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Abstract

Bipolar disorder (BPD) is a complex psychiatric trait with high heritability. Despite efforts through conducting genome-wide
association (GWA) studies, the success of identifying susceptibility loci for BPD has been limited, which is partially attributed
to the complex nature of its pathogenesis. Pathway-based analytic strategy is a powerful tool to explore joint effects of
gene sets within specific biological pathways. Additionally, to incorporate other aspects of genomic data into pathway
analysis may further enhance our understanding for the underlying mechanisms for BPD. Patterns of DNA methylation play
important roles in regulating gene expression and function. A commonly observed phenomenon, allele-specific methylation
(ASM) describes the associations between genetic variants and DNA methylation patterns. The present study aimed to
identify biological pathways that are involve in the pathogenesis of BPD while incorporating brain specific ASM information
in pathway analysis using two large-scale GWA datasets in Caucasian populations. A weighting scheme was adopted to take
ASM information into consideration for each pathway. After multiple testing corrections, we identified 88 and 15 enriched
pathways for their biological relevance for BPD in the Genetic Association Information Network (GAIN) and the Wellcome
Trust Case Control Consortium dataset, respectively. Many of these pathways were significant only when applying the
weighting scheme. Three ion channel related pathways were consistently identified in both datasets. Results in the GAIN
dataset also suggest for the roles of extracellular matrix in brain for BPD. Findings from Gene Ontology (GO) analysis
exhibited functional enrichment among genes of non-GO pathways in activity of gated channel, transporter, and
neurotransmitter receptor. We demonstrated that integrating different data sources with pathway analysis provides an
avenue to identify promising and novel biological pathways for exploring the underlying molecular mechanisms for bipolar
disorder. Further basic research can be conducted to target the biological mechanisms for the identified genes and
pathways.
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Introduction

Bipolar disorder (BPD) is a severe and complex psychiatric

disorder, with high heritability around 0.6 to 0.7 [1,2]. Prior

individual linkage studies and meta-analyses suggested a number

of susceptible regions in human genome for the risk of developing

BPD. However, most of these findings are inconsistent and rarely

pointed to specific chromosomal locations for replication [3].

Recently, large scale genome-wide association (GWA) studies,

which scanned half or a million single nucleotide polymorphisms

(SNPs), were frequently employed. Although the GWA studies

were anticipated to provide comprehensive genetic information for

complex traits, previous GWA studies for BPD reported limited

numbers of susceptible loci with small effect size. The odds ratios

of significant findings in GWA studies for BPD in populations of

European, American and Han Chinese were between 1.2 and 2.0

[4,5,6,7], which are in accordance with the observations from

other GWA studies in complex traits [8]. In addition, the reported

associated variants from GWA studies often explain a small

proportion of heritability for complex traits, a so called ‘missing

heritability’ phenomenon [9]. Missing heritability may be owing to

lack of power to detect common variants with very small effect, not

including rare variants for their effects in whole-genomic array, or

not considering other genomic mechanisms, such as complex

gene-gene interaction and epigenetic influences [10].

In most of the genetic studies, a commonly applied strategy is to

analyze single markers or specific haplotypes for their associations

with disease of interests. This often produces limited success in

identifying putative loci for BPD, especially for variants with small

to moderate effect. The genetic causes of BPD are likely involved

with a large collection of genetic variants in certain biological

pathways to jointly exhibit their effects for the trait. Therefore,

pathway-based approach becomes a useful and complementary

method in addition to single locus analyses. A pathway is
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considered as a specific gene set that is defined according to certain

biological function or process. Analyzing GWA dataset with

pathway-based approach could provide integrating information of

multiple loci with similar physiological functions to bring

biological insights into the mechanisms of BPD. Previously,

pathway analysis has been successfully conducted using GWA

datasets for several complex traits, such as schizophrenia, major

depressive disorder, and breast cancer [11,12,13] to reveal

important biological mechanisms underlying the diseases.

To perform pathway analysis using GWA dataset, an important

first step is to extract SNPs information for each gene region. A

commonly adopted method is to select the most significant SNP

within a gene region to represent the gene [14]. Often, tens to

hundreds of common SNPs are found in a typical gene region.

