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Abstract

Deregulation of gene expression, a hallmark of cancer, is caused by both genetic and epigenetic mechanisms. The rapid
accumulation of epigenome maps of various cancers suggests a new avenue of research, namely integrating epigenomic
data with other types of omic data for cancer diagnosis, prognosis, and biomarker discovery. We introduce the MAPIT
algorithm (Multi Analyte Pathway Inference Tool), to enable principled integration of epigenomic, transcriptomic, and
protein interactome data. As a proof-of-principle, we apply MAPIT to glioblastoma multiforme (GBM), the most common
and aggressive form of brain tumor. Few predictive markers were reported for the prognosis of GBM patients. By integrating
mRNA transcriptome, promoter DNA methylome and protein-protein physical interactome, we find ten expression- and
three methylation-based network markers, involving 118 genes. When tested on additional GBM patient samples, the
prognostic accuracy of the multi-analyte network markers (73.5%) is 9.7% and 8.6% higher than previous prognostic
signatures built on gene expression or DNA methylation alone. Our results highlight the critical role of two novel pathways
in the prognosis of GBM patients, small GTPase-mediated protein trafficking and ubiquitination-dependent protein
degradation. A better understanding of these two pathways could lead to personalized therapies for subgroups of GBM
patients. Our study demonstrates that integrating epigenomic, transcriptomic, and interactomic data can improve the
accuracy network-based prognosis markers and lead to novel mechanistic understanding of cancer.
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Introduction

Glioblastoma multiforme (GBM) is the highest grade tumor of

astrocytes (WHO grade IV [1]). It is also the most common and

lethal form of brain tumor with a median survival time of 12–15

months after initial diagnosis [2,3]. In spite of a short median

survival time, a small percentage of GBM patients can live a very

long time (3–20 years) after diagnosis. In this study, we call these

patients Long Term Survivors of GBM (LTS-GBM). Understand-

ing the molecular pathways that distinguish these rare LTS

patients from Short Term Survivors (STS) could lead to more

effective treatment and management of the deadly disease.

Few predictive gene markers for GBM patient outcome were

reported until recently. Using four independently collected sets of

gene expression profiles, Colman et al. found a set of 38 genes that

can distinguish STS (median survival time = 39 weeks) from LTS

patients (median survival time = 146 weeks) [4]. Using another

compendium of gene expression profiles generated by The Cancer

Genome Atlas (TCGA) consortium, Verhaak et al. [5] classified

GBM patients into four subtypes based on their gene expression

profiles. They found a trend towards longer survival among

patients with a proneural subtype although the trend is not

statistically significant. More recently, using a compendium of

CpG island DNA methylation profiles generated by the TCGA

consortium, Noushmehr et al. identified a CpG island methylator

phenotype (involving 1,228 gene promoters) that are associated

with significantly improved disease outcome [6].

Diseases of complex etiology such as cancer are consequences of

combined defects of many genes. These disease genes in turn drive

the pathogenesis through an integrated network response. Thus,

the historical approach of investigating disease by studying

individual genes and linear pathways must be complemented by

a systems biology approach that will more likely identify nodal

points affecting network dynamics, yielding targets of strong

therapeutic potential. The large-scale generation and integration

of genomic, transcriptomic, proteomic, and metabolomic data

have enabled the construction of complex gene networks that

provide a new framework for understanding the molecular

mechanism of diseases. This network-based view of disease is

profoundly different from the familiar linear causality model that

generally fails to account for the complexity of human biology and

the intricate web of interactions associated with a particular

disease phenotype.

A number of studies have shown that network-based markers

provide a more effective and accurate means for cancer gene

discovery and disease subtype stratification. Additionally, com-

pared to traditional approaches that do not explicitly consider

relationships between genes/proteins in a pathway, the network-

based approach naturally provides a mechanistic understanding of

the underlying pathways. Chuang et al. [7], Taylor et al. [8], and

Lefebvre et al. [9] integrated gene expression profiles with physical

protein-protein interactome data to identify subnetwork markers

for the prognosis of breast cancer and lymphoma patients.

Torkamani and Schork [10] used gene co-expression network to

infer cancer-initiating genes in breast, colorectal cancer, and

glioblastoma. Although highly promising, none of these previous

studies incorporated epigenetic data into their integrative analyses
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in spite of the well-established critical role of epigenetics in cancer

etiology [11,12]. For the sake of discussion, we termed those

previous approaches using gene expression data only as single-

analyte network based approach.

Both histone tail post-translational modification and DNA

methylation have been shown to play a critical role in

tumorigenesis and progression [13,14]. For instance, hypermethy-

lation of the genes encoding NSD1, the death-associated protein

kinase DAPK, epithelial membrane protein-3, and CDKN2A has

been linked to poor outcomes in neuroblastoma, lung, brain and

colorectal cancers, respectively [13]. For GBM, promoter

hypermethylation of the MGMT gene (O6-methylguanine meth-

yltransferase) has been linked to poor disease outcome [15,16].

