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Abstract

Purpose: To examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic
behaviour.

Methods: One hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with
corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were
untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm2) for 30 minutes and Group 3 (29 pig) and Group 4 (31
pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five
minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light
(3.04 mW/cm2). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril
diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth
in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability
to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques.

Results: Corneal thickness decreased significantly following riboflavin application (p,0.01) and also to a lesser extent after
UVA exposure (p,0.05). With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p,0.01),
all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the
cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant
increase in its resistance to enzymatic digestion.

Conclusions: It seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril
surface and in the protein network surrounding the collagen.
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Introduction

The most anterior part of the ocular system, the cornea, is tough

and transparent. It offers protection to the inner contents of the

eye and facilitates the passage of light onto the retina. The cornea

is also a powerful refracting surface and provides the eye with up

to 75% of its focussing power. The stroma, which comprises about

90% of the total thickness of the cornea, is composed mainly of

water, collagen and proteoglycans. The arrangement of corneal

collagen is such that, uniformly narrow fibrils lie parallel to each

other in layers (lamellae) which are themselves organized in an

ordered, lattice-like configuration [1,2]. The transparency of the

cornea is largely dependent on the narrow diameter and short-

range order of the collagen fibrils which in turn is regulated by

close interactions with proteoglycans. It is generally believed that

proteoglycans act as interfibrillar spacers via the attachment of

their core proteins to collagen fibrils [3] and the lateral projection

of their highly sulphated glycosaminoglycan side chains which

form a hydrophillic coating around the fibrils. The fibril coating is

thought to counteract the attractive force caused by the thermal

motion of the proteoglycan-glycosaminoglycan complex [4].

In the condition keratoconus (a leading cause of corneal

transplant surgery in the United Kingdom [5]), the cornea

progressively thins, weakens and assumes an increasingly abnor-

mal curvature, thus causing a distortion of vision via incorrect

focussing of light onto the retina. The cause of keratoconus and the

mechanism by which it progresses are uncertain and until recently,

treatments for the condition have been limited to correcting the
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refractive error associated with the condition and not the

underlying cause. Corneal collagen cross-linking therapy is a

relatively new treatment aimed at halting keratoconus progression

[6]. The treatment involves the de-epithelialised cornea being pre-

soaked with a photosensitiser (riboflavin/vitamin B2) and then

exposed to ultraviolet A light (UVA). This has the effect of

increasing the biomechanical stability of the cornea [7,8] and its

resistance to enzymatic digestion [9], thereby arresting keratoco-

nus progression. The potential of the technique for the treatment

of other corneal disorders such as keratitis [10,11] and bullous

keratopathy [12,13,14,15,16] is currently being explored.

To date, little is known about the specific nature of the cross-

links that are formed as a result of riboflavin/UVA collagen cross-

linking, although it has been suggested that the effect of the

treatment is carbonyl dependent and involves the formation of

advanced glycation end product cross-links [17]. There is also

sparse knowledge about the precise location of the cross-links

formed, either within collagen fibrils or in the interfibrillar matrix,

however, the absence of any change in the cohesive strength of the

cornea following treatment suggests that cross-links are not formed

between collagen lamellae [18]. In principle, many of the results

obtained to date could be explained by assuming cross-links occur

within or between collagen molecules, between the surfaces of the

collagen fibrils or between the fibrils and the proteoglycan-rich

matrix. Zhang et al. [19], using an in vitro model reaction system

consisting of purified proteins in solution, have shown that UVA

irradiation in the presence of riboflavin results in both collagen-

collagen and proteoglycan-proteoglycan intermolecular cross-

linking and limited linkages between collagen molecules and

proteoglycan core proteins. The formation of cross-links between

the major interstitial collagens and other stromal collagens and/or

proteoglycans would be expected to influence the hydrodynamic

behaviour of the cornea. However, despite Wollensak et al. [20]

showing that riboflavin/UVA cross-linked corneas swell less than

untreated corneas, it remains unclear from their study whether the

observed resistance to stromal swelling was due to collagen cross-

linkage or the presence of riboflavin solution (containing the

deturgescent agent dextran) within the treated tissue.

