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Abstract

Protein phosphorylation is a complex regulatory event that is involved in the signaling networks that affect virtually every
cellular process. The protein phosphorylation may be a novel source for discovering biomarkers and drug targets. However,
a systematic analysis of the phosphoproteome in patients with SLE has not been performed. To clarify the pathogenesis of
systemic lupus erythematosus (SLE), we compared phosphoprotein expression in PBMCs from SLE patients and normal
subjects using proteomics analyses. Phosphopeptides were enriched using TiO2 from PBMCs isolated from 15 SLE patients
and 15 healthy subjects and then analyzed by automated LC-MS/MS analysis. Phosphorylation sites were identified and
quantitated by MASCOT and MaxQuant. A total of 1035 phosphorylation sites corresponding to 618 NCBI-annotated genes
were identified in SLE patients compared with normal subjects. Differentially expressed proteins, peptides and
phosphorylation sites were then subjected to bioinformatics analyses. Gene ontology(GO) and pathway analyses showed
that nucleic acid metabolism, cellular component organization, transport and multicellular organismal development
pathways made up the largest proportions of the differentially expressed genes. Pathway analyses showed that the
mitogen-activated protein kinase (MAPK) signaling pathway and actin cytoskeleton regulators made up the largest
proportions of the metabolic pathways. Network analysis showed that rous sarcoma oncogene (SRC), v-rel
reticuloendotheliosis viral oncogene homolog A (RELA), histone deacetylase (HDA1C) and protein kinase C, delta (PRKCD)
play important roles in the stability of the network. These data suggest that aberrant protein phosphorylation may
contribute to SLE pathogenesis.
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Introduction

Protein phosphorylation is a widespread post-translational

modification (PTM). Reversible protein phosphorylation, in which

phosphate groups are enzymatically added by protein kinases and

removed from proteins by phosphatases, often serves as a

molecular switch in signaling pathways. Disruptions in phosphor-

ylation-mediated cell signaling events are connected with numer-

ous diseases [1,2,3,4,5]. Furthermore, the abnormal expression of

protein kinases is an important cause or component of many

pathologies. Therefore, the characterization of the phosphoryla-

tion sites of proteins within various signaling pathways can

enhance the understanding of specific disease pathologies [6].

Phosphoproteomics is defined as the study of the components of

the proteome that undergo phosphorylation. Systemic lupus

erythematosus (SLE) is a classical autoimmune disease. The

disease incidence is nine times greater in women than in men [7],

and its estimated prevalence in China is 37.7/100,000 persons [8].

However, the details of SLE etiology remain poorly understood. In

this study, we thoroughly explored the phosphopeptide proteome

of human Peripheral blood mononuclear cells (PBMCs) using a

highly sensitive Liquid chromatography-mass spectrometry (LC-

MS/MS) system, improved software for phosphopeptide identifi-

cation and subsequent analysis with an elaborate bioinformatics

strategy, including gene ontology (GO) analysis, pathway analysis

and protein network analysis. The rich data from the proteomic

analysis also provides insight into the pathogenesis of SLE.

Materials and Methods

Patient Assessments and Classifications
This study protocols and consent forms were approved by the

Second Clinical Medical College (Shenzhen People’s Hospital) of

Jinan University and adhere to the Helsinki Declaration guidelines

on ethical principles for medical research involving human

subjects. Written informed consent was obtained from all

participants. A group of 15 SLE patients who had never been

treated with disease-modifying antirheumatic drugs (DMARDs) or

other immunosuppressive drugs was recruited for this study.

Patients treated with nonsteroidal anti-inflammatory drugs or

other symptomatic treatments were excluded. All patients satisfied

the American College of Rheumatology classification criteria for

SLE. In addition, we choose 15 healthy subjects as controls.
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PBMCs Isolation and Protein Extraction
Peripheral blood mononuclear cells (PBMCs) were separated by

a Ficoll-Paque (Sigma, St. Louis, MO, USA) density gradient

centrifugation according to the manufacturer’s instructions. In

brief, 2 ml blood (with EDTA as an anticoagulant) was layered on

3 ml Ficoll-Hypaque (Sigma) and centrifuged for 25 min at

1300 rpm at room temperature. Mononuclear cells at the interface

were aspirated with a Pasteur pipette, washed twice in PBS with

centrifugation for 10 min at 900 rpm at room temperature and

resuspended in 500 ml SDT lysate (Invitrogen, Carlsbad, USA).