Only a few of them are functional variants, thus, SNP with the

maximum statistic may lack direct biological meaning and

connection with the trait of interest. Nevertheless, non-structured

variants may still regulate gene functions through other mecha-

nisms. Epigenetic changes, one of regulatory mechanisms, can

modify gene activity or gene expression without altering the

genomic structure, including stable DNA methylation, post-

translational modifications of histone proteins, and non-coding

RNA [15]. Among these epigenetic modifications, changes of

DNA methylation patterns at CpG sites are considered heritable

and may play important roles in regulating gene functions [16,17].

A pilot study of the Human Epigenome Project reported that more

than 50% of CpG sites have greater than 50% variation within

region of the major histocompatibility complex [18]. Compelling

evidence also reveals a commonly observed phenomenon called

allele-specific methylation (ASM) to describe different status of

DNA methylation of a nearby CpG site by the two alleles

presenting in a cell [19].

The profiles of DNA methylation are dynamic and tissue

specific. Using human adult cerebellum samples, Zhang and

colleagues (2010) conducted whole genome genetic polymor-

phisms and methylation quantitative association analysis to

identify SNPs that regulate DNA methylation of CpG sites

through cis- or trans- regulation [20]. Their findings documented

that variation in genetic polymorphism affects the degree of DNA

methylation in coding or non-coding region of specific genes. A

considerable proportion of CpG sites were regulated by specific

genetic variants distributed in the whole genome. Incorporating

the ASM information into pathway-based analysis using GWA

dataset may provide a new avenue to search for important

biological pathways and to investigate the underlying pathogenesis

of BPD.

The present study aimed to integrate brain-specific ASM

information into whole genome genotyping data to identify

important pathways for bipolar disorder. We used two GWA

datasets of BPD with relatively large samples in Caucasian

populations, the Wellcome Trust Case Control Consortium

(WTCCC) and the Genetic Association Information Network

(GAIN). The list of brain-specific ASM was obtained from the

Zhang’s (2010) study. We applied comprehensive pathway based

statistical approaches with novel weighting scheme to incorporate

the impacts of ASM to evaluate the enrichment of annotated

pathways for BPD. The present study successfully identified

significant and novel pathways for BPD. Our strategy to explore

potential mechanisms for BPD through integrating information

from different genomic aspects can be well applied to other

complex traits.

Materials and Methods

Genome-wide association (GWA) datasets
In the current study, two GWA datasets of BPD in the

Caucasian populations were used, the WTCCC [4] and the GAIN

data [21]. We used these two individual GWA datasets to search

for consistent pathway findings for BPD. The details of subject

enrollment and genotyping of the two GWA studies were provided

in their primary articles. In brief, all participants in the WTCCC

were self-identified as white Europeans who lived in the United

Kingdom. These included 1,868 subjects with BPD and 2,938

healthy subjects from the 1958 British Birth Cohort or United

Kingdom Blood Donors. In the GAIN dataset, individuals were

Americans with European ancestry, including 1,001 cases of BPD

and 1,034 controls. The genotyping platform was Affymetrix

GeneChip Human Mapping 500K Array and Affymetrix

Genome-Wide Human SNP Array 6.0 for the WTCCC and

GAIN, respectively. After quality control procedures implement-

ed, a total of 485,263 (WTCCC) and 698,227 (GAIN) autosomal

SNPs were retained in the following analyses [4,21]. All single

marker association analyses with additive model were conducted

using PLINK versions 1.07 [22].

Brain specific allele-specific gene methylation (ASM) list
and computing gene-wise statistic values

Information of ASM in human brain tissues was obtained from

Zhang and colleagues [20]. Regulating SNPs within 1 Mb region

of both ends of each CpG site were considered cis-acting, and all

the other regulating SNPs were trans-acting. SNPs with region-wise

p-value less than 0.05 in cis-acting and SNPs with genome-wide p-

value less than 0.05 in trans-acting were selected in the ASM list in

the present study. In total, we had 9,414 SNP-CpG pairs in

autosomatic chromosomes, which included 9,042 cis-acting and

372 trans-acting pairs (In the Table S5 of the Zhang et al’s study).

