPC model for the 12 datasets is 83.10% which is

better than the existing method of using Naı̈ve Bayes with an

accuracy of 78.47% [41]. Please note that the proposed method do

not require manual alignment as the method [41] and can

automatically predict antibody amyloidogenesis.

Table 1. Performance comparison of three general methods.

Method Sensitivity Specificity Accuracy (%) AUC

AGGRESCAN [32] 1.000 0.000 56.94 0.528

TANGO [40] 0.911 0.059 54.40 0.519

PASTA [37] 0.886 0.156 57.18 0.612

doi:10.1371/journal.pone.0053235.t001

Prediction of Antibody Amyloidogenesis
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Across-germline Prediction of Antibody Amyloidogenesis
In contrast to the existing germline-dependent method [41], this

study proposes a germline-independent method which is capable

of performing across-germline prediction of antibody amyloido-

genesis without knowing which germline of the query sequence is

in advance. To show the across-germline ability of predicting

antibody amyloidogenesis, the Jackknife test performance on the

dataset AA-432 consisting of 12 germlines is obtained for the three

types of features. All sequences of all the 12 germlines, except that

one sequence left out of the training dataset for independent test,

are used to develop a general model. Each sequence of the dataset

AA-432 is used as a test sequence in turn on the general model, as

shown in Figure 2(B).

Performance comparison among various types of features and

methods for the across-germline prediction is shown in Table 3.

Similar to the within-germline prediction results, the feature DPC

performs best with an accuracy of 83.33%. The other two features

AAC and PPs perform slightly worse than DPC with accuracies of

79.63% and 79.17%, respectively. For the Jackknife test

performances of four combinations of these feature types, the

highest accuracy of 83.10% is achieved by using the combination

of AAC and DPC. The combination of DPC and PPs performs

well with the second highest accuracy of 82.87%. The accuracies

of the best feature type (DPC) and the best two combinations of

sequence features are nearly the same.

By comparing the performances of within-germline and across-

germline models (Tables 2 and 3), all the across-germline

prediction accuracies are slightly higher than those of within-

germline predictions for the seven feature sets evaluated. The

mean accuracy (81.414%) of across-germline prediction is also

higher than that (80.093%) of within-germline prediction due to

a larger training dataset used. These results agree that antibody

amyloidogenesis is considered a property of a whole antibody

sequence independent from the corresponding germline.

Additionally, the 10-fold cross-validation on the dataset AA-432

is performed where the ratios of positive to negative samples for

training and validation (independent test) dataset are the same

ratio. Notably, the validation dataset is not involved in training

models. The results of 10-fold cross-validation are shown in

Table 4. The feature DPC performs best with an accuracy of

84.49%. The other two features AAC and PPs with accuracies of

80.09% and 78.01%, respectively, perform worse than DPC. The

results confirm that DPC is highly relevant to predicting antibody

amyloidogenesis well.

Novel-germline Prediction of Antibody Amyloidogenesis
Because amyloidogenesis is a property of a whole antibody

sequence independent from the corresponding germline, a useful

method should be able to predict antibody amyloidogenesis of

novel germlines that is impossible for the existing method [41] and

is much harder than the within- and across-germline predictions.

To evaluate AbAmyloid in predicting antibodies of novel

germlines, an experiment of using a leave-one-germline-out test

is performed as following. All sequences of all the 12 germlines,

except that all sequences of one germline g are left out of the

training dataset, are used to develop a general model. Notably, the

novel-germline prediction method established this model consid-

ering the whole set of all 11 germlines but not individual

Figure 1. The receiver operator characteristic (ROC) curves of three general methods.
doi:10.1371/journal.pone.0053235.g001
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Figure 2. Three evaluation methods for AbAmyloid. (A) There are 12 individual germline models. Each model is evaluated using a Jackknife
test. (B) Only one model is constructed using a dataset of 12 germline (AA-432). (C) The leave-one-germline-out test is applied to evaluate the novel-
germline prediction of AbAmyloid where each dataset of one germline is served as the test dataset of novel germline in turn.
doi:10.1371/journal.pone.0053235.g002

Table 2. Performance comparison among various types of
sequence features and methods for the within-germline
prediction in terms of Jackknife test accuracy.

Method Sensitivity Specificity Accuracy (%)

Random Forests (AAC) 0.813 0.742 78.24

Random Forests (DPC) 0.829 0.833 83.10

Random Forests (PPs) 0.825 0.694 76.85

Random Forests (AAC+DPC) 0.829 0.801 81.71

Random Forests (AAC+PPs) 0.850 0.720 79.40

Random Forests (DPC+PPs) 0.850 0.747 80.56

Random Forests
(AAC+DPC+PPs)

0.850 0.753 80.79

Naı̈ve Bayes [41] 0.756 0.823 78.47

doi:10.1371/journal.pone.0053235.t002

Table 3. Performance comparison among various types of
sequence features and methods for the across-germline
prediction in terms of Jackknife test accuracy.