The samples were then stored at 280uC until further use.

Phosphopeptide Enrichment
Phosphopeptides from digested peptides were enriched using

the Phosphopeptide Enrichment TiO2 kit (Calbiochem, San

Diego, CA) according to the manufacturer’s instructions. Briefly,

the tryptic digest was dried, dissolved in 200 mL TiO2 Phospho-

bind buffer containing 50 g/L 2,5-dihydroxybenzoic acid (DHB)

and then mixed with 50 mL TiO2 Phosphobind Resin. After a 40

minute incubation, the supernatant was discarded, and the TiO2

resin was washed twice with the washing buffer. Then, elution

buffer was added to elute the phosphopeptides in two batches. The

eluted supernatant was pooled and dried by evaporation for LC-

MS/MS analysis.

LC-MS/MS Analysis
The dried phosphopeptides were subjected to LC-MS/MS

analysis with a Finnigan Surveyor High Performance Liquid

Chromatography(HPLC) system coupled with a LTQ-Orbitrap

XL mass spectrometer (Thermo Electron, San Jose, CA). Briefly,

the peptide mixtures were loaded onto a C18 column (100 mm i.d.,

10 cm long, 5 mm, resin from Michrom Bioresources, Auburn,

CA) using an autosampler. Peptides were eluted in a 5–35%

gradient of buffer solution over 180 min and then detected in the

LTQ-Orbitrap XL mass spectrometer as described previously

[9,10].

Raw MS Data Analysis
Raw Orbitrap full-scan MS and ion trap MSA spectra were

processed using the MaxQuant algorithms [11,12]. Peptides and

proteins were identified by Mascot through automated database

matching of all tandem mass spectra against an in-house curated

concatenated target database. Scoring was performed in Max-

Quant as described previously. We required strict trypsin enzyme

specificity and allowed up to two missed cleavage sites. Cysteine

carbamidomethylation (Cys, +57.021464 Da) was searched as a

fixed modification, whereas N-acetylation of proteins (N-terminal,

+42.010565 Da), oxidized methionine (Met,+15.994915 Da), and

serine, threonine, and tyrosine phosphorylations (Ser/Thr/Tyr,

+79.966331 Da) were searched as variable modifications.

Peptide filtering and Phosphorylation Site Identification
The Mascot result files were imported into the MaxQuant

software suite for further processing. In MaxQuant, we defined the

estimated false discovery rate (FDR) of all peptide and protein

identifications at 1% by automatically filtering based on peptide

length, mass error precision estimates, and the Mascot scores of all

forward and reversed peptide identifications. The final estimate of

Table 1. Demographic and disease manifestation in SLE
patients and healthy controls.

characteristic SLE patients healthy controls

NO.Female/male 15/0 15/0

Age mean (range) years 33.8(19–54) 33.1(21–55)

SLEDI score 12.2 N/A

Disease manifestation

Skin rash 3 0

Mucosal ulcers 2 0

Proteinuria 5 0

Hematuria 1 0

Arthritis 4 0

Vasculitis 1 0

Low complement 7 0

Increased dsDNA 8 0

Pericarditis 1 0

Leukopenia 2 0

N/A: not applicable

doi:10.1371/journal.pone.0053129.t001

Figure 1. Summary of the cellular components of the PBMCs phosphoproteins characterized by in-gel IEF LC-MS/MS. The most
enriched cellular components were nuclear proteins and proteins associated with the plasma membrane, cytosol or cytoskeleton. The information
was compiled from Gene Ontology annotations.
doi:10.1371/journal.pone.0053129.g001
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true phosphorylated amino acids remaining within all identified

phosphopeptide sequences was calculated in MaxQuant based on

the localization probabilities of all assumed threonine, serine and

tyrosine phosphorylation sites using the PTM score algorithm, as

described previously [13].For protein identification, we used IPI

database. A protein group was removed if all identified peptides

assigned to this protein group were also assigned to another

protein group. Tosort out a single protein member from a protein

group, we chose the protein from the Swiss-Prot database and with

the highest sequence coverage. When using label-free approach to

identify differently expressed protein and calculating the coeffi-

cient of variance, the number of spectra of each protein was

logarithmtransformed.