Here we use high and low-angle x-ray scattering, laboratory

swelling techniques and enzymatic digestion to conduct a detailed

study of corneal ultrastructure, hydrodynamic behaviour and

enzymatic resistance following riboflavin/UVA cross-linkage

therapy. The aim of the study is to improve understanding of

the technique and provide a sound scientific basis for its use in the

treatment of other corneal disorders. X-ray scattering is non-

invasive and provides information about the separation of

molecules within the collagen fibrils and about the distance by

which they are separated from each other [21]. It also yields details

about the axial structure of the collagen fibrils and about the

lateral organisation of the packing of collagen fibrils, a parameter

of some importance for corneal transparency [21]. The data

obtained are averages from every collagen molecule or fibril in the

thickness of the cornea through which the x-rays pass, and are thus

highly representative of the tissue as a whole.

Methods

Tissue
A total of one hundred and seventeen ungulate eyes (112 pig

and 5 sheep) with no visible signs of corneal scarring or opacity

were obtained within 24 hours of death from a local EC licensed

abattoir (Ensors Gloucestershire Ltd., UK). The abattoir granted

permission for the eyes to be used in research. A further 3 pairs of

rabbit eyes (obtained within 29 hrs of death) were purchased from

a licensed commercial food source producing Human Grade

Consumption Meats (Woldsway Foods Ltd., UK); full permission

was given for their use in research. In the case of corneas prepared

for enzymatic digestion studies and x-ray scattering investigations,

the epithelium was carefully removed using a razor blade and one

of four treatments (described below) was applied to the anterior

stromal surface. In order to study the effect of cross-linking on the

hydrodynamic behaviour of the corneal stroma it was necessary to

remove both the epithelium and endothelium and apply treatment

to the posterior stroma, since corneal swelling is known to occur

mainly in the posterior stroma [22,23,24].

The treatment groups were:

Group 1: Untreated controls (pig, n = 28; sheep, n = 2; rabbit,

n = 3).

Eyes in this group were left uncovered on the laboratory bench

(with the cornea facing upwards) for 30 minutes.

Group 2: UVA only (pig, n = 24):

The cornea was exposed to UVA irradiation (3.04 mW/cm2)

for 30 minutes using a commercial UVA illumination system (UV-

XTM, IROC, Switzerland) with a surface irradiance of 3.04 mW/

cm2, a focussing distance of 5 cm and an illumination diameter of

9 mm.

Group 3: Riboflavin only (pig, n = 29).

Figure 1. Cross-section of cross-linked and non-cross-linked pig corneas. Small-angle x-ray scattering images were obtained at 25 mm
intervals (red circles) throughout the anterior 300 mm of riboflavin/UVA treated and untreated strips of pig cornea using a microfocus x-ray beam.
Each graduation on the scale bar represents 150 mm.
doi:10.1371/journal.pone.0052860.g001
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Riboflavin eye drops (riboflavin 0.136% and dextran T500

25%) were applied to the surface of the cornea at 5 minute

intervals for 35 minutes. During the treatment, the cornea was

covered by a black box to prevent any interaction with light.

Group 4: Riboflavin/UVA cross-linked (pig, n = 31; sheep,

n = 3; rabbit, n = 3).

Riboflavin eye drops (riboflavin 0.136% and dextran T500

25%) were applied to the surface of the cornea at 5 minute

intervals for 35 minutes. Five minutes after the initial riboflavin

application the corneas were exposed to UVA light (3.04 mW/

cm2) for 30 minutes whilst the application of riboflavin eye drops

continued.

After treatment, each cornea (with a 2 mm scleral rim) was

wrapped in ClingfilmTM (Superdrug Stores Plc., Croydon, UK) to

prevent moisture loss. Corneas destined for x-ray scattering studies

(pig = 64; sheep = 5; rabbit = 6) were frozen at 280uC until

required for data collection, whilst the 36 pig corneas prepared

for swelling studies were chilled overnight at 4uC. The twelve

corneas prepared for enzymatic digestion were used immediately.