Method Sensitivity Specificity Accuracy (%)

Random Forests (AAC) 0.846 0.731 79.63

Random Forests (DPC) 0.854 0.806 83.33

Random Forests (PPs) 0.846 0.720 79.17

Random Forests (AAC+DPC) 0.854 0.801 83.10

Random Forests (AAC+PPs) 0.854 0.731 80.09

Random Forests (DPC+PPs) 0.870 0.774 82.87

Random Forests
(AAC+DPC+PPs)

0.858 0.763 81.71

doi:10.1371/journal.pone.0053235.t003
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germlines. For each g of the 12 germlines in turn, antibody

sequences of the germline g are used as an independent test

dataset, shown in Figure 2(C).

Sequences in the same germline are similar consisting of

a protein sequence of germline and its derivatives that are

rearranged and mutated from the protein sequence of germline

with only a few changes of amino acids. We use CD-HIT-2D [43]

to compare sequence identities between training and test datasets

in the novel-germline prediction. The histogram and percentages

for sequence pairs with sequence identities of both amyloidogen-

esis, both non-amyloidogenesis, and in contradiction are shown in

Figure 3. The percentages of both amyloidogenesis, both non-

amyloidogenesis, and in contradiction sequence pairs in all

sequence pairs are 12.65%, 36.48% and 50.87%, respectively.

The contradiction sequence pairs have the largest percentage in all

sequence pairs. In the test datasets of leave-one-germline-out test,

there are 29 sequences (7%) with sequence identity less than 40%,

and the average sequence identity for the other sequences is 75%

when comparing to the corresponding training datasets. However,

the sequence identity between amyloidogenic and non-amyloido-

genic sequences is 90% in the dataset AA-432. The histogram of

sequence pairs with sequence identities between amyloidogenic

and non-amyloidogenic sequences is shown in Figure 4. We also

use BLAST [44] to calculate the prediction performance for novel-

germline prediction. The accuracy, sensitivity and specificity of

BLAST are 51.16%, 0.411 and 0.645, respectively. Therefore, it is

hard to distinguish between amyloidogenic and non-amyloido-

genic sequences based on sequence identity.

The prediction performances on the 12 germlines are shown in

Table 5. The feature DPC with an overall accuracy of 72.22% is

the best for the novel-germline prediction. The other two features

AAC and PPs perform much worse than DPC with accuracies of

60.65% and 59.26%, respectively. The combination of AAC and

DPC with an accuracy of 71.06% performs best, and the

combination of DPC and PPs has the second highest accuracy

of 68.75%. The results confirm the contribution of DPC in

predicting antibody amyloidogenesis again. The sensitivity and

specificity of using the feature DPC are 0.785 and 0.640,

respectively. The benefit of high sensitivity/specificity is that most

amyloidogenic/non-amyloidogenic sequences can be identified for

experimental verification. The decision threshold of the Random

Forests classifier for classification can be changed to adjust

sensitivity and specificity according to preference. In order to

consider the influence of sequence redundancy, we remove 4

duplicate sequences of non-amyloidogenic peptides among 3

germline datasets of AA-432 and recalculate the performance of

DPC. The accuracy, sensitivity and specificity are 71.70%, 0.785

Table 4. Performance comparison among various types of
sequence features and methods for the across-germline
prediction using 10-fold cross-validation.

Method Sensitivity Specificity Accuracy (%)

Random Forests (AAC) 0.846 0.742 80.09

Random Forests (DPC) 0.862 0.823 84.49

Random Forests (PPs) 0.837 0.704 78.01

Random Forests (AAC+DPC) 0.870 0.801 84.03

Random Forests (AAC+PPs) 0.837 0.715 78.47

Random Forests (DPC+PPs) 0.862 0.780 82.64

Random Forests
(AAC+DPC+PPs)

0.862 0.785 82.87

doi:10.1371/journal.pone.0053235.t004

Figure 3. Histogram and percentages for sequence pairs with sequence identities between training and test datasets.
doi:10.1371/journal.pone.0053235.g003
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and 0.624 that are only slightly worse than the previous result,

respectively.

As shown in Table 6, the detailed results of using DPC show

that the highest two prediction accuracies of 94.05% and 81.40%

are achieved by germlines Z73673 and Z22197, respectively.