Figure 1 described our analysis flow-chart. To obtain gene level

significance for BPD in the two GWA datasets, we first mapped

SNPs to a gene region (using NCBI build 35 for the WTCCC and

build 36 for the GAIN due to different genotyping platforms) if

SNPs were located within 5 kb of both ends of the gene. In the

WTCCC dataset, there were 193,837 SNPs mapped to 15,054

genes. Among these SNPs, 6,324 SNPs in the ASM list locate in

1,785 genes. In the GAIN dataset, there were 304,343 SNPs

mapped to 16,385 genes, and 6,992 SNPs in the ASM list locate in

1,961 genes. We therefore divided genes into two sets, ASM and

non-ASM set, in the subsequent pathway analysis. We defined the

ASM set to include 1) genes with SNPs in the ASM list, and 2)

genes with CpG site that is regulated by SNPs in the ASM list.

Genes not in the ASM set were assigned into the non-ASM set. In

total, we had 2,327 and 2,298 genes in the WTCCC and GAIN

datasets, respectively.

The gene-wise p-value for each gene was defined by the most

significant SNP within a gene region, which was commonly

adopted in conducting pathway analysis [14]. For genes in the

ASM set, the smallest p-value (min-p) among all SNPs in the ASM

list in a gene region was used to represent the gene-wise statistic

value. Similarly, for genes in the non-ASM set, the smallest p-value

(min-p) of all SNPs in a gene region was used to represent the gene-

wise statistic values. To account for potential bias caused by using

minimum p-values to represent gene-wise statistic for genes with

various sizes, we adopted the method by Yang and colleagues [23]

to calculate normalized gene scores via 10,000 permutations for all

the genes we analyzed. For each gene, a gene-size adjusted gene

score was calculated and used in the following pathway analyses.

Pathway Analysis with Methylation Information
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Weighting procedure using the ASM information in
pathways

To incorporate methylation information into GWA dataset in

pathway-based analyses, we applied weighting procedures for

ASM and non-ASM gene sets for each pathway. The overall

proportion of significant SNPs (i.e. p-value,0.05) in the whole

GWA dataset was first calculated (11.4% in the WTCCC and

10.2% in the GAIN datasets). We then compared the proportion

of significant SNPs in a given gene with the average proportion of

significant SNPs in the whole GWA dataset to evaluate whether a

gene is more informative than average. We used Harmonic

average (H) as the basis for weighting the average amount of

informative genes in the ASM set and non-ASM set in a pathway.

The weighting procedures are described below. For each pathway,

the corresponding numbers in the ASM and non-ASM gene sets

were n and m, respectively. kn and km represent the numbers of

informative genes in the two gene sets separately. Thus, the

proportion of informative genes in the ASM and non-ASM sets

was denoted as kn/n and km/m. Assuming that Rn and Rm are two

reduced fractions of kn/n and km/m, the Harmonic average of Rn

and Rm, H, was specified as 2/(1/Rn+1/Rm). The Harmonic

average was chosen so that the average is less influenced by

extreme Rn or Rm, values, and H was used to calculate the gene-

wise weights for genes in the ASM and non-ASM sets in a pathway

and to further reduce the potential bias in pathway analysis due to

pathway size variation (i.e., numbers of genes in each pathway

vary). If the proportion of informative genes in the ASM set was

greater than the non-ASM set, the weights for the ASM and non-

ASM sets were Rn/H and Rm/H, respectively. If there were no

informative genes in non-ASM set, we assigned a weight, ranging

from 1 to 6, according to the proportion of informative genes

(using 0.1, 0.3, 0.5, 0.7, and 0.9 as cutoff-values) to ASM set and 1

to non-ASM set. Otherwise genes in the ASM and non-ASM sets

had equal weights.

Statistical methods for pathway enrichment analysis
We downloaded canonical pathway information from Molecule

Signature Database (MsigDB). The MsigDB consists of several

available online sources of pathway databases and manually

curated pathways from the literature, including Kyoto Encyclo-

pedia of Genes and Genomes (KEGG), BioCarta, Reactome,

Gene Ontology (GO) terms, and gene sets compiled from

published biomedical literature [24], which listed 4,726 pathways

and 22,429 genes. Pathways with extreme numbers of genes (i.e.,

10th percentile of pathway size distribution, less than 10 or more

than 380) were removed from analysis to avoid stochastic bias or

testing too general biological process. After mapping genes in

GWA datasets into pathways, we tested in total 3,917 pathways for

the WTCCC and 4,051 pathways for the GAIN datasets.