Enzymatic Digestion Studies
An 8.25 mm corneal button was trephined from the centre of

twelve pig corneas (3 from each group). The corneal disks were

then immersed into individual plastic tubes containing 8 ml of

pepsin solution (1 g purified pepsin (Sigma, Munich) in 10 ml

0.1 M HCl at pH 2.2). The diameter of the corneal disks was

recorded daily for eleven days.

X-ray Scattering Studies
Thirty minutes prior to x-ray data collection, each cornea

(pig = 64; sheep = 5; rabbit = 6) was thawed at room temperature;

it has been previously shown that the intermolecular and

interfibrillar spacing of corneal collagen returns to physiological

levels upon thawing [25]. Immediately prior to data collection, an

8.25 mm button was trephined from the centre of 12 pig corneas

in Group 1, 12 pig corneas in Groups 2, 17 pig corneas in Group 3

and 17 pig corneas in Group 4. In another 6 pig and 5 sheep

corneas (Groups 1 = 3 pig and 2 sheep; Group 4 = 3 pig and 3

sheep), a thin strip of tissue, measuring approximately 0.6 mm

wide, was dissected from the centre of each cornea in the superior/

inferior direction. After dissection, each corneal button/strip was

re-wrapped in Clingfilm to prevent tissue dehydration during data

collection.

Small-angle X-ray Scattering Data Collection and Analysis
Small-angle x-ray scattering patterns were obtained from the

centre of 32 pig corneal buttons (8 corneas from each group) on

Station 2.1 at the original UK Synchrotron Radiation Source

(Daresbury, UK). Each pattern was generated from a 60–90

second exposure to a 161 mm x-ray beam with a wavelength of

0.1544 nm and recorded on a detector positioned 7.5–7.75 m

behind the sample.

Owing to the sensitivity of collagen interfibrillar spacing to

changes in corneal hydration [26] it was necessary to calculate the

hydration of each corneal button at the time of data collection.

Figure 2. Enzymatic digestion rate of treated and untreated pig corneas.
doi:10.1371/journal.pone.0052860.g002

Table 1. Average collagen interfibrillar spacing, D-periodicity and order factor in treated and untreated pig corneas.

Group 1 (n = 8)
(Untreated)

Group 2 (n = 8)
(UVA only)

Group 3 (n = 8)
(Riboflavin only)

Group 4 (n = 8)
(UVA+riboflavin)

Hydration 5.3 (+/20.8) 5.2 (+/20.7) 4.6 (+/20.5) 4.6 (+/20.4)

IFS* (nm) 61.7 (+/22.1) 61.8 (+/20.9) 60.6 (+/21.6) 60.3 (+/21.6)

Spatial order factor 23.9 (+/23.2) 25.2 (+/26.0) 27.9 (+/25.4) 33.6 (+/23.6)

Fibril diameter 35.7 (+/20.6) 36.0 (+/20.5) 36.2 (+/20.6) 35.8 (+/20.4)

D-period (nm) 65.0 (+/20.2) 65.0 (+/20.2) 65.0 (+/20.3) 64.9 (+/20.3)

*IFS = Interfibrillar Bragg spacing.
Significant differences between treatment groups of p,0.01 are highlighted in bold type.
doi:10.1371/journal.pone.0052860.t001
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This was done using Equation 1.

Hydration Hð Þ~ wet weight{dryweightð Þ=dryweight: ð1Þ

Equivalent small-angle x-ray scatter patterns were collected

from the centre of 6 rabbit corneas (Groups 1 = 3; Group 4 = 3) on

Beamline I22 at the new UK synchrotron radiation source

(Diamond Light Source, Didcot, UK) using a 150 s exposure to a

0.2560.25 mm x-ray beam (l= 0.1 nm). The x-ray scatter

patterns were collected on a detector positioned 6.2 m behind

the sample. The thickness of each cornea was measured before

and after data collection using a Pachette2TM Ultrasonic

Pachymeter (DGH Technology, USA).