There are five and two germlines with accuracies larger than 70%

and close to 70%, respectively. In contrast, two germlines X93632

and Z22188 with accuracies less than 40% suffer from improper

selection of decision values for classification of amyloidogenic and

non-amyloidogenic sequences where their sensitivity and specific-

ity are 1.0 and 0, and 0.118 and 1.0, respectively. That is not

comparable with their area under the receiver operating

characteristic curves of larger than 0.7. Possible reasons for the

variations of accuracy, sensitivity and specificity among germlines

are that 1) the ratios of amyloidogenic and non-amyloidogenic

sequences for each germlines are much different, and 2) the

selection of a decision threshold for classification depends on the

whole unbalanced training dataset but not individual germlines.

An extensively used method based on support vector machine

Figure 4. Histogram for sequence pairs with sequence identities between amyloidogenic and non-amyloidogenic sequences.
doi:10.1371/journal.pone.0053235.g004

Table 5. Performance comparison among various types of
sequence features and methods for the novel-germline
prediction.

Method Sensitivity Specificity Accuracy (%)

Random Forests (AAC) 0.626 0.581 60.65

Random Forests (DPC) 0.785 0.640 72.22

Random Forests (PPs) 0.675 0.484 59.26

Random Forests (AAC+DPC) 0.768 0.634 71.06

Random Forests (AAC+PPs) 0.671 0.522 60.65

Random Forests (DPC+PPs) 0.732 0.629 68.75

Random Forests
(AAC+DPC+PPs)

0.699 0.602 65.74

BLAST [44] 0.411 0.645 51.16

doi:10.1371/journal.pone.0053235.t005

Table 6. The novel-germline prediction performances for 12
germlines using dipeptide composition (DPC).

Germline Sensitivity Specificity Accuracy (%)

J00248 1.000 0.600 73.91

M30446 0.333 0.900 68.75

X72813 0.875 0.684 74.07

X93620 0.848 0.375 69.39

X93627 0.579 1.000 75.76

X93632 1.000 0.000 35.71

X93640 1.000 0.000 56.67

Z22188 0.118 1.000 34.78

Z22191 0.400 1.000 78.57

Z22197 0.962 0.588 81.40

Z22208 0.943 0.444 77.36

Z73673 1.000 0.853 94.05

doi:10.1371/journal.pone.0053235.t006
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(SVM) is also utilized to evaluate the leave-one-germline-out test

performance using the same DPC feature. The SVM method uses

a radial basis function kernel with control parameters C and

cselected by the grid search method [42] using 10-fold cross-

validation on the training dataset. The test accuracy of SVM for

the novel-germline prediction is 65.05%. The high performance of

AbAmyloid with an accuracy of 72.22% may arise mainly from

the used ensemble strategy, compared with the SVM method.

Please note that prediction performance of the SVM method can

be improved by further tuning the control parameters cooperated

with an appropriate feature selection. This study utilizes the

Random Forests method because of its built-in ability of feature

importance estimation.

Prediction Server AbAmyloid
The prediction method AbAmyloid uses a Random Forests

classifier with DPC on the dataset AA-432 of 12 germlines.

AbAmyloid performs well for predicting antibody amyloidogenesis

with accuracies of 83.10%, 83.33% and 72.22% using the within-,

across- and novel-germline predictions, respectively. The server of

AbAmyloid with automatic amyloidogenesis prediction without

knowing the germline name of query sequences in advance and

prediction score ranged from 0 to 100% is publicly available at

http://iclab.life.nctu.edu.tw/abamyloid.

The prediction performance might be improved by enlarging

the training dataset. A learning curve experiment can be utilized to

examine the correlation between dataset sizes and prediction

accuracies. Based on the framework of leave-one-germline-out

tests, 30 sets consisting of n germlines randomly selected are used

to build training datasets where nM{5, 6, …, 9}. Prediction

accuracy for each fold is calculated by averaging the 30 results of

predictions on the leaved germline dataset. For the training dataset

consisting of 10 germlines, there are only 11 combinations. The

average performance is calculated by using the 11 prediction

results for each ford. Similarly, only one prediction result is

obtained by using all 11 germlines for each ford. As shown in

Figure 5, the prediction accuracy increases when there are more

germlines in the training dataset. AbAmyloid is expected to be

more accurate when more germlines in a larger dataset are

available in building the prediction model.

In contrast to the existing method [41] relying on the manual

sequence alignment for predicting sequences with known germ-

lines, AbAmyloid capable of automatic prediction of antibody

amyloidogenesis for novel germlines is more useful for further

applications.