We applied both competitive and self-contained pathway

analyses approaches [14]. Competitive method compares the

statistics of genes in a given pathway with the rest of genes not in

the pathway. Self-contained method compares the statistics of

genes in a given pathway with the null genomic background [25].

To obtain more comprehensive information in pathway analyses,

three statistical methods were performed to evaluate the enrich-

ment of all pathways, Gene Set Enrichment Analysis (GSEA),

sum-square-statistic and sum-statistic [26,27,28]. The details of

calculation procedures were provided in our previous study [13].

In brief, GSEA method ordered a set of genes by the min-p, and

the gene-wise statistic values (tj ) were defined as the chi-square

statistic of the corresponding most-significant SNP. For each

examined pathway, an enrichment score (ES) was calculated to

evaluate association signals for all genes in the pathway. The sum-

statistic or sum-square-statistic methods were to sum (the square)

all gene-wise statistic values over the set of genes (
PS

i~1 ti or
PS

i~1 t2
i ) [28]. The three pathway-based approaches were

analyzed with or without weighting procedures using the ASM

information.

We performed five thousand permutations to obtain empirical

p-values for each pathway. The Benjamini and Hochberg (BH)

multiple comparison procedure was used to control for the false

discovery rate (FDR) [29] in pathway analyses. A p-value less than

0.01 after FDR correction was considered significant in the present

study. To examine the common processes or underlying biological

themes among significant pathways, we also analyzed functions of

genes in enriched pathways using GO terms, including domains in

biological process, cellular component, and molecular function

(http://www.broadinstitute.org/gsea/msigdb/annotate.jsp).

Results

In the GAIN dataset, 88 pathways were significant, in which 32

were identified only by weighting the ASM information (Table

S1). Similarly, we identified 15 pathways (11 of them were

identified only when weighting procedure is applied for the ASM

set) in the WTCCC dataset with p-value less than 0.01 after BH

correction (Table S2). Among the 88 enriched pathways in the

GAIN dataset, there were 32 (36.4%) from GO, nine (10.2%) from

KEGG, and eight (9.1%) from Reactome. Among the 15 enriched

pathways in the WTCCC dataset, there were six (40.0%) from GO

and one (6.7%) from Biocarta. Three pathways consistently

exhibited their biological relevance for BPD in both GWA datasets

(Table 1). These 3 pathways were cation channel activity, gated channel

activity, and metal ion transmembrane transporter activity. Additionally,

the enriched pathways in the GAIN dataset (Table S1) were

Figure 1. The summary description of present pathway-based
method. *Gene with CpG site that is regulated by SNPs in the ASM list.
doi:10.1371/journal.pone.0053092.g001
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involved in a series of biological procedures and mechanisms, such

as brain development and neuron function (e.g. nervous system

development, neurological system process, axon guidance, etc.), component

of extracellular matrix, ECM (e.g. cell matrix adhesion, ECM receptor

interaction, focal adhesion, integrin cell surface interactions, etc.), neuro-

transmitter (e.g. glutamate signaling pathway), and ion channel activity

(e.g. potassium channel activity, voltage gated cation channel activity, calcium

signaling pathway, etc.). Most of the enriched GO pathways in the

WTCCC dataset were associated with serotonin receptor and

channel and transporter activity, such as serotonin receptor activity,

gated channel activity, cation channel activity, and metal ion transmembrane

transporter activity (Table S2).