On beamline 40 XU at the SPring-8 synchrotron radiation

source (Hyogo, Japan), strips of pig corneas from Groups 1 (n = 3)

and 4 (n = 3) were positioned so that their cut edge was

perpendicular to the incident beam direction. Small-angle x-ray

scatter patterns were obtained at 25 mm intervals throughout the

anterior 300 mm of the tissue using a 0.015 s exposure to a circular

microfocus x-ray beam (l= 0.118 nm) measuring 25 mm in

diameter at the specimen (Figure 1). The patterns were recorded

on a detector placed 3 m behind the specimen. X-ray scattering

data collection was limited to the anterior 300 mm of the cornea

for two reasons: firstly, the cross-linking treatment is maximal in

the anterior 300 mm of the cornea [27,28] and secondly, changes

in corneal hydration (which affect collagen interfibrillar spacing

[26] and is caused in this case by the application of the

deturgescent agent dextran to the cross-linked corneas), occur

predominantly in the posterior stroma [29].

All small-angle x-ray scatter patterns were calibrated against the

67 nm meridional spacing (D-periodicity) of collagen in hydrated rat

tail tendon. The collagen axial D-periodicity in the treated and

untreated corneas was then evaluated from the meridional

diffraction reflections and the modal average inter-fibrillar Bragg

spacing of corneal collagen fibrils was determined from the

position of the interfibrillar equatorial reflection [21,30]. The degree

of local ordering of the collagen fibrils was expressed as a spatial

order factor, which can be calculated by measuring the ratio of the

height of the interfibrillar diffraction peak to the width at half

height [31]. The absolute number of this ratio is arbitrary, but the

larger the number, the higher the degree of order in the packing

arrangement.

Wide-angle X-ray Scattering Data Collection and Analysis
Wide-angle scattering patterns were obtained from the centre of

26 pig corneal buttons (Group 1 = 4; Group 2 = 4; Group 3 = 9;

Group 4 = 9) using a 10 second exposure to a 0.260.2 mm

focussed x-ray beam with a wavelength of 0.1488 nm on Station

14.1 at the Daresbury synchrotron radiation source. The patterns

were recorded on a detector placed 150 mm behind the sample. In

order to calculate the modal average inter-molecular spacing of

corneal collagen the system was calibrated using the 0.305 nm

lattice reflection in powder diffraction patterns of calcite.

A microfocus x-ray beam (l= 0.13 nm) of dimensions

300650 mm (horizontally6vertically) on SWING station at Soleil

synchrotron radiation source (Paris, France) was used to obtain

wide-angle x-ray scatter patterns at 50 mm intervals throughout

the anterior 300 mm of 5 sheep corneal strips (Group 1 = 2; Group

4 = 3) mounted edge-on in the direction of the x-ray beam. Each

pattern, resulting from a 20 s exposure to the x-ray beam, was

recorded on a detector located 520 mm behind the specimen and

calibrated against the 5.8 nm lattice reflection from silver

behenate.

The relationship between x-ray Bragg spacing and the

corresponding centre-to-centre distance of the parameter under

investigation depends on the precise packing of the molecules

within the fibrils, or of the fibrils within the stroma. Most previous

investigations have assumed a liquid-like packing [32,33], in which

case Bragg spacings need to be multiplied by a factor of 1.1–1.2 in

order to convert to centre-to-centre spacings. However, as we are

only concerned here with changes in these parameters, we present

all results as Bragg spacings.

In vitro Stromal Swelling Studies
Twenty-four pig corneas (Group 1 = 7; Group 2 = 6; Group

3 = 6; Group 4 = 5) were used to examine the hydrodynamic

behaviour of the stroma immediately after treatment. Before

treatment, all swollen corneas were air dried until they reached a

near physiological de-epithelialised thickness of 651626 mm

(measured using an ultrasound pachymeter) [34]. Following

treatment, the corneas in Groups 1 and 2 were air dried until

they reached a similar thickness to that of the corneas in Groups 3

and 4 (548634 mm). A 7.25 mm corneal disk was then trephined

from the centre of each cornea and the weight of the disk recorded

(Time 0). The corneal disks were then placed into individual tubes

containing 3 ml of 0.9% saline solution and allowed to swell freely.