Different Gene Screening and Statistical Analyses
For screening of phosphorylation sites between the two groups,

we used the following method. 1, caculate the fold change between

the two groups. 2. set threshold value is 1, that is the average fold

change between SLE patients group and healthy controls group

was more than or equal to 2 folds; and the p value of single sample

t-test was less than or equal to 0.05. T-test was conducted using

MATLAB 7.5. 3. labeling the gene name corresponding protein

according to the NCBI annotation information.

Bioinformatics Analysis
The expression values calculated for the differential proteins

and peptides were used for distance and average to determine

linkage for gene ontology (GO) analysis. In pathway analysis,

interactions between genes in the range of genomes were analyzed

by downloading the pathway data in Kyoto Encyclopedia of

Genes and Genomes(KEGG). Finally, the results of the above data

were merged into a comprehensive gene inter-relationship

network. The established gene network was able to directly reflect

the inter-relationships between genes at a whole-cell level, as well

as the stability of the gene regulatory network.

Figure 2. Summary of the molecular functions of the PBMCs phosphoproteins characterized by in-gel IEF LC-MS/MS. The largest
group is constituted by protein binding followed by catalytic activity and nucleic acid binding. The information was compiled from Gene Ontology
annotations.
doi:10.1371/journal.pone.0053129.g002

Figure 3. Classification of the characterized PBMCs phosphoproteins based on their involvement in biological processes. The largest
group contains proteins related to nucleobase, nucleoside, nucleotide and nucleic acid metabolism. Two other large groups are the proteins involved
in cellular component organization and transport. The information was gathered based on Gene Ontology annotations.
doi:10.1371/journal.pone.0053129.g003
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Results

The Clinical Characteristics of the Study Population
A total of 30 subjects were in the study group, which included

15 SLE patients and 15 healthy controls. In Table 1, the clinical

characteristics of the study population are summarized.

Pretreatment of the Raw Data and Screening of Different
Genes

A phosphorylated peptide reagent kit was used to enrich the

sample for phosphorylated proteins, thus combining protein

separation enrichment technology and mass spectrometry tech-

nology. The detailed information on the identified phosphopro-

teins/phosphopeptides according to the mass spectrometric results

(Table S1). A total of 1035 phosphorylation sites, corresponding to

618 NCBI-annotated genes, were identified as differentially

modified in SLE patients compared with normal subjects.

GO Annotation and Analysis of the Differences in
Phosphoproteins

The phosphoproteins characterized in the study were evaluated

based on their molecular function, biological process and cellular

component annotations. As shown in Figure 1, proteins from

various cellular components (e.g., the nucleus, plasma membrane,

cytosol, cytoskeleton, and Golgi apparatus) were included. The

most enriched cellular components were nuclear proteins and

proteins associated with the plasma membrane, cytosol or

cytoskeleton. Functionally, the phosphoproteins characterized in

the study are diverse. We grouped the identified phosphoproteins

into several categories based on their molecular functions as

annotated in the Swiss-Prot database. The distribution of the

phosphoproteins among the various functional categories is shown

in Figure 2. The largest group is comprised of proteins with roles

in protein binding. The other three largest groups are proteins

involved in catalytic activity, nucleic acid binding and nucleotide

binding. The distribution of phosphoproteins by biological process

is shown in Figure 3. The largest group contains proteins related to

nucleobase, nucleoside, nucleotide and nucleic acid metabolism.

Two other large groups are the proteins involved in cellular

component organization and transport.

Signaling Pathway Analyses
We next wanted to determine whether specific pathways are

enriched in the set of proteins present in our phosphotyrosine

database. Similar to the strategy used for the GO analysis, we

Figure 4. The MAPK signaling pathway showing differentially-expressed gene in SLE patients PBMCs versus healthy controls. Red
marks indicate the genes with differential phosphorylation profiles.
doi:10.1371/journal.pone.0053129.g004

Phosphoproteome Analysis in SLE Patients

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e53129



Table 2. KEEG showing differentially-expressed pathways in SLE patients PBMCs versus healty controls.