Using GO term analysis, we further examined genes in the

enriched pathways of GAIN and WTCCC datasets (other than the

original significant GO pathways) to search for common functions

of these genes. In the GAIN datasets, there were 4,600 unique

genes in 56 non-GO pathways. Table S3 shows the top 50

significant GO terms with p-value less than 0.05. Most of these

significant GO terms were associated with cytoskeleton structure

(e.g. actin cytoskeleton organization and biogenesis, actin filament based

movement, etc.), ECM (e.g. extracellular matrix structural constituent,

collagen, integrin complex, integrin complex, etc.), and cation and gated

channel activity (e.g. cation channel activity, nicotinic acetylcholine gated

receptor channel complex, voltage gated calcium channel activity, etc.). In the

WTCCC datasets, there were 990 genes in 9 significant non-GO

pathways. Table S4 exhibits the top 50 significant GO terms. Most

of these significant GO terms were associated with ion channel

activity (e.g., calcium, potassium, sodium, chloride channel activity, etc.),

transporter activity (e.g. cation transmembrane transporter activity,

inorganic cation transmembrane transporter activity, etc.), and neurotrans-

mitter receptor activitysuch as serotonin receptor activity. Table 2

displays the significant GO terms that were concordantly identified

for BPD in both GWA datasets. The 29 GO terms were mainly

associated with ion channel activity, such as calcium channel, ligand

gated channel, nicotinic acetylcholine gated channel, voltage gated channel, etc.

We further identified genes that were over-represented in

enriched pathways. We selected genes that were commonly

involved in more than 20% out of all enriched pathways for each

GWA dataset and had at least one SNP having p-value less than

0.05 in the GAIN or the WTCCC dataset, that is, more than 18

pathways in the GAIN and 3 pathways in the WTCCC datasets.

The proportion of significant SNPs in these genes ranged from

1.2% to 54.5%. In total, there were 26 concordant genes that

satisfied these criteria between the two GWA datasets (Table 3).

They were mainly associated with calcium and potassium channel.

In the WTCCC datasets, the over-represented genes were also

associated with synaptic transmission (e.g. ACCN1, CHRNAV6,

HTR3B, HTR3A), mediation of calcium ion release (e.g. RYR1,

RYR2, RYR3, TRPC3, TRPC4), and channels of calcium,

potassium, and sodium.

Discussion

For complex trait like bipolar disorder, the whole-genome

screening provides comprehensive genetic data and pathway-

based approaches offer complementary information to reveal

underlying complex biological connections in the whole-genome

scale. Results of pathway–based analysis not only can verify prior

causal hypotheses for BPD (e.g. neurotransmitter processes and neuron

activity dysfunction in brain, etc) but also to explore novel biological

pathways [30,31]. In the present study, we found enriched

pathways for BPD to be related to ion channel activity such as

calcium, potassium, and sodium ion. These findings are consistent

with some of the presumed pathological mechanisms for BPD.
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Additionally, our results in the GAIN datasets suggest for the roles

of extracellular matrix in brain to be involved in the development

of bipolar disorder.

Among our reported significant pathways in the two datasets,

some of them were identified through GO database, which include

nervous system development, ion channel and transporter activity,

extracellular matrix, etc in the GAIN dataset and gated channel

activity in the WTCCC dataset. These enriched GO pathways for

BPD are in line with findings from some of previous studies

[32,33,34]. The other pathways we identified are mainly based on

gene sets that were compiled from published biomedical literature

(discussed later). We noted that few studies applying pathway

based approaches for BPD utilized pathway sources only from

KEGG or GO, which include only 25% to 40% genes in the

whole human genome. Thus, a large proportion of genes with

potential impacts for the trait of interest might be excluded from

pathway analyses. This is clearly the restriction that results of

pathway findings depend on the completeness and correctness of

Table 2. Concordant gene sets in the two GWA datasets of the GAIN and the WTCCC using Gene Ontology analysis.

Gene get name
NO. of gene in
gene Set GAIN (4,600 genes) WTCCC (945 genes)