During the first hour the saline solution was changed every 15 min

(to avoid a build-up of dextran in the bathing medium of Groups 3

and 4). The wet weight of each specimen (after removal of excess

fluid) was recorded at regular 15 min intervals for 5 hrs. Upon

completion the corneal disks were oven dried for 3 days and the

hydration at each time point calculated using Equation 1.

A further 12 pig corneas (Group 1 = 3; Group 2 = 3; Group

3 = 3; Group 4 = 3) were used to study the longer term swelling

behaviour of treated and untreated corneas and establish the

maximum achievable hydration for each treatment group.

Immediately after their respective treatments, a 7.25 mm corneal

disk was trephined from the centre of each cornea and its weight

recorded (Time 0). The corneal disks were then placed in

individual tubes containing 3 ml of 0.9% saline solution with

3 mM sodium azide (to prevent bacterial growth) and allowed to

swell freely. At regular intervals the wet weight of each specimen

was recorded and the saline solution was changed. After twenty-

three days of swelling the corneal disks had reached a stable wet

weight and the study was terminated. The samples were oven

dried for three days and the hydration at each measured time

point was calculated using Equation 1.

Table 2. Average collagen interfibrillar spacing, D-periodicity
and order factor in treated and untreated paired rabbit
corneas.

Group 1 (n = 3)
(Untreated)

Group 4 (n = 3)
(UVA+riboflavin)

Thickness 384 (+/28.7) 405.3 (+/227.2)

IFS* (nm) 47.7 (+/24.0) 53.3 (+/21.8)

Spatial order factor 44.3 (+/28.2) 55.4 (+/210.7)

Fibril diameter 38.4 (+/21.7) 40.3 (+/20.5)

D-period (nm) 66.1 (+/20.2) 66.0 (+/20.0)

*IFS = Interfibrillar Bragg spacing.
doi:10.1371/journal.pone.0052860.t002
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Figure 3. Collagen parameters in cross-linked and non-cross-linked pig corneas. Average measurements of interfibrillar spacing (A) and
fibril diameter (B) at 25 mm intervals throughout the anterior 300 mm of treated and untreated pig corneas. Significant differences between treatment
groups are highlighted by asterices (p,0.05).
doi:10.1371/journal.pone.0052860.g003

Figure 4. Depth profile of collagen intermolecular spacing in treated and untreated sheep corneas.
doi:10.1371/journal.pone.0052860.g004
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Statistical Analyses
In most cases, differences between treatment groups and their

controls were statistically evaluated using ANOVA. In cases where

the F-test p-value was less than p,0.05, the null hypothesis was

rejected and a pair-wise comparisons of means was performed

using the least significant difference method. For paired samples

(rabbit corneas) statistical differences between treatment groups

were assessed by means of a paired student t-test. A difference

between any pair of means of greater than or equal to the least

significant difference at p,0.05 was considered to be statistically

significant. Values presented in the results are means 6 standard

deviation (SD).

Results

Enzymatic Digestion
After six days in pepsin solution all non-cross-linked corneas

(Groups 1, 2 and 3) were completely digested (Figure 2). At the

same time-point, the average diameter of the riboflavin/UVA

cross-linked specimens had decreased by only 21% and the

anterior curvature of the cornea remained visible.

Collagen Interfibrillar Spacing, Fibril Diameter, D-
periodicity and Spatial Order

Using calibrated small-angle x-ray scatter patterns from treated

and untreated pig and rabbit corneas, the average interfibrillar

Bragg spacing, spatial order factor, diameter and D-periodicity of

the collagen fibrils were calculated (Tables 1 and 2).

A 30-minute exposure to UVA light did not produce any

significant change in the average interfibrillar Bragg spacing,

spatial order, fibril diameter or D-periodicity in either riboflavin-

treated (Group 4) or non-riboflavin treated (Group 2) pig corneas

(Table 1). However, when compared to untreated pig corneas

(Group 1) the fibril spatial order factor was significantly higher in

the cross-linked samples (Group 4) (P,0.01).

A paired t-test revealed no significant difference in the average

interfibrillar Bragg spacing, spatial order factor, diameter or D-

periodicity of stromal collagen between the riboflavin/UVA

treated rabbit corneas and their untreated pairs (Table 2).