Pathway Gene count P value

Focal adhesion 16 0.001579

Protein processing in endoplasmic reticulum 11 0.024745

Herpes simplex infection 15 0.001521

Long-term potentiation 7 0.004945

Regulation of actin cytoskeleton 20 5.21E-05

Insulin signaling pathway 10 0.016194

Leukocyte transendothelial migration 9 0.012933

Endocrine and other factor-regulated calcium reabsorption 4 0.038077

Glioma 5 0.037015

Fc gamma R-mediated phagocytosis 15 5.43E-07

Fc epsilon RI signaling pathway 12 9.96E-06

Epithelial cell signaling in Helicobacter pylori infection 6 0.014573

Salmonella infection 8 0.005302

B cell receptor signaling pathway 7 0.008772

Gap junction 8 0.00664

Spliceosome 14 8.93E-05

ErbB signaling pathway 8 0.005723

Glycolysis/Gluconeogenesis 6 0.011522

Phosphatidylinositol signaling system 9 0.000864

Thyroid cancer 3 0.023349

Pentose phosphate pathway 3 0.020733

Melanogenesis 7 0.038778

Gastric acid secretion 7 0.006928

Starch and sucrose metabolism 5 0.017764

T cell receptor signaling pathway 12 0.000218

Endocytosis 12 0.045153

Pathogenic Escherichia coli infection 5 0.017764

Vasopressin-regulated water reabsorption 4 0.025257

Dilated cardiomyopathy 7 0.023862

Natural killer cell mediated cytotoxicity 11 0.00668

Pancreatic secretion 9 0.005007

Ribosome 8 0.007666

MAPK signaling pathway 19 0.00302

Chemokine signaling pathway 17 0.000297

Prostate cancer 8 0.00664

VEGF signaling pathway 7 0.008121

GnRH signaling pathway 12 0.00011

NOD-like receptor signaling pathway 6 0.006232

Long-term depression 8 0.001273

Non-small cell lung cancer 5 0.016332

Shigellosis 6 0.00821

Hypertrophic cardiomyopathy (HCM) 6 0.038708

SNARE interactions in vesicular transport 5 0.002178

RNA transport 13 0.002599

Inositol phosphate metabolism 5 0.024354

Vascular smooth muscle contraction 14 3.07E-05

Adherens junction 6 0.020876

African trypanosomiasis 5 0.002518

Leishmaniasis 6 0.022333

Tight junction 12 0.001512

doi:10.1371/journal.pone.0053129.t002
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Figure 5. Network analysis of SLE-related genes which were indentified in this analysis. The network can reflect the relationship between
genes from the situation as a whole. Blue means expression, gray means binding and purple means ptmod (post-transcription modification).
doi:10.1371/journal.pone.0053129.g005

Figure 6. Connectivity analysis of the SLE-related genes. The connectivity of SRC is the highest one in all related-genes.
doi:10.1371/journal.pone.0053129.g006
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mapped differentially modified genes to the KEGG pathway

database using GenMAPP v2.1 and then performed a statistical

test to identify enriched metabolic pathways, using P,0.05 as the

standard. We selected 50 metabolic pathways (Table 2). The top

KEGG pathway was the MAPK signaling pathway (Figure 4).

Gene Network Analysis
We integrated the following three different interaction

relationships: 1) the gene regulation and protein modification

relationships of genes in the KEGG database and other

relationships; 2) interaction data from high-flux experiments,

such as protein-protein interactions confirmed by yeast two-

hybrid; 3) gene-gene interactions described in the literature.

Specifically, we downloaded the pathway data from KEGG

database and analyzed genome-wide genetic interactions in R

(http://www.r-project.org/) and downloaded the KEGGSOAP

package (http://www.bioconductor.org/packages/2.4/bioc/

html/KEGGSOAP.html). Finally, we integrated the relationships

in a gene network (Figure 5). Genes with large numbers of

connections were referred to as ‘‘hub’’ genes. Hub genes often

play important roles in network stability. We identified SRC,

RELA, HDA1C and PRKCD as hub genes in our network

(Figure 6).