% of the overlap in
Gene set p-value*

% of the overlap in
Gene set p-value*

Calcium channel activity 33 90.9 2.31E205 87.9 0.00E+00

Cation transmembrane transporter
activity

211 78.2 5.39E211 62.1 0.00E+00

Cation transport 146 65.8 1.88E202 53.4 0.00E+00

Delayed rectifier potassium channel
activity

12 100.0 1.18E203 91.7 5.82E210

Excitatory extracellular ligand gated
ion channel activity

21 85.7 5.29E203 81.0 4.91E213

Extracellular ligand gated ion channel
activity

21 85.7 5.29E203 81.0 4.91E213

Gated channel activity 121 86.0 5.18E212 86.8 0.00E+00

Inward rectifier potassium channel
activity

12 100.0 1.18E203 91.7 5.82E210

Ion channel activity 147 83.7 3.29E212 82.3 0.00E+00

Ion transmembrane transporter activity 275 70.2 3.46E206 53.8 0.00E+00

Ion transport 184 64.7 1.99E202 47.8 0.00E+00

Ligand gated channel activity 39 79.5 2.81E203 79.5 0.00E+00

Metal ion transmembrane transporter
activity

145 86.9 4.33E215 86.9 0.00E+00

Monovalent inorganic cation transport 93 69.9 7.16E203 61.3 0.00E+00

Nicotinic acetylcholine activated cation
selective channel activity

11 100.0 2.07E203 81.8 1.78E207

Nicotinic acetylcholine gated receptor
channel complex

11 100.0 2.07E203 81.8 1.78E207

Potassium channel activity 50 96.0 4.29E210 92.0 0.00E+00

Potassium ion transport 58 84.5 7.29E206 77.6 0.00E+00

Sodium channel activity 17 82.4 2.72E202 76.5 1.10E209

Substrate specific channel activity 154 80.5 4.58E210 78.6 0.00E+00

Substrate specific transmembrane
transporter activity

341 67.5 3.72E205 43.7 0.00E+00

Substrate specific transporter activity 388 63.4 5.25E203 39.2 0.00E+00

Transmembrane transporter activity 371 66.6 7.59E205 40.7 0.00E+00

Voltage gated calcium channel activity 18 94.4 5.88E204 88.9 1.37E213

Voltage gated calcium channel complex 15 93.3 2.69E203 86.7 6.10E211

Voltage gated cation channel activity 66 93.9 1.75E211 90.9 0.00E+00

Voltage gated channel activity 73 90.4 3.53E210 90.4 0.00E+00

Voltage gated potassium channel
activity

36 100.0 1.57E209 94.4 0.00E+00

Voltage gated potassium channel
complex

40 90.0 5.76E206 82.5 0.00E+00

GAIN: The analysis of biological gene sets by Gene Ontology was among 4,600 genes from 56 enriched pathways; WTCCC: The analysis of biological gene sets by
Gene Ontology was among 945 genes from 9 enriched pathways.
doi:10.1371/journal.pone.0053092.t002
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Table 3. Over-representing genes in enriched pathways in the two GWAS datasets of the GAIN and the WTCCC.