Feature Importance of Composition Features
The analysis of feature importance for each type of sequence

features can provide better understanding of antibody amyloido-

genesis. The efficient and effective built-in feature importance

estimator of the Random Forests method is applied to identify

informative features for each feature type. Generally, two

measures based on the mean decrease of Gini index (MDGI)

and prediction accuracy are available for ranking feature

importance. A recent study showed that the MDGI provides

more robust results compared with the mean decrease of accuracy

[45]. In this study, the MDGI is adopted to rank feature

importance. To avoid the bias of random seed in evaluating

feature importance, the average value of the MDGI on 30 runs of

feature importance evaluation is used in the following analysis.

The feature importance for AAC is shown in Figure 6. The

feature with the largest value of MDGI is the most important. The

top-four informative amino acids are lysine, leucine, asparagine

and serine having an MDGI value larger than 8. There are 8 out

of 10 top-ranked informative amino acids belonging to the set of

Figure 5. Learning curves using various numbers of germlines for training classifiers. The prediction performance is evaluated by using
a leave-one-germline-out test.
doi:10.1371/journal.pone.0053235.g005
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polar amino acids. The polar property is especially important for

predicting antibody amyloidogenesis.

The rank and heatmap of feature importance for DPC are

shown in Figures 7 and 8, respectively. The top-three informative

dipeptides are QL, RF and WY having the MDGI values larger

than 1.9. Interestingly, 11 out of 13 top-ranked informative

dipeptides consist of a polar amino acid and a nonpolar amino

acid. There is no dipeptide with two nonpolar amino acids in the

30 top-ranked dipeptides. Results show that the alternating pattern

of polar and nonpolar amino acids is important for antibody

amyloidogenesis. The aggregation tendency of the alternating

patterns is consistent with previous studies [9,10,11]. Another

study shows that sequences with the alternating patterns are prone

to form fibril structures [12].

Feature Importance of Physicochemical Properties
We first use performance of distinguishing amyloidogenic from

non-amyloidogenic to identify 30 top-ranked informative features

from 531 physicochemical properties. Consequently, we classify

them into 12 categorized properties using the definition of

properties in AAindex and investigate correlation between the

properties and amyloid fibrils aggregation. The ranks of feature

importance for PPs are shown in Figure 9. The detailed

information of the 30 top-ranked informative PPs is shown in

Table 7. Table 8 summarizes the categorized properties and

corresponding references.

The values of MDGI for different types of features mean

significantly different because each type of sequence features is

independently assessed for calculating the feature importance

based on 30 runs of feature importance evaluation. The

importance of a feature is represented by the MDGI value which

is a relative rather than absolute measurement. The mean MDGI

value of one AAC feature is larger than that for one of DPC and

PPs features because the influence of 1/20 change for AAC is

higher than those for DPC and PPs with 1/400 and 1/531

changes, respectively. The feature importance in terms of MDGI

can only be compared among the features within the same feature

set.

The most important PP is the AAindex ID MITS020101 with

an MDGI value of 1.416 denoting ‘amphiphilicity index’. In the

analysis, two out of the 30 top-ranked informative properties are

related to amphiphilicity. It is also known that the amphiphilicity

can change the beta-sheet structure in the amyloid fibrils [13], and

is a common property of amyloids [14,15].

Figure 6. Feature importance of Amino Acid Composition
(AAC). The feature with the largest value of mean decrease of Gini
index (MDGI) is the most important.
doi:10.1371/journal.pone.0053235.g006

Figure 7. Feature importance of Dipeptide Composition (DPC).
The feature with the largest value of mean decrease of Gini index
(MDGI) is the most important.
doi:10.1371/journal.pone.0053235.g007
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A total of seven hydrophobicity-related properties play a major

role in amyloidogenesis as they occupy the major part of

informative properties. If we remove one of these seven

hydrophobicity-related properties in each time, the average

accuracy will decrease from 79.17% to 77.32% in across-germline

prediction. The importance of hydrophobicity found in this study

is consistent with the results of previous bioinformatics studies on

predicting amyloidogenic regions [16,17]. The masking of

hydrophobic surface inhibits protein-protein aggregation [18].

Enhancement of hydrophobicity by post-translational modification

of lysine residues appeared very effective in promoting fibrillation

[19]. The hydrophobic effect is a major driving force for the self-

assembly of many aggregation prone polypeptides including Ab
[20]. The influence of isoelectric point and net charge on amyloid

fibril formation have been reported previously [10,17,25,26] and

the related informative properties are ZIMJ680104, FINA910103

and KLEP840101.