Microfocus small-angle x-ray scattering data obtained from

strips of riboflavin/UVA treated (Group 4) and untreated (Group

1) sheep corneas were analysed to produce through-thickness

measurements of Bragg interfibrillar spacing and fibril diameter in

the anterior 300 mm of the corneal stroma. Throughout most of

the anterior stroma no difference in the average Bragg interfibril-

lar spacing was detected between the treated and untreated

corneas. However, a significantly lower collagen interfibrillar

spacing was observed in the less hydrated, treated corneas at 4 out

of the 13 sites examined (tissue depths of 50 mm (p,0.05), 75 mm

(p,0.01), 100 mm (p,0.05) and 150 mm (p,0.05) from the

anterior surface) (Figure 3A).

No significant difference in fibril diameter was detected between

the treated and untreated corneas within the anterior 300 mm of

the tissue (Figure 3B).

Collagen Intermolecular Spacing
The intermolecular Bragg spacing of collagen was calculated for

both treated and untreated pig corneas using calibrated wide-angle

x-ray scatter patterns (Table 3). The intermolecular spacing of

corneal collagen appeared to be unaffected by a 30-minute

exposure to UVA light in riboflavin-treated (Group 4) and non-

riboflavin treated pig corneas (Group 2). This was confirmed in a

depth-dependent study of untreated (Group 1) and riboflavin/

UVA treated (Group 4) sheep corneas which revealed no

significant difference in collagen intermolecular spacing between

the two groups in 6 out of the 7 measured sites located within the

anterior 300 mm of the tissue (Figure 4). The only exception to this

occurred at a distance of 200 mm from the anterior surface; at this

location the average intermolecular spacing of the untreated

corneas was found to be higher than that of the less hydrated cross-

linked corneas (p,0.05).

Hydrodynamic Behaviour of the Cornea
A significant reduction in stromal thickness was observed

following riboflavin application in both the irradiated and non-

irradiated groups (P,0.01) (Figure 5). Stromal thickness also

decreased, albeit to a lesser extent in corneas exposed to UVA in

the absence of riboflavin (p,0.05). By air drying the most swollen

corneas we ensured that there was no significant difference in

stromal thickness between treatment groups at the start of the

swelling study (Figure 5).

After treatment, corneas in groups 3 and 4 had a yellow tint as a

result of riboflavin penetration but all corneas remained transpar-

ent (Figure 6A). After 1 hour of swelling (and three changes of the

swelling medium), the yellow colouring had disappeared from both

the corneas and their swelling solution. This loss of colour was seen

to indicate a removal of the riboflavin and presumably also the

deturgescent dextran from within the corneal stroma, thereby

allowing the ‘true’ effect of the crosslinking procedure on corneal

hydrodynamic behaviour to be established. After 5 hours in the

swelling medium all corneal buttons appeared opaque (Figure 6B).

The rate of stromal swelling did not differ between treated and

untreated corneas; this was found to be the case during the initial

rapid swelling phase (which was monitored closely over 5 hours)

(Figure 7A) and also the subsequent period of slower stromal

swelling, which stabilised after twenty-three days (Figure 7B).

Measurements of final tissue hydration revealed no significant

difference between treatment groups in terms of the maximum

achievable stromal hydration (Table 4).

Discussion

The success of riboflavin/UVA cross-linking therapy for the

prevention of keratoconus progression has been well documented

Table 3. Average collagen intermolecular spacing in treated and untreated pig corneas.

Group 1 (n = 4)
(Untreated)

Group 2 (n = 4)
(UVA only)

Group 3 (n = 9)
(Riboflavin only)

Group 4 (n = 9)
(UVA+riboflavin)

Hydration 4.4 (+/20.6) 4.7 (+/20.3) 4.4 (+/20.5) 4.2 (+/20.3)

IMS* (nm) 1.56 (+/20.01) 1.56 (+/20.02) 1.57 (+/20.02) 1.57 (+/20.02)