While promising, it is likely additional methylation-based bio-

markers could complement MGMT status as an outcome

predictor. The advent of next-generation sequencing and high

throughput tandem mass spectrometry has enabled epigenomic

profiles to be generated at unprecedented rate for various types of

cancers. Clustering analysis of epigenomic data has revealed

prognostic signatures that are complementary to gene expression

patterns [6]. Recently, Wen et al. [17] has reported an integrative

analysis of transcriptomic, epigenomic, and protein interactome

data to discover driver genes in colorectal cancer. They used DNA

methylation data as prior information for candidate driver genes.

However, a similar integrative analysis has not been conducted to

identify prognostic markers for cancers.

We hypothesize that multi-analyte network markers can be

discovered by integrating gene expression profile, epigenomic

profile, and protein-protein interactome. These markers can be

used to improve cancer prognosis accuracy compared to previous

approaches in which only transcriptome and interactome data are

integrated. To this end, we develop a novel computational

framework that enables principled integration of multi-dimension-

al genomic and interactome data for molecular pathway inference.

We implement the framework in the MAPIT (Multi Analyte

Pathway Inference Tool) algorithm. We apply the MAPIT

algorithm to identify prognostic network markers to predict

GBM patient survival time. Our integrated analysis reveals that

genes involved in protein trafficking, apoptosis, and protein

catabolism play a critical role in predicting GBM patient outcome.

Materials and Methods

Classification of GBM patients based on their survival
time

There is no a clear-cut and universal definition of LTS-GBM.

In this study, we used the definition by Colman et al. [4], i.e. a

patient is classified as a LTS if s/he survives at least two years after

the initial diagnosis. Using this criterion, we have identified a total

of 42 LTS and 237 STS patients from the TCGA data set. Patient

clinical information is provided in Figure S1 and Table S1.

GBM Patient Gene Expression and CpG island DNA
Methylation Data

We downloaded gene expression and promoter DNA methyl-

ation data for 279 GBM patient samples from the TCGA data

portal. Matching clinical data such as survival time after diagnosis

were also obtained from TCGA. Gene expression profiling was

done using the Agilent G4502A platform covering 17,814 genes.

Promoter CpG island methylation profiling was done using the

Illumina Infinium HumanMethylation27 platform, covering

13,372 genes. There are additional methylation data generated

by the TCGA using two other Illumina platforms. We only used

data generated by the 27k platform because only this set has

triplicate data for every patient sample. The other two sets are

smaller and only have duplicate data. Some genes can have

multiple promoters and a representative promoter with the most

significantly differential methylation between LTS and STS

patients was used. The number of genes shared by the two

platforms was 12,872.

Human Protein-Protein Interaction Data
We obtained experimentally derived, non-redundant protein-

protein interaction data from the iRefIndex database (version 4.0)

[18], which consolidates a number of primary protein interaction

databases including BIND, BioGRID, CORUM, DIP, HPRD,

IntAct, MINT, MPact, MPPI and OPHID. We also included the

human MAP kinase interactome recently mapped by Bandyo-

padhyay et al. [19]. The final combined network contains 10,691

proteins and 47,162 interactions. A Venn diagram for the

expression, methylation, and PPI datasets are shown in Figure S2.

Selection of training set for prognostic network module
discovery

In order to obtain the most characteristic samples from LTS

and STS patients, we selected extreme samples from each

subgroup to form the training set. Such an approach has been

shown to improve the prognostic accuracy of gene signatures for

several cancers [20–22]. The resulting set contains the top 21

longest surviving individuals (greater than 2.5 years survival time)

and the bottom 21 shortest surviving individuals (less than 0.5

years). We used the same set of patients for both expression- and

methylation-based network module discoveries.

Construction of input networks
Using unique HUGO Gene Nomenclature Committee

(HGNC) gene IDs, we mapped gene IDs from expression, DNA

methylation, and PPI data and found 8,461 genes that are

common among three datasets. The giant connected component

of PPI network involves 8,171 proteins and 47,162 interactions

(Figure S2), which used for all analyses described in this paper.

Next, we combined either expression or methylation profiles

with the PPI network to construct two edge-weighted networks.

First, for each gene i in the network, a q-value of differential

expression/methylation between LTS and STS samples was

computed using the SAM method [23]. The following equation

is used to assign edge weight:

wij~log(qi � qj)=log(q2
min)

Where qi and qj are SAM q-values for gene i and j, respectively

and qmin is the smallest q-value among all 8,171 genes in the

network.