The 12 structure-related properties that involved five categor-

izations show the important role of protein structures in antibody

amyloidogenesis. The reverse turn property OOBM850102 is an

important property for antiparallel structure formation of amyloid

proteins [21] and amyloid-like fibril formation [22]. The helical

structure of intermediates plays important roles in amyloid fibril

formation [23,24]. The property BUNA790101 representing

‘alpha-NH chemical shifts’ is also related to helix forming, which

has high correlation coefficients of 0.945 and 0.902 with helix

forming properties of BLAM930101 denoting ‘alpha helix pro-

pensity’ and ONEK900101 denoting ‘thermodynamic scale for

the helix-forming tendencies’, respectively. The property

ARGP820102 is also ranked as an important property represent-

ing the helical potential of signal sequences.

In this study, there are six newly-found categorized properties

that have never been reported in previous studies, including the

coil property RACS820106, the turn property ROBB760110, the

linker property GEOR030104, the mutability property

DAYM780201, the nuclear protein properties FUKS010104 and

CEDJ970105, and the properties of other structures of

RACS770101, PRAM820101 and MEIH800101.

Ubiquitylation and Antibody Amyloidogenesis
According to the feature importance analysis for AAC, the

amino acid lysine is ranked as the most important amino acid. The

amino acid lysine is associated with many post-translational

modifications including methylation and ubiquitylation. One of

the most well-known functions of ubiquitylation is its regulatory

role in protein degradations. By tagging proteins with ubiquitins,

the ubiquitylated proteins will be degraded by proteasome [46]. It

is interesting to know whether a protein with a larger number of

Figure 8. The heatmap of DPC feature importance.
doi:10.1371/journal.pone.0053235.g008
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ubiquitylation sites is less amyloidogenic because it tends to be

degraded.

To better understand the correlation between ubiquitylation

sites and amyloidogenesis, the prediction method UbiPred with an

accuracy of 84.44% [42] is applied to identify putative ubiquityla-

tion sites for all sequences in the dataset AA-432. The average

numbers of lysines (Ks) and putative ubiquitylated lysines (Ub-Ks)

in a protein are 3.05 and 2.19 for non-amyloidogenic antibodies

and 2.60 and 1.77 for amyloidogenic antibodies, respectively. The

numbers of Ks and Ub-Ks for non-amyloidogenic antibodies are

significantly larger than those of amyloidogenic antibodies (t-test,

p-value,0.001). The ratios of the numbers of Ub-Ks to Ks are

0.717 and 0.680 for non-amyloidogenic and amyloidogenic

antibodies, respectively. Figure 10 represents the fractions of the

numbers of Ks and Ub-Ks in amyloidogenic and non-amyloido-

genic antibodies. The difference between the numbers of Ub-Ks of

amyloidogenic and non-amyloidogenic antibodies is larger than

that of Ks. The results show that ubiquitylation might play

important roles in determining the amyloidogenesis property.

To assess the influence of Ub-Ks in the Random Forests

classifiers, a total of 12 ubiquitylation features are proposed (see

the Materials and Methods section). Figure 11 shows the

distribution of lysines for amyloidogenic and non-amyloidogenic

antibodies. Each point represents the percentage of the number of

lysines whose scores predicted are in a specific range. The

numbers of lysines between the amyloidogenic and non-amyloi-

dogenic antibodies in three bins of [0, 0.1), [0.1, 0.2) and [0.3, 0.4)

are significantly different (t-test, p-value,0.05).

The feature importance of the 12 features of ubiquitylation is

firstly assessed by using 30 runs of the feature importance

estimator of Random Forests and results are shown in Figure 12.

The number of Ub-Ks is the most important feature. The ranks of

the three significantly different bins of the score ranges [0, 0.1),

[0.1, 0.2) and [0.3, 0.4) are 11, 5 and 2, respectively. The two

features of ranges [0.5, 0.6) and [0.6, 0.7) are at ranks 3 and 4,

which are not significantly different between amyloidogenic and

non-amyloidogenic antibodies, shown in Figure 11. The scenario

reveals that the feature importance by considering the whole set of

features in prediction is not necessarily consistent with the feature

significance by considering individual features using statistical

analysis.