*IMS = intermolecular Bragg spacing shown in A. Standard deviation is shown in brackets.
doi:10.1371/journal.pone.0052860.t003
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in recent years [35,36], however the use of the technique for the

treatment of bullous keratopathy (a condition in which the cornea

becomes permanently swollen), has failed to produce lasting

benefits [14,15,16]. In order to form a better understanding of the

functionality of riboflavin/UVA cross-linking for the treatment of

various corneal disorders and to determine the site at which

riboflavin/UVA induced cross-links are formed, we investigated

the effects of the treatment on corneal ultrastructure, hydrody-

namic behaviour and resistance to enzymatic digestion, The

results presented in this study provide the first scientific evidence

that may help to explain why riboflavin/UVA cross-linking of

bullous keratopathy corneas produces only short-term improve-

ments in corneal thickness and transparency.

Cross-linking of collagen molecules occurs as a function of age,

and can be induced by incubation with sugars, or can be achieved

using cross-linking reagents. It has been previously shown using x-

ray scattering techniques that as the cornea ages, crosslinking leads

to a 14% increase in the cross-sectional area associated with each

molecule within a fibril [37] and in vitro, the formation of advanced

glycation end-products can cause increases of up to 50% [38,39].

Glutaraldehyde cross-linking of the cornea has been shown to

increase the area associated with each corneal collagen molecule

by some 11% [40]. This property, then, is a useful indicator of the

occurrence of collagen cross-linking in a tissue at the molecular

level.

Regrettably, in an earlier preliminary abstract [41] we reported

observations of increased inter-molecular spacing following

riboflavin/UVA cross-linking of pig corneas which further

investigations revealed to be an artefact. In this extensive study

we observed a notable absence of any change in the average

intermolecular spacing of corneal collagen following UVA/

riboflavin treatment. However, as the x-ray scatter pattern

represents an average of every collagen molecule in the path of

the beam, and riboflavin/UVA cross-linking only occurs in the

most anterior 300 microns of the tissue [27,28], it was necessary to

confirm these findings by examining collagen intermolecular

spacing at fine intervals throughout the thickness of the anterior

cornea using a microfocus x-ray beam. Again, no major

differences in collagen intermolecular spacing were detected

between treated and untreated samples. Furthermore, unpublished

x-ray scattering data (collected on beamline ID13 at the European

Synchrotron Radiation Source, Grenoble, FR) have shown that

Figure 5. Stromal thickness in pig corneas before and after treatment. Controlled air drying of the most hydrated corneas ensured that all
corneas were of a similar thickness at the start of the swelling study.
doi:10.1371/journal.pone.0052860.g005

Figure 6. Treated and untreated corneal buttons before and after in vitro swelling. A black dot was drawn on the graph paper beneath
each cornea for qualitative assessment of corneal transparency before (A) and after (B) 5 hours of swelling in saline solution.
doi:10.1371/journal.pone.0052860.g006
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when riboflavin/UVA cross-linked corneas are dried, collagen

intermolecular spacing decreases at a normal rate, thereby

demonstrating that the cross-links formed during riboflavin/

UVA cross-linking are not capable of preventing molecular

collapse. In addition to this, and consistent with our previous

work on normal and keratoconus human corneas [42], small-angle

x-ray scattering data from ungulate and rabbit corneas revealed no

treatment-induced change in the collagen D-period. This result

supports our belief that the riboflavin/UVA cross-linking does not

have any effect on the axial stagger or the tilt of the collagen

molecules within the fibrils [42], which is not wholly surprising

since it is known that cross-linking corneal collagen with a strong

fixative such as glutaraldehyde produces only a 0.8% reduction in

the collagen D-period [40].

Our inability to detect molecular changes after crosslinking

leads us to conclude that riboflavin/UVA therapy does not result

in the wide-spread cross-linking of collagen molecules (Figure 8,

scenarios A and B). However, we cannot discount the possibility of

cross-link formation occurring within and/or between collagen

molecules at the surface of collagen fibrils (Figure 8, A and C)),

which may cause changes that are obscured by the averaging

mechanism of the x-ray scatter technique. These surface crosslinks,

Figure 7. Stromal swelling rate in treated and untreated pig corneas. Data shows the rapid stromal swelling phase (A) and the subsequent
slower swelling period (B).
doi:10.1371/journal.pone.0052860.g007

Table 4. Maximum achievable hydration of treated and untreated pig corneas.