Discussion

Protein phosphorylation is the most common posttranslational

modification (PTM) in the biosphere [14,15]. Approximately 30%

of proteins can be phosphorylated [16] at threonine, tyrosine and

serine residues [17]. Protein phosphorylation becomes disordered

when protein kinase or phosphatase activity is overexpressed or

inhibited, resulting in abnormal cellular activities and producing

cell damage or even cancer [18,19]. Phosphoproteomics requires

powerful analytical technologies and bioinformatics tools. Several

recent reviews have summarized the development of various

phosphoproteomic methodologies. These methods typically com-

bine different separation strategies with mass spectrometry

[20,21,22]. The successful application of proteomic technologies

to biomedical and clinical research has enabled the discovery of

disease-specific biomarkers for diagnosis and treatment monitor-

ing, thus offering insight into the underlying pathologies of diseases

and identification of new therapeutic targets.

In this study, we used a phosphorylated peptide reagents kit to

enrich the samples for phosphorylated proteins and then

combined this technique with mass spectrometry technology. A

total of 1035 phosphorylation sites corresponding to 618

annotated genes were identified as differentially modified in SLE

compared with normal subjects.

GO analyses showed that the most highly differentially

expressed genes were related to nucleic acid metabolism, cellular

component organization, transportation, protein modification, cell

cycle, cell communication, multicellular organismal development,

carbohydrate metabolic process, lipid metabolism and protein

translation processes. Nucleic acid metabolism, cellular compo-

nent organization, transport and multicellular organismal devel-

opment were the dominant processes. Pathway analysis showed

that 50 metabolic pathways are modified in SLE pathogenesis.

Notably, MAPK signaling, actin cytoskeleton regulation, chemo-

kine signaling pathway, Fc gamma R-mediated phagocytosis,

Herpes simplex infection, spliceosome, vascular smooth muscle

contraction and RNA transport process components made up a

larger proportion of the genes in these 50 metabolic pathways.

The MAPK signaling pathway was highlighted as the most

important pathway.

SLE is a chronic autoimmune disorder that is characterized by

lymphocyte abnormalities and autoantibody production [23].

Hoffmant showed that immune tolerance defects in the peripheral

blood T-lymphocytes of SLE patients related to the abnormal

regulation of the MAPK signaling pathway, which directly results

in abnormal TCR-mediated intracellular signaling and T

lymphocyte function [24,25]. The MAPK signaling pathway has

important functions in many types of mammalian cells. Mitogen-

activated protein kinases (MAPKs) are serine and threonine

protein kinases that can be activated by phosphorylation in

response to extracellular stimuli, such as mitogens, growth factors,

cytokines, and osmotic stress [26,27]. The activation of MAPK

pathways has been shown to be a potential pro-inflammatory

mechanism in rheumatoid arthritis [28,29,30]. During inflamma-

tion, MAPK is activated in various immune cells, and its activation

is closely related to stress responses and apoptosis [31]. Our results

demonstrated that the MAPK signal pathway is abnormally

activated in PBMCs from SLE patients, which provided an

experimental basis for researching SLE pathogenesis and explor-

ing new therapies. We believe that interventions in or regulation of

this signaling pathway may be useful therapies for treating SLE

and related diseases.

SRC was the first protein found to have tyrosine protein kinase

activity, and its activity is itself regulated by phosphorylation and

dephosphorylation. MAPK signaling pathways control multiple

physiological processes and are involved in a variety of diseases.

Ras, the activating protein upstream of the MAPK pathway, is

directly regulated by SRC activity. The activation of the MAPK

pathway downstream of Src phosphorylation leads to transcrip-

tional activation. Meanwhile, the inhibition of MAPK pathway

activation can partially reverse the effects of SRC protein activity

[32]. In particular, as suggested by protein network analysis, genes

with many connections within the network were identified as the

hub genes. Hub genes often play an important role in the stability

of the network. We found that SRC, RELA, HDA1C and

PRKCD were the hub genes in our network. These results

demonstrated that SRC plays a central role in the stability of the

network, suggesting it is important in the pathogenesis of SLE,

which provides an experimental basis for researching the

pathogenesis of lupus and exploring new treatment methods for

SLE.

This experiment thoroughly characterized the phosphorylated

protein expression profile in PBMCs of SLE patients. These data

will serve as a reference and supplement to help us better

understand the pathogenesis of SLE. Furthermore, interventions

that modulate the activities of the involved genes and pathways

may be able to block or slow the onset and development of SLE.

Supporting Information

Table S1 The information of phosphoproteins/phos-
phopeptides. The detailed information on the identified

phosphoproteins/phosphopeptides according to the mass spectro-

metric results.
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