Subsequently, we evaluate the feature importance using

combination of the 12 features of ubiquitylation and DPC

(Figure 13). In the 30 top-ranked features, the number of Ub-Ks

and bins of [0.5, 0.6) and [0.6, 0.7) are at ranks 4, 16 and 24,

respectively. By using Random Forests classifiers with the 412

features, the across-germline prediction accuracy and sensitivity

using a Jackknife test are slightly improved from 83.33% and

85.37% to 84.03% and 86.59%, respectively, while the specificity

is unchanged. For the leave-one-germline-out test using 412

features, the sensitivity is slightly improved from 78.46% to

79.27% while the accuracy is the same as that using 400 features

because of the slightly decreased specificity. The distribution of

lysines for amyloidogenic and non-amyloidogenic antibodies in

Figure 11 might explain that the antibodies less likely to be

ubiquitylated tend to be amyloidogenic, however, there might be

other factors influencing the amyloidogenesis of the other

antibodies. An antibody with higher number of Ub-K tends to

be degraded by proteasome that is less likely to be ubiquitylated. In

contrast, an antibody with lower number of Ub-K is less possible

for degradation by proteasome that might accumulate to be

amyloidogenic.

Conclusions
Computational prediction of antibody amyloidogenesis can

accelerate the design process of antibody humanization and save

a lot of cost and time. Previous studies focused on predicting

amyloidogenic potential of a given segment of proteins. However,

it is desirable to develop accurate methods for predicting whether

a given antibody is amyloidogenic or not.

To the best knowledge of authors, there is only one study

focusing on the prediction of antibody amyloidogenesis [41]. Their

methods based on accurate germline assignment by experts are not

able to automatically predict antibody amyloidogenesis, especially

antibodies of novel germlines. In order to develop an automated

method for predicting antibody amyloidogenesis and leveraging

the information across germlines, three types of germline-in-

dependent sequence features and four combinations of these

feature types are assessed in terms of prediction accuracy.

AbAmyloid based on dipeptide composition features performs

well for predicting antibody amyloidogenesis. The within- and

across-germline prediction accuracies are 83.10% and 83.33%

using Jackknife tests, respectively, and the novel-germline pre-

diction accuracy using a leave-one-germline-out test is 72.22%.

The prediction server of AbAmyloid using the whole dataset AA-

432 is publicly available at http://iclab.life.nctu.edu.tw/

abamyloid. From simulation results, AbAmyloid is expected to

be more accurate when more training samples are available.

By carefully examining the informative features obtained from

the feature importance analysis of Random Forests, the dipeptide

Figure 9. Feature importance of Physicochemical Properties
(PPs). The feature with the largest value of mean decrease of Gini index
(MDGI) is the most important.
doi:10.1371/journal.pone.0053235.g009
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Table 7. Top 30 informative physicochemical properties.

AAindex ID Description

MITS020101 Amphiphilicity index (Mitaku et al., 2002)

ZIMJ680104 Isoelectric point (Zimmerman et al., 1968)

NAKH920106 AA composition of CYT of multi-spanning proteins (Nakashima-Nishikawa, 1992)

GEOR030104 Linker propensity from 3-linker dataset (George-Heringa, 2003)

OOBM850103 Optimized transfer energy parameter (Oobatake et al., 1985)

OOBM850102 Optimized propensity to form reverse turn (Oobatake et al., 1985)

RACS820106 Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982)

CEDJ970105 Composition of amino acids in nuclear proteins (percent) (Cedano et al., 1997)

ISOY800106 Normalized relative frequency of helix end (Isogai et al., 1980)

LAWE840101 Transfer free energy, CHP/water (Lawson et al., 1984)

ARGP820102 Signal sequence helical potential (Argos et al., 1982)

KRIW790102 Fraction of site occupied by water (Krigbaum-Komoriya, 1979)

KLEP840101 Net charge (Klein et al., 1984)

BUNA790101 alpha-NH chemical shifts (Bundi-Wuthrich, 1979)

MEIH800101 Average reduced distance for C-alpha (Meirovitch et al., 1980)

ARGP820103 Membrane-buried preference parameters (Argos et al., 1982)

NAKH900102 SD of AA composition of total proteins (Nakashima et al., 1990)

MAXF760103 Normalized frequency of zeta R (Maxfield-Scheraga, 1976)

RACS770103 Side chain orientational preference (Rackovsky-Scheraga, 1977)

DAYM780201 Relative mutability (Dayhoff et al., 1978b)

RACS770101 Average reduced distance for C-alpha (Rackovsky-Scheraga, 1977)

ROBB760110 Information measure for middle turn (Robson-Suzuki, 1976)

GUYH850101 Partition energy (Guy, 1985)

CHOC760102 Residue accuracyessible surface area in folded protein (Chothia, 1976)

QIAN880113 Weights for alpha-helix at the window position of 6 (Qian-Sejnowski, 1988)

RACS820103 Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982)

QIAN880108 Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988)

FUKS010104 Surface composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)

FINA910103 Helix termination parameter at position j-2,j-1,j (Finkelstein et al., 1991)

PRAM820101 Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982)

doi:10.1371/journal.pone.0053235.t007

Table 8. Categorized informative of top 30 physicochemical properties.