Network module search using the miPALM algorithm
We recently developed a network module finding algorithm,

miPALM, using un-weighted PPI networks [24]. The algorithm

introduced a novel parameterised local modularity measure as its

scoring function. Here, we extended miPALM to handle weighted

networks. The algorithm starts by generating a ranked list of

triangle seeds based on average edge weights. Starting from the

top-ranked seed, S = {s,t,u}, the algorithm uses a greedy search

strategy to expand it to a larger sub-network S9 = {s,t,u,v}. The

greedy search always merges the nearest neighbour v of S that

leads to the largest increase in the local modularity measure,

defined as

Multi-Analyte Network Markers for Tumor Prognosis
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where w is the total edge weight of all nodes in the network, wvS is

the sum of edge weights between node v and all nodes in S, wv is

the sum of edge weights attached to node v, wS is the sum of edge

weights attached to any node in S, and a is the parameter

controlling the size of the neighbourhood of S. The seed expansion

step repeats until no additional neighbour exists that can lead to an

increase in the local modularity. Once a candidate subnetwork S is

found, its final score is calculated as DS~2 �
P

i,j[S wij=(nS{1),

where wij is edge weight and nS is the number of genes in

subnetwork S. Note the score is normalized by the size of the

subnetwork.

Merging of overlapped subnetworks
Overlap score between two subnetworks was defined as

c2=a � b, where a and b are the number of genes in the two

subnetworks and c is the number of shared genes. We merged pairs

of subnetworks if their overlap score is greater than 0.5.

Significance assessment of network modules selected as
classifier features

We generated 100 sets of random networks by permuting node

weights of the the input network while maintaining the degree of

each node. This permutation uncorrelates expression/methylation

level with protein interactions. The miPALM algorithm was then

run on the random networks. An empirical p-value of a candidate

subnetwork was computed as the fraction of subnetworks found in

the random networks with a score at least as large as that of the

candidate subnetwork. A p-value cutoff of 0.05 was used to select

significant subnetworks.

GBM patient classification using Support Vector Machine
(SVM)

Following the approach by Chuang et al. [7], we first normalized

the expression or methylation level of a gene i across patient

samples to obtain a gene-wise z-score, zij . Given a patient sample j,

the activity score of a network module s was calculated as

asj~
PnS

i~1 zij=
ffiffiffiffiffi
nS
p

, where nS is the number of genes in the

module. A feature vector was constructed as

v~ a1ja2j . . . ax{1jaMj

� �
where M is the number of modules.

Next, a SVM classifier with a quadratic kernel function was

trained on the feature vectors derived from the LTS- and STS-

GBM patient data in the training set.

Classification accuracy assessment by leave-one-out
cross validation (LOOCV)

Classification accuracy of the trained SVM classifier was tested

on a test set of GBM patients not used in deriving the modules and

training the classifier. Since there were only 21 LTS and 216 STS

patients not used in the training step, our choice of LTS data for

cross validation was limited. As a result, we generated a testing set

by selecting 21 different STS patients and combining them with

the same 21 LTS patients. Next, at each LOOCV iteration, data

of 20 LTS and 20 STS patients were used to train the classifier and

data of the remaining two patients were used for testing. The

classification accuracy was defined as the ratio of the number of

correctly classified patients to the total number of patients in the

test set. We repeated the entire LOOCV procedure 100 times by

using 100 test sets, each of which consisted of 21 randomly selected

STS patients and the same 21 LTS patients from the set of GBM

patients not used in training the classifier. The final classification

accuracy reported is the average accuracy of the LOOCV runs.

Feature selection by Recursive Feature Elimination
To identify a subset of highly discriminative modules, we

devised a recursive module selection procedure based on the

Recursive Feature Elimination (RFE) algorithm proposed by [25].

Briefly, the algorithm starts with the full set of significant modules

and each module is regarded as a feature. At each iteration, a

SVM classifier was trained using currently available features and

the classification accuracy was estimated using cross validation. At

the end of each iteration, each feature is assigned a weight by the

SVM. The weight is a measure of the feature’s contribution to the

classification performance and can be used to rank them. The

feature with the smallest ranking was removed at the end of each

iteration. The algorithm terminates when there is no feature left in

the training set. The subset of modules that gives the highest

classification accuracy was selected as the final set. We examined a

range of the alpha parameter values of the miPALM algorithm to

identify the optimal alpha value that when combined with SVM

classifier gave the largest classification accuracy. Figure S3 shows

the results of parameter selection process.

Other gene sets used in the study
The 38-gene set was obtained from [4]. The G-CIMP+ gene set

was obtained from [6]. The COSMIC database [26] is a manually

curated database containing human genes with somatic mutations

that are observed in tumor samples and reported in scientific

literature. From COSMIC, We obtained a list of 1,175 mutated

genes observed in grade IV astrocytoma (GBM) samples.

Results and Discussion

Gene-expression-based network markers improve
prognosis accuracy compared to markers without
network information

GBM is the most aggressive form of tumor with less than 15%

patients surviving more than 2 years after initial prognosis. Using a

commonly used cutoff of two years [4], we have identified a total

of 42 LTS and 237 STS patients from the TCGA data set. To

characterize the effectiveness of the single-analyte (i.e. gene

expression only) network approach on GBM patient prognosis,

we integrated the gene expression data generated by the TCGA

consortium with a set of non-redundant, experimentally derived

human protein-protein interactions to construct a gene expression-

informed network. For simplicity, we termed this network the

eNetwork. Node weights in the eNetwork indicate the significance of

differential gene expression between LTS- and STS- GBM

samples. Under this scoring scheme, a deregulated pathway will

manifest itself as a set of connected nodes (i.e. subnetworks) that

collectively have a significantly large sum of node weights. To

search for such high-scoring subnetworks, we extended our

recently developed miPLAM algorithm for gene module finding

[24] to handle weighted networks. Using the extended algorithm

and a p-value cutoff of 0.05 (see Methods for p-value calculation of

network markers), we found 65 network markers that are

differentially expressed between LTS- and STS- GBM patients.