Gene Set GAIN WTCCC

No. of SNP
in gene

% of significant
SNPs# Smallest p-value

No. of SNP
in gene

% of significant
SNPs# Smallest p-value

ACCN1 ASM 348 11.5 1.35E203

CACNA1A ASM 48 2.1 4.06E202

CACNA1B ASM 20 30.0 1.11E202

CACNA1C ASM 205 3.4 3.82E203 149 26.8 5.49E205

CACNA1D ASM 123 3.3 2.52E202 68 14.7 4.45E203

CACNA1E ASM 45 6.7 3.92E203

CACNA2D1 non-ASM 77 2.6 2.47E202

CACNB2 ASM 185 11.9 5.07E204 127 9.4 3.33E205

CACNB3 ASM 1 100.0 3.63E202

CACNB4 ASM 68 1.5 4.59E202 37 5.4 3.60E202

CENPN non-ASM 4 25.0 5.15E222

CHRNA6 non-ASM 6 33.3 2.84E202

HTR3B non-ASM 14 7.1 6.88E219

KCNA2 ASM 5 20.0 4.85E202

KCNA4 non-ASM 5 20.0 3.64E202

KCNB2 ASM 142 4.9 2.62E203 107 3.7 2.34E204

KCNC1 ASM 11 54.5 1.59E202 9 22.2 2.99E202

KCNC4 ASM 10 10.0 1.60E202

KCND3 ASM 114 14.9 7.76E204 59 5.1 1.31E202

KCNE1 ASM 20 25.0 2.04E202

KCNG2 non-ASM 8 25.0 6.66E204

KCNH1 ASM 149 8.1 4.03E203 79 3.8 1.19E202

KCNH2 non-ASM 2 50.0 2.74E202

KCNJ1 non-ASM 11 9.1 3.95E202

KCNJ12 5 20.0 3.02E202

KCNJ15 14 7.1 3.11E202

KCNJ3 ASM 49 12.2 2.02E203

KCNJ5 non-ASM 18 5.6 7.22E203

KCNJ6 ASM 157 8.3 5.15E203 97 2.1 2.12E203

KCNK1 ASM 36 8.3 2.01E202 21 38.1 3.04E202

KCNK3 2 50.0 3.16E205

KCNMB2 ASM 94 23.4 1.46E203 63 11.1 1.03E202

KCNN2 30 10.0 3.71E203

KCNN3 ASM 83 15.7 4.28E203 36 2.8 3.55E202

KCNQ1 non-ASM 102 14.7 6.35E204 64 4.7 2.53E202

KCNQ3 non-ASM 162 1.2 1.65E202 97 4.1 4.10E203

KCNQ5 94 8.5 2.07E203

KCNS1 non-ASM 5 40.0 6.14E204 4 50.0 5.58E205

KCNS3 ASM 21 14.3 3.18E202 24 20.8 1.72E202

P2RX4 3 33.3 2.93E202

PKD2 ASM 27 22.2 7.65E203 10 20.0 1.59E202

RYR1 21 9.5 4.76E203

RYR2 114 14.0 1.30E203

RYR3 185 5.4 2.14E203

SCN11A 20 30.0 1.13E202

SCN2A 14 14.3 4.18E202

SCN2B 11 18.2 7.79E203
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annotated pathway databases. Therefore, using more comprehen-

sive pathway sources to include the whole genome (as we used in

the present study) brings benefit to obtain more accurate and full

understanding for the enriched pathways for bipolar disorder. A

common phenomenon seeing in many GWA studies is that most of

the reported genetic variants lack direct biological connection or

knowledge (e.g. variants in a gene desert) [35], and are likely to be

statistically artificial findings without meaningful biological expla-

nations. The expectation of pathway analysis is to reveal more

biological insights for the potential mechanisms of the trait, thus,

to integrate other aspects of information from genetic regulation

mechanisms into pathway analysis could be very useful. The

present study focused on DNA methylation patterns, which

represent as epigenetic markers to play critical roles in regulating

gene expression. The commonly observed tissue specific allele-

specific methylation could explain possible links between non-

coding SNPs and gene function. We designed a weighting scheme

to incorporate such information of functional variants into our

pathway analyses for the GWA datasets of bipolar disorder. We

found that several enriched pathways were only significant after

applying the weighting scheme (36.3% in the GAIN dataset and

73.3% in the WTCCC datasets). These results with the weighting

scheme reveal additional information, such as pathways related to

exracellular matrix, long term potential, regulation of heart atrium

and ventricle, methylated in acute lymphoblastic leukimia, etc in

the GAIN dataset (Table S1) and gated and cation channel activity

in the WTCCC dataset (Table S2). Prior studies have found that

genes in some of these pathways are regulated by epigenetic

mechanism. One recent study reported that epigenetic regulation

of DNA demethylation of target genes, such as RELN (reelin,

extracellular matrix serine protease) and BDNF, might underlie the

mechanisms of synaptic plasticity and memory retention in rat

medial prefrontal cortex [36] In addition, the expression of gene

SCN3A that encodes for a subunit of voltage-gated sodium

channel, which mainly expresses in the central nerve system, has

found to be regulated by DNA methylation mechanism in mouse

[37].

Some significant pathways in the present study identified

through published biomedical databases were related to carcino-

genesis (e.g. thyroid carcinoma, down-regulation of breast cancer,

etc), specific targets of molecule complex (e.g. NCAM1 interactions,

targets of CCND1 and CDK4, CHREBP, and SEMA3B etc.), and

regulation of cellular processes or human diseases (e.g. arrhyth-

mogenic right ventricular cardiomyopat, hypertrophic cardiomyo-

pathyhcm and systolic heart failure, hematopoietic stem cell, etc).

We examined the common functions of genes that included in

these significant pathways to further explore their roles in the

etiology of BPD. Results of GO term analysis in the GAIN dataset

(Table S3) demonstrated the importance of collagen and

extracellular matrix. Components of the extracellular matrix

surround cell and mediate many important cellular processes such

as cell differentiation, tissue rearrangement, and carcinogenesis.

Neuron migration and colony from different brain areas which

enrich the neuronal network with functional unit are highly

associated with the extracellular matrix [38]. Disruption of this

process in brain may be a potential cause of bipolar disorder.