Categorized property AAindex ID References

Amphiphilicity MITS020101, NAKH920106 [13,14,15]

Hydrophobicity OOBM850103, ARGP820103, LAWE840101, CHOC760102, GUYH850101, KRIW790102,
RACS770103

[16,17,18,19,20]

Helix QIAN880113, QIAN880108, BUNA790101, ARGP820102, ISOY800106 [23,24]

Coil and Turn RACS820106, ROBB760110 new

Linker propensity GEOR030104 new

Reverse turn OOBM850102 [21,22]

Other structures RACS770101, PRAM820101, MEIH800101 new

Isoelectric point ZIMJ680104, FINA910103 [25]

Net charge KLEP840101 [10,17,26]

Mutability DAYM780201 new

Nuclear protein CEDJ970105, FUKS010104 new

Uncategorized RACS820103, NAKH900102, MAXF760103 new

doi:10.1371/journal.pone.0053235.t008
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composition of a polar and a nonpolar amino acids and the

property amphiphilicity are found to be of great importance for

amyloidogenesis that is confirmed by published studies [13,14,15].

Identified informative physicochemical properties of hydropho-

bicity, helical structure, reverse turn, isoelectric point and net

charge are found to be consistent with previous studies

[16,17,21,22,23,24,25]. Newly identified physicochemical proper-

ties including mutability, nuclear proteins, coil, linker, turn and

other structures might provide new insights into antibody

amyloidogenesis.

Finally, the importance of ubiquitylation on antibody amyloi-

dogenesis is also investigated. The addition of ubiquitylation

features generated by UbiPred slightly improves the sensitivity of

Random Forests classifiers. Results show that antibodies less likely

to be ubiquitylated might tend to be amyloidogenic.

Materials and Methods

Dataset
The dataset (named AA-432) of 432 antibody light chain

sequences consists of 246 amyloidogenic and 186 non-amyloido-

genic derivatives of 12 germlines that is obtained from a previous

study [41]. Protein sequence of germline is a non-amyloidogenic

sequence, and the other sequences that are assigned in this set are

derivatives of this germline. The derivative sequences are rear-

ranged and mutated from the protein sequence of germline with

only a few changes of amino acids. All the derivatives of the

germlines are obtained from the National Center for Biotechnol-

ogy Information (NCBI). After omitting the first five amino acid

residues that are suspect to be primer-derived, the dataset is

available in the supplementary information of the paper [41].

Table 9 shows the detailed numbers of amyloidogenic and non-

amyloidogenic sequences for each germline.

Feature Extraction
Amino acid composition (AAC). Given an antibody se-

quence A with length l, the corresponding occurrence frequency ai
for the i-th amino acids is calculated as the following:

ai~
AAi

l
,

where the AAi is the count of occurrences in the sequence for the i-

th amino acid. Finally, a 20-dimension feature vector defined as is

obtained for the following analysis.

Dipeptide composition (DPC). For the i-th dipeptide, the

corresponding dipeptide frequency di is calculated for a given

antibody sequence A with length l as the following:

di~
DPi

l{1
,

where the DPi is the count of the i-th dipeptide in the antibody

sequence. The final vector is a 400-dimension feature vector

defined as representing the occurrence frequencies of 400

dipeptides.

Physicochemical properties (PPs). Physicochemical prop-

erties with good interpretability are important and useful for

prediction and analysis in bioinformatics studies [42,47,48,49,50].

Analysis of correlation between properties is also investigated by

factor analysis of multivariate statistical analysis on DNA binding

Figure 10. The 100% stacked column chart of the numbers of lysines (K) and putative ubiquitylated lysines (Ub-K).
doi:10.1371/journal.pone.0053235.g010
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proteins [50]. Furthermore, if the optimal feature selection from

531 PPs based on the AAindex values, a set of highly correlated

PPs can be further reduced by using a representative one without

significantly decreasing the prediction accuracy [48]. In this study,

544 physicochemical properties were retrieved from the amino

acid indices (AAindex) database of version 9.0 [51]. The AAindex

database is a collection of many published numerical indices

representing physicochemical and biochemical properties of

amino acids. Each physicochemical property is represented as

a set of 20 numerical values for amino acids. After removing 13

physicochemical properties having the value ‘NA’ in their amino

acid indices, a total of 531 physicochemical properties are used for

the following studies.