For brevity, we termed these expression-based subnetwork

markers eModules. Next, we used this set of eModules to train a

statistical classifier for discriminating between LTS- and STS-

GBM patients. Each GBM patient in the training set was

represented by a profile of 65 eModule activity scores, one score

from each eModule. Network activity profiles of 42 GBM patients

Multi-Analyte Network Markers for Tumor Prognosis
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(see Methods for the preparation of the training set) were used to

train a Support Vector Machine (SVM) classifier. Since not all

eModules are equally discriminative, we used an iterative feature

selection procedure during SVM training to identify a subset of

eModules that is most discriminative between LTS and STS

patients (see Methods for details). By doing so, we identified a

subset of 25 eModules (156 genes) that were most discriminative

(i.e. achieving highest classification accuracy) (Table S2). Our final

classifier was built using these 25 eModules. In the rest of this

section, we will focus on these 25 eModules.

Next, we tested the classification accuracy of the trained

classifier using leave-one-out cross validation (LOOCV) and GBM

patient samples that were not used in the derivation of the

eModules (see Materials and Methods for details). We compared

the average classification accuracy by eModule-based predictor to

predictors built using two alternative sets of prognostic markers:

the 38-gene set recently reported by Colman et al [4] and the set of

top 156 (the same number of genes in the eModule set) most

significantly differentially expressed genes between LTS and STS

patients. As shown in Figure 1A, the average prognosis accuracy of

the eModule-based classifier was 3.8% and 7.8% higher than the

two alternative classifiers, respectively (t-test p,0.01).

While cross validation is a commonly used internal validation

strategy, we further tested the performance of the eModule-based

classifier using a more stringent approach, i.e. use of external data

sets [27]. To this end, we used three additional independent gene

expression data sets from which the 38-gene signature was derived

[28–30]. The number of GBM patients ranges from 28 to 59

across the three data sets. For the classification, we used exactly the

same classifiers trained on either the TCGA data (this study) or by

other studies. As shown in Figure 1B, the eModule-based classifier

significantly outperformed the 38-gene signature in all three

external data sets (t-test p,0.01), suggesting that the improved

classification accuracy of the eModule-based classifier is not due to

biases in our experimental design.

In summary, by using both cross validation and external data

sets, we found that eModule-based classifier provides improved

prognosis accuracy of GBM patients compared to classifiers built

without explicit consideration of relationships among genes.

Low overall correlation between transcriptome and DNA
methylome profiles in GBM samples

Accumulating evidence suggest that the relationship between

promoter DNA methylation and gene expression is far more

complicated than the classical view of anti-correlation between the

two processes [31]. To better understand the relationship between

gene expression and DNA methylation in the context of GBM, we

conducted a global correlation analysis between the two types of

data across the full set of GBM samples (N = 279). The median

Pearson correlations between the expression and methylation

profiles of 2,009 differentially expressed and 1,877 differentially

methylated genes between LTS and STS groups (SAM test

q,0.05) were 20.05 and 20.06, respectively. The average

correlation between expression and methylation for the 156 genes

in the set of eModules was 20.09. In comparison, the average

correlation of a set of 1,877 randomly selected genes was 20.04

(Figure S4). Although on average the differentially changed genes

showed higher negative correlation than random genes, the

difference is rather moderate. This overall low correlation is

unlikely due to poor data quality since both gene expression and

DNA methylation data were generated using the same biological

samples. Recently, Fan et al. conducted a meta-analysis of CpG

island methylation data of twelve human tissues generated by the

Human Epigenome Project using bisulfite sequencing [32]. They

also observed a low correlation between promoter DNA methyl-

ation level and gene expression across tissues. Recently, CpG

Figure 1. Performance comparison of gene-expression-based classifiers for GBM patient prognosis. A) Prognostic accuracy of various
marker sets. Classification accuracy is defined as the ratio of the number of correctly classified patients to the total number of patients tested.
Expression data of 42 GBM patients was used to derive the eModule set. Top-gene set is top 156 (size-matched to the number of genes in the
eModule set) most significantly differentially expressed genes between LTS and STS patients. 38-gene set, a set of 38 discriminative genes reported in
[4]. Two hundred thirty seven additional GBM patients from TCGA were used for testing classification accuracy. Error bar is the standard deviation
based on 100 leave-one-out cross validations. B) Performance of eModule set and 38-gene set using three external microarray data [28–30] from
which the 38-gene signature was derived. Numbers in parenthesis indicate number of LTS and STS in each data set, respectively. P-values are based
on t-tests comparing the average classification accuracy of the eModule-based classifier and those of other classifiers.
doi:10.1371/journal.pone.0052973.g001
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shore (sequence up to 2K bp distant from CpG island) rather than

CpG island methylation has been shown to be more negatively

correlated with gene expression in human cancers [33]. Unfortu-

nately, the Illumina 27k platform used by the GBM DNA

methylation study does not include probes for CpG shores. Future

investigation using higher coverage data may provide additional

insight into the low correlation between promoter DNA methyl-

ation and gene expression.