Interestingly, pathways that are related to cell movement (such as

the extracellular matrix, focal adhesion, and regulation of actin

cytoskeleton) were found to be associated with antipsychotic

induced tremors in patient with mania episode [39]. In a GWA

study of bipolar disorder, collagen type 11a2 (COL11A2), a

component of extracellular matrix, was also shown to be

associated with bipolar disorder comorbid with alcohol depen-

dence [40]. This evidence altogether points to a new possibility to

further investigate the roles of brain extracellular matrix in bipolar

illness.

We also identified several important genes that over-represented

in reported enriched pathways. Many of these genes are associated

with different biological processes and functions, including

synaptic transmission (e.g. ACCN1, CHRNA6, HTR3B, HTR3A,

etc) and cation channels activity (e.g. ACCN1, CACNA1C, KCNN3,

etc). For genes encode for synapse components, prior association

studies have indicated the involvement of certain genetic variants

in a variety of psychiatric disorders [33,41,42,43,44,45]. Genetic

variants in genes related to serotonin transmission (e.g.

HTR1B,HTR3A, HTR5A, etc) were associated with mood disorder

[46]. Polymorphisms in CHRNA6 (nicotinic alpha subunit 6 of

neuronal cholinergic receptor), have also been reported to be

associated with bipolar disorder [47].

In addition, many studies have reported that variations in gene

CACNAIC (alpha 1C subunit of the L-type voltage-gated calcium

channel) had strong association signals with bipolar illness [5].

Potassium channels are found in most cell types and control a wide

variety of cell functions, such as regulation of action potential and

resting membrane potential in neurons. Prior study reported that

long repeats of KCNN3 reduce potassium channel function and

modify cognitive performance in schizophrenic patients [48].

ACCN1 (neuronal amiloride-sensitive cation channel 1), a cation

channel with high affinity for sodium, is also permeable for lithium

and potassium ions. A recent genome-wide scan found that genetic

variants in ACCN1 were associated with response to lithium

treatment in bipolar patients [49].

In conclusion, our study integrated methylation information

with genome-wide genotyping data to bring biological insights into

Table 3. Cont.

Gene Set GAIN WTCCC

No. of SNP
in gene

% of significant
SNPs# Smallest p-value

No. of SNP
in gene

% of significant
SNPs# Smallest p-value

SCN5A 19 5.3 2.33E202

SCN9A 22 9.1 2.08E203

SERPINB5 21 4.8 2.98E202

TRPC3 12 8.3 3.08E202

TRPC4 57 10.5 8.55E203

ASM: Gene set of allele-specific methylation; Non-ASM: Gene set of other than ASM in pathway analysis.
#: significant level: p-value less than 0.05.
doi:10.1371/journal.pone.0053092.t003
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the underlying pathogenesis of bipolar illness. We identified

significant pathways that are in line with evidence from prior

causal hypotheses for bipolar disorder, and also reported novel

biological pathways, such as the involvement of brain extracellular

matrix in bipolar disorder. The strategy we applied provides

another avenue to comprehensive our knowledge for the complex

networks reside in the biological basis of bipolar disorder. Our

findings could facilitate follow-up basic research to validate the

functional and biological mechanisms for identified genes and

pathways.

There are some limitations in the current study. First, the

smallest p-value (as commonly adopted in other studies [14]) was

used to define the gene-level statistic, thus, information of other

markers in a gene region is excluded. Using a combined method to

include all markers’ information in a defined gene may provide

slightly different results in pathway analysis, such as the Inverse

Gamma method [50], random effects model, or Bayesian

statistical methods [51]. In addition, the accuracy of pathway

analysis results depends on the completeness and correctness of

annotated pathway database. Although we have used the more

comprehensive databases, there is still likely that some pathways

were not included in our analysis. Second, we incorporated

methylation information in brain tissues into pathway analysis,

while other genomic information such as gene expression or other

epigenetic regulation was not used. Integration of genomic

information from different platforms may provide additional

benefit to identify enriched pathways for bipolar disorder. Third,

we used two major GWA datasets of BPD in Caucasian

populations to obtain concordant findings. Although these are

large-scale GWA datasets, the association results from meta- or

mega- analysis can be used in the near future to further increase

the power to uncover the underlying biological mechanisms for

BPD.
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