The encoding method for an antibody sequence consists of two

steps. The first step is to convert an antibody sequence to 531

index vectors. Given an antibody sequence A with length l, 531

index vectors, p= 1, …, 531, for 531 physicochemical properties

are obtained by substituting the amino acids with corresponding

index values. The second step constructs the final feature vector

for representing an antibody sequence. The feature vector is

defined as, where vp is the averaged value of elements in Xp.

Ubiquitylation features. A total of 12 ubiquitylation

features are proposed for assessing the influence of Ub-Ks in the

Random Forests classifiers, calculated as follows. First, for each

lysine (K) in the sequence, the prediction scores ranging from 0 to

1 obtained from UbiPred [42] representing the ubiquitylation

probabilities are assigned to ten bins of equal ranges. Therefore,

the ten percentage values representing the numbers of lysines in

ten score ranges are used as features of ubiquitylation. Second, two

additional features are the number of putative ubiquitylated lysines

Figure 11. Distribution of lysines for amyloidogenic and non-amyloidogenic antibodies.
doi:10.1371/journal.pone.0053235.g011

Figure 12. Feature importance of 12 ubiquitylation features.
The feature with the largest value of mean decrease of Gini index
(MDGI) is the most important.
doi:10.1371/journal.pone.0053235.g012
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(Ub-Ks) and the ratio of the numbers of putative ubiquitylated

lysines (Ub-Ks (%)) to Ks.

Random Forests
The Random Forests classifier based on a large ensemble of

decision trees is an extensively used ensemble learning method

[52]. The Random Forests classifier improves prediction perfor-

mances of classification and regression trees (CART, [53]) by

growing many weak CART trees. Every tree is built by using

a fixed number of randomly selected features for tree splitting and

is based on a bootstrap sample of the whole training dataset. The

advantages of the Random Forests classifier include less overfitting

problems [54,55]. The property of avoiding overfitting problems is

especially important when analyzing a small dataset in this study.

It shows high predictive accuracy and is applicable even in high-

dimensional problems with highly correlated variables, a situation

which often occurs in bioinformatics [56]. Additionally, Random

Forests is good in handling redundant features that is reported

previously [57,58]. In this study, 100 trees are utilized to construct

a Random Forests classifier, and the number of selected features is

set to a default value of the square root of the total number of

features [52].

Feature Importance
The Random Forests classifier is useful for evaluating feature

importance by using out-of-bag (OOB) data. In the training of

a Random Forests classifier, two-third of a training dataset is

applied to build the classifier and the other one-third (OOB data)

of the training dataset is utilized to evaluate the performance of the

classifier. To evaluate the importance for each feature Xi, the

values of feature Xi in OOB data are randomly permutated and

feature importance for Xi can be evaluated by measuring the

decrease of prediction performance of the permutated OOB data.

The performance measurement can be accuracy or Gini index.

The Gini index is a measure of impurity representing the ability of

a potential split for separating the samples of two classes that can

be defined as 1{
P

j p
2 jDtð Þ, where p jDtð Þ denotes the estimated

class probabilities for a node t in a decision tree and class

j~1, . . . ,J [52]. In this study, J~2 denotes the amyloidogenic

and non-amyloidogenic. The mean decrease of Gini index

(MDGI) is utilized to estimate feature importance because MDGI

is suggested to be more robust than the mean decrease of accuracy

[45]. The feature with the largest value of MDGI is the most

important feature because it contributes most to prediction

performances.

Performance Evaluation
Three measurements are used to evaluate the prediction

performance of the proposed methods using both Jackknife test

and leave-one-germline-out test on the constructed datasets,

namely sensitivity (SEN), specificity (SPE) and accuracy (ACC)

as defined in the follows: SEN = TP/(TP+FN), SPE = TN/

(TN+FP) and ACC = ((TP+TN)/(TP+FN+TN+FP))*100%, where

the TP, TN, FP and FN are the numbers of true positive, true

negative, false positive and false negative, respectively.
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Figure 13. Feature importance of 12 ubiquitylation features
and Dipeptide Composition (DPC). The feature with the largest
value of mean decrease of Gini index (MDGI) is the most important.
doi:10.1371/journal.pone.0053235.g013

Table 9. The numbers of amyloidogenic and non-
amyloidogenic antibodies in the dataset AA-432.

Germline Amyloidogenic Non-Amyloidogenic

J00248 8 15

M30446 6 10

X72813 8 19

X93620 33 16

X93627 19 14

X93632 5 9

X93640 17 13

Z22188 34 12

Z22191 5 9

Z22197 26 17

Z22208 35 18

Z73673 50 34

Total 246 186

doi:10.1371/journal.pone.0053235.t009
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