DNA methylation-based network markers provide
complementary pathway information for GBM patient
prognosis

The overall low correlation between gene expression and DNA

methylation profiles prompted us to examine if subnetwork

markers based on DNA methylation profiles alone can provide

complementary information for dissecting deregulated pathways in

GBM. It has been well established that members of cancer

pathways tend to have correlated expression and possess

characteristic topological properties in the protein network, such

as higher number of interacting partners and tendency of being

centrally located in the network [34,35]. A recent study shows that

cancer-related genes tend to have correlated methylation profiles

[36]. Further, in our own data, we observed that genes encoding

connected protein pairs in the PPI network have significantly

higher methylation profile correlation than genes encoding

random pairs of proteins in the network (p = 2.2610216, Figure

S5). Together, these observations provide additional rationale that

methylation-based network markers could also be used for cancer

prognosis.

Using the same strategy as with gene expression data, we

constructed an alternative network by combining the PPI

interactome with promoter DNA methylation profiles. We termed

this network the mNetwork for brevity. Node values in the

mNetwork indicate the significance of differential promoter

methylation between LTS- and STS- GBM samples. We then

applied the miPALM algorithm combined with the RFE feature

selection strategy described above to identify discriminative

subnetworks that are significantly differentially methylated be-

tween LTS and STS GBM patients. Using a p-value cutoff of 0.05,

we found 7 such subnetworks involving 38 genes (Table S3). To

contrast with the expression-based eModules, we termed these

subnetworks mModules.

Next, using leave-one-out cross validation, we compared the

performance of our mModule-based predictor to predictors built

with two alternative sets of prognostic markers: the G-CIMP+
predictor (1,228 gene promoters) recently reported by Noushmehr

et al. [6] and the set of top 38 gene promoters (the same number of

genes in the mModule set) that were most significantly differen-

tially methylated between LTS and STS patients. As shown in

Figure 2, we found that the mModule-based classifier slightly out-

performed both the G-CIMP+ based predictor and the top-gene-

based predictor. The average prognosis accuracies of the three

classifiers based on LOOCV were 0.65, 0.64, and 0.62,

respectively. The performance difference between the mModule-

based and the G-CIMP+ based predictors was small, likely due to

the fact that a much larger number of genes was used in building

the G-CIMP+ based classifier than our mModule-based classifier

(1,228 vs. 38),

We were unable to evaluate the prognosis accuracy of the

mModule-based classifier using external datasets since additional

sets of matched DNA methylation and patient survival time data

were not available yet. However, since the module search

algorithm is the same for eModule and mModule, it is reasonable

to speculate that our mModule set will have similar prognostic

value for additional DNA methylation data in the future.

Because of the connection between promoter DNA methylation

and gene expression, we expected to find a reasonable overlap

between the two sets of subnetwork markers. Surprisingly, we

found a very low degree of overlap between genes in the two

marker sets. Of the 156 eModule and 38 mModule genes, only five

genes are shared between the two sets. This small overlap is

unlikely due to poor quality of the identified modules because both

sets of modules are supported by additional lines of evidence. For

instance, the two sets of modules together captured 33 genes with

reported somatic mutations in GBM patients [26]. But none of

those genes are captured by both eModule and mModule sets. In

summary, our data suggest that eModules and mModules are

complementary to each other and represent different molecular

pathways in gene network that is deregulated in GBM patients.

Combining expression and methylation network markers
results in large improvement of prognosis accuracy of
GBM patients

Given the low degree of overlap between otherwise high-quality

eModule and mModule sets and the moderate performance gain

of mModule-based classifier alone, we asked if combining the two

sets of heterogeneous pathway markers could lead to a more

accurate predictor for GBM patient outcome compared to using

only one type of pathway markers. Towards this goal, we

developed the MAPIT algorithm (Multi-Analyte Pathway Infer-

ence Tool) for constructing a multi-analyte network marker-based

classifier for GBM patient prognosis. Figure 3 provides an

overview of the algorithm. Starting with the eNetwork and

mNetwork, we first apply the miPALM algorithm to each input

network separately to generate a set of eModules and a set of

mModules. We then merge overlapping modules from the two

sets. Next, for each merged module, two activity scores are

Figure 2. Performance comparison of DNA methylation-based
classifiers for GBM patient prognosis. Promoter DNA methylation
data of 42 GBM patients was used to derive the set of mModules. Top-
gene set is top 38 (size-matched to the mModule set) most significantly
differentially methylated genes between LTS and STS GBM patients. G-
CIMP+ set, a set of 1228 discriminative genes reported in [6]. Two
hundred thirty seven additional GBM patients from TCGA were used for
testing classification accuracy. Error bar is the standard deviation based
on 100 leave-one-out cross validations. P-values are based on t-tests
comparing the average classification accuraciy of the mModule-based
classifier and those of other classifiers.
doi:10.1371/journal.pone.0052973.g002
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calculated based on member gene expression and DNA methyl-

ation data, respectively. Both activity scores are then used as two

independent features for building a statistical classifier using SVM

combined with the RFE feature selection procedure. The MAPIT

algorithm is implemented in Matlab and is freely available from

our website http://www.healthcare.uiowa.edu/labs/tan/

MAPITWebpage.html.

We identified ten eModules and three mModules (118 total

genes) that are highly discriminative of GBM patient subgroups.

The classification accuracy based on leave-one-out cross validation

(73.5%) using the combined subnetwork markers significantly

improved over both single-analyte subnetwork markers and gene-

set-based markers (Figure 4A). Additionally, the Kaplan-Meier

survival curve showed more significant separation between the two

patient groups classified by the multi-analyte network module set

compared to previously reported 38-gene and G-CIMP+ signa-

tures (Figure 4B–D).

Combining classification accuracy and significance of separa-

tion of patient survival time curves (Figure 4), we can draw two

conclusions. First, the classifier built on multi-analyte network

modules performed better than classifiers that are based on single-

analyte network modules. Second, the network module-based

classifier performed better than classifiers built on gene sets

identified in previous studies.

We further corroborated our set of combined modules with four

sets of genes implicated in GBM tumorigenesis: genes having

somatic mutations in GBM patients from the COSMIC database

[26], genes proposed to be prognostic markers for GBM patient

Figure 3. Overview of the MAPIT algorithm. Using clinical data, GBM patients are classified as either Long Term Survivors (LTS, .2 yrs.) or Short
Term Survivors (STS, ,2 yrs.). Two types of global measures of tumor samples are combined with protein-protein interactome (PPI) for network
module identification: mRNA expression and promoter DNA methylation. Significance of change in either gene expression or promoter DNA
methylation profiles between LTS and STS patients are overlaid on top of the PPI network to generate single-analyte networks, eNetwork and
mNetwork. Network modules from each single-analyte network are identified using the extended miPALM algorithm [24] independently. Significant
modules from each network are then combined to train a classifier for GBM prognosis using Support Vector Machine (SVM). A Recursive Feature
Elimination (RFE) algorithm is implemented with the SVM classifier to select a final set of most discriminative network modules for patient prognosis.
doi:10.1371/journal.pone.0052973.g003
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survival time in two previous studies [4,6], and genes in Copy

Number Variation (CNV) regions identified in GBM patients [37].

We note that the presence of genetic mutations does not

necessarily mean a gene is prognostic of cancer subtypes unless

the mutations occur exclusively in one subtype. This kind of

information is not yet available for most genes across large patient

cohorts. However, it increases the likelihood of a module gene

being a prognostic marker. We found that ten out of thirteen

modules contain at least one gene that overlaps the published sets

of GBM-related genes and the fraction of overlap with previous

evidence ranges from 0.1 to 0.5 among the modules (Table S4). In

total, 21 module genes (17.8%) overlap with published gene sets.

The set of thirteen modules with their enriched GO terms

(p,0.05) were depicted in Figure 5. Each node in a module

displays expression and promoter DNA methylation information

simultaneously for the gene represented by the node. For instance,

RAB3D in module A shows down-regulated expression and

hypermethylated promoter in LTS patients compared to STS

patients. In decreasing number of module genes involved, the set

of enriched GO terms consists of protein trafficking, apoptosis,

protein catabolism, nucleotide metabolism, translation, transcrip-

tional regulation, DNA recombination, protein import into

mitochondrial matrix, and nucleosome assembly. Genes annotated

with the first three GO terms made up 51% of the 118 genes in the

combined module set (Table S4), suggesting the importance of

these three biological processes in predicting GBM patient

survival. Among them, the role of apoptosis pathway in GBM

etiology is much better understood [37] whereas the importance of

protein trafficking and degradation pathway is less appreciated.

Our result suggest that the latter two pathways also play an

important role in GBM patient survival because the discovered

modules associated with these two pathways have highly-ranked

Figure 4. Performance of multi-analyte modules for GBM patient prognosis. A) Prognostic accuracies of GBM patients by four marker sets.
Expression data of 42 GBM patient was used to derive the module set. Two hundred thirty seven additional GBM patients from TCGA were used for
classification using the module set. Support Vector Machine algorithm was used to build a classifier based on each marker set. Top-gene sets were
size-matched to the network module sets (i.e., the same number of genes as in the network module sets). Error bar is the standard deviation based on
100 leave-one-out cross validations. P-values are based on t-tests comparing the average classification accuracy of the multi-analyte-module-based
classifier to those of other classifiers. B–D) Kaplan-Meier survival curves for LTS and STS GBM patients classified using the combined module set (B),
38-gene set (C), and G-CIMP+ set (D). P-value indicates the significance of separation between the two curves and is computed using logrank test.
doi:10.1371/journal.pone.0052973.g004
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weights in the SVM classifier (Table S4). A better understanding of

these two pathways could ultimately result in personalized

therapies for subgroups of GBM patients.

There is increasing evidence that genes controlling protein

trafficking play a role in tumor progression and invasion [38]. One

of our network modules, module A, is highly enriched for genes

involved in vesicle trafficking, especially genes of the Rab family of

small GTPases (Figure 5A). The Rabs play essential roles in

various aspects of membrane traffic control, and like other

members of the Ras superfamily, function as molecular switches

through changes in its guanine nucleotide binding status. By

modulating the trafficking of either growth factor receptors (e.g.

EGFR) or cell adhesion molecules (e.g. integrin), Rab proteins can

increase the proliferation and invasion potential of tumor cells

[39]. Deregulation of Rab expression is associated with multiple

cancers [39]. Our data identify that members of four Rab

subfamilies, Rab3, Rab8, Rab26, and Rab27, are deregulated

between LTS- and STS- GBM patients. In addition, they form

dense interactions among themselves and other genes involved in

protein trafficking. Among those Rabs, members of the brain-

enriched Rab, Rab3, have the largest presence in module A,

suggesting that Rab3 genes play a prominent role in GBM patient

Figure 5. The set of multi-analyte prognostic modules identified by the MAPIT algorithm. Ten eModules (A–J) and three mModules (K–M)
are shown. Node colour represents gene expression change of LTS patients compared to STS patients. Red, down-regulation; Green, up-regulation.
Shade is proportional to the 2log (p-value) of the change. Node border colour represents DNA methylation change of LTS patients compared to STS
patients. Red, hypomethylation; Green, hypermethylation. Shade is proportional to the 2log (p-value) of the change. Diamond nodes, genes reported
to bear somatic mutations in GBM patients. Rectangular nodes, genes identified as GBM prognostic markers in either [4] or [6]. Hexagonal nodes,
genes both reported to bear somatic mutations and identified as prognostic markers in either [4] or [6]. Purple star: genes located in CNV regions
identified in GBM patients [37]. Edge, protein-protein interaction. Edge width is proportional to the combined significance of expression changes of
the two involved nodes (see Methods for details).
doi:10.1371/journal.pone.0052973.g005
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survival. Thus, they are prime candidates for future detailed

studies.

The ordered, temporal degradation of numerous key short-lived

regulatory proteins by the proteasome (such as p53, p21, p27,

cyclins, cyclin-dependent kinase inhibitors, and tumor suppressors)

is required for cell-cycle progression, cell survival, and metastasis.

Our result shows modules H and M are enriched for genes

involved in protein degradation through the ubiquitin-proteasome

system (Figure 5). Genes in module H are enriched for S phase

kinase-associated protein 1 (SKP1)-cullin 1 (CUL1)-F-box protein

(SCF) family of E3 ubiquitin ligase superfamily [40]. Genes in

module M are members of the proteasome complex. SCF family

ubiquitin ligases promote degradation of diverse substrates,

including cell cycle regulatory proteins, transcription factors, and

signal transducers. SCF dysfunction has been observed in a

number of cancers, including glioblastoma [40].

Because of its fundamental role in protein homeostasis, targeting

the ubiquitin-proteasome pathway using proteasome inhibitors

represents a novel approach for the treatment of cancer. Clinically,

the proteasome inhibitor bortezomib has been used for the

treatment of multiple myeloma and mantle cell lymphoma [41].

Clinical trials evaluating the efficacies of proteasome inhibitors for

the treatment of solid tumors are in progress [42]. Our discovery

that ubiquitin-proteasome pathway is prognostic of GBM patient

outcome suggests that targeting this pathway with proteasome

inhibitors may be an effective treatment for this deadly disease.

Indeed, two proteasome inhibitors, bortezomib [43] and PS-341

[44], have been shown to have anti-proliferation and proapoptotic

effects on cell line models of the disease. Additional studies and

clinical trials will determine the efficacies of these inhibitors on

improving GBM patient outcome.

The relationship between DNA methylation and gene expres-

sion is complex. This may help explain the apparent low

correlation between them across patient samples. It has been

proposed that DNA demethylation is necessary but not sufficient

for gene activation. Conversely, methylation of a promoter is not

always sufficient for gene repression [31,45]. In support of this

view, Mohn et al. found that 21–27% of unmethylated promoters

have no detectable expression during mouse neuronal lineage

commitment [46]. On the other hand, Fouse et al. [45] found that

up to 36% of genes in mouse ES cells are still expressed even if

methylated in the proximal promoter. Furthermore, 80% of the

expressed genes that exhibit promoter methylation are marked by

the active histone mark H3K4me3. In this sense, DNA methyl-

ation status only provides a precondition for the transcriptional

regulatory process and additional factors, such as histone

modifications may play more direct and important roles in gene

regulation.

In this study, we only considered promoter DNA methylation

data. Another major epigenetic regulatory mechanism is covalent

modification of histone tail. This mechanism has been shown to

operate independently of DNA methylation during tumorigenesis.

For instance, H3K27me3 has been found to silence tumor-

suppressor genes in cancers that are independently of promoter

DNA methylation [47,48]. Integration of both types of epigenetic

data with gene expression and interactome data may lead to

improvement on the accuracy of cancer pathway inference

algorithms.

Conclusions

We introduce the MAPIT algorithm to enable principled

integration of epigenomic, transcriptomic, and protein interac-

tome data. As a proof-of-principle, we apply MAPIT to discover

multi-analyte network markers for the prognosis of glioblastoma

multiforme, the most common and aggressive form of brain

tumor. MAPIT can be applied to any cancer cohort containing

matched data for gene expression and epigenetic profiles. The

principle of associating epigenetic data with gene expression and

clinical data that differ among samples will be of increasing

importance as epigenetic data accumulate. Additionally, the

principle of associating cellular state data (i.e. transcriptome and

epigenome) with physical interactome can not only help to identify

important genes in tumorigenesis, but also provide insight into

how they operate. The MAPIT approach is not limited to finding

prognostic markers of patient outcome. Indeed, it can be used to

identify pathways that relate to any measurable phenotype, such as

metastasis and the resistance of tumors to drugs. We anticipate

that our approach will make an important contribution toward a

basic mechanistic understanding of cancer and in revealing

associations of clinical significance.

Supporting Information

Figure S1 Survival time of 279 TCGA GBM patients.
Patient clinical data provided by the TCGA consortium. A)

Boxplot for the survival time distribution of 279 GBM patients.

The median survival time is 46.6 weeks. The grey horizontal line

indicates the 2 yrs. cutoff used in this study to classify patients into

Long Term Survivors (LTS) and Short Term Survivors (STS). B)

Kaplan-Meier survival curve for LTS and STS GBM patients

classified using their patient records.
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Figure S2 Venn diagram of the three data sets used in
this study. Gene expression and methylation data were obtained

from The Cancer Genome Atlas (TCGA) consortium data portal.

Protein-protein interaction (PPI) data were compiled from the

iRefIndex database and Bandyopadhyay et al.
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Figure S3 Classification accuracies of different module
sets. A) GBM patient classification accuracy using network

modules generated at different alpha values. Network modules

generated at different miPALM alpha values were combined with

the SVM-RFE algorithm to identify the final set of features

(modules) for classification. Values shown are average of 100 cross

validations. eModule, network modules generated using gene

expression and PPI interactome. mModule, network modules

generated using promoter DNA methylation and PPI interactome.

combinedModule, a combination of eModules and mModules that

were selected by the SVM-RFE algorithm to be the final set of

discriminative features for classification. B) Classification accuracy

of the combinedModule during feature selection process using the

recursive feature elimination algorithm (RFE).
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Figure S4 Pearson correlation between gene expression
and DNA methylation profiles. Data from 279 GBM patients

were used for computing the correlation. All, 8,171 genes in the

input network; Diff. expressed: 2,009 differentially expressed genes

between LTS and STS GBM patients; Diff. methylated: 1,877

differentially methylated genes; eModule: 156 genes in the set of

eModules; Random, 1,877 genes randomly selected from the input

network. Values shown in the box are median correlation for each

gene set.
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Figure S5 Cumulative distributions of promoter DNA
methylation correlation between random protein pairs
and protein pairs that physically interact. DNA methyl-
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ation data 279 TCGA patients were used for this analysis.

Spearman’s rank correlation was calculated for 47,168 pairs of

connected proteins in the protein-protein interaction network and

the same number of protein pairs randomly picked from the

network. P-value is based on one-tailed Kolmogorov-Smirnov test.
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Table S1 Information of patient data used in this study.
A survival time of two years is used as the cutoff to classify patients

into Long Term Survivors (LTS) and Short Term Survivors (STS).
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Table S2 The set of twenty-five eModules identified
using mRNA expression data only.
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Table S3 The set of seven mModules identified using
DNA methylation data only.
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Table S4 The set of multi-analyte modules identified by
the MAPIT algorithm. 38-gene set, set of prognostic genes for

GBM patient outcome proposed by Colman et al. G-CIMP+ gene

set, set of prognostic genes for GBM patient outcome proposed by

Noushmehr et al. COSMIC genes: genes with somatic mutations in

GBM samples documented in the COSMIC database; CNV

genes, genes located in Copy Number Variation regions identified

by the Cancer Genome Atlas Research Network. Fraction

Supported: fraction of module genes overlapping with genes from

any of the previous studies. SVM Weight, weights of the final

SVM classifier. It indicates the relative importance of each module

to the classification.
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