Group 1
(Untreated)

Group 2
(UVA only)

Group 3
(Riboflavin only)

Group 4
(UVA+ riboflavin)

Cornea 1 54.7 56.6 65.8 79.9

Cornea 2 60.3 73.9 75.5 50.7

Cornea 3 54.1 58.2 70.9 55.5

Average (+/2S.D) 56.4 (+/23.4) 62.9 (+/29.6) 70.7 (+/24.9) 62.0 (+/215.7)

doi:10.1371/journal.pone.0052860.t004
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once formed, would be expected to hinder cross-linking of collagen

molecules located within the fibril. Such a scenario would explain

the enhanced biomechanical properties of the cross-linked cornea

[7,8], the reported [9] and here confirmed increased resistance of

corneal collagen to enzymatic digestion (which possibly occurs by

means of steric hindrance of the cleavable sites), and the absence of

any change in the modal average intermolecular spacing of the

corneal collagen as measured by x-ray scattering.

In our human studies, the decrease in collagen interfibrillar

spacing following standard riboflavin/UVA treatment and the

increase in interfibrillar spacing following hypo-osmolar riboflavin

cross-linking were attributed to changes in tissue hydration and did

not support the existence of direct interfibrillar cross-linking

(Figure 8, scenario D) [42]. Besides, in theory, direct interfibrillar

cross-links are unlikely as collagen fibril surfaces are too widely

separated. Although no significant changes in interfibrillar spacing

were observed here following treatment, a significant increase in

the spatial order factor, similar to that seen in our human study

[42], was observed in the riboflavin/UVA cross-linked pig

corneas. We hypothesise that the increase in short range order

of collagen fibrils following riboflavin/UVA treatment may occur

as a result of cross-links being formed within the fibril coating

(within and between proteoglycan core proteins (Figure 8F and G))

which make the stromal collagen more resistant to the thermal

motion of the proteoglycan-glycosaminoglycan complex [4]. This

may also explain the reported increase in transparency of hen

corneas following crosslinking [43].

Despite our x-ray scattering studies providing no evidence of

direct inter-fibrillar cross-link formation (Figure 8D) following

riboflavin/UVA treatment, we further investigated the possibility

by searching for changes in the hydrodynamic behaviour of cross-

linked corneas. This was done on the basis that when the normal

cornea swells, a small amount of fluid enters the fibrils but the

majority of the swelling occurs between the fibrils [42]; the

presence of direct interfibrillar cross-links would therefore be

expected to restrict the ability of the cornea to swell. Cross-links

formed between proteoglycan core proteins and collagen mole-

cules (Figure 8E) would also be expected to alter the hydrody-

namic behaviour of the cornea, by preventing some proteoglycans

from leaching out of the corneal stroma during in vitro swelling

[44]. Although Wollensak et al. [20] have previously reported that

cross-linked corneas swell less than normal their work was carried

out by crosslinking the anterior cornea, which does not swell to

any great extent and the riboflavin solution containing the

deturgescent agent, dextran, was only applied to the UVA-treated

corneas and not to their controls. It was therefore unclear from this

study whether the observed resistance to stromal swelling in the

cross-linked corneas was due to presence of dextran within the

tissue or to inter-fibrillar crosslinking by direct or indirect means.

In the current study, in which the riboflavin solution leached from

Figure 8. Schematic showing possible cross-linking scenarios. A simplified model showing three collagen fibrils, each with a coating (outer
limit shown as a broken line) consisting mainly of proteoglycans which are attached to the fibril and form a porous network with fractal dimension
(based on Fratzl and Daxer’s theoretical model of collagen fibrils in the corneal stroma [48]). Coloured lines indicate the possible location(s) of
riboflavin/UVA induced cross-links that are discussed in the text.
doi:10.1371/journal.pone.0052860.g008
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the full-thickness stromal tissue into the swelling medium and was

continually removed, no such changes in hydrodynamic behaviour

were observed between the treated and untreated specimens. Our

findings therefore confirm both our x-ray scattering data and our

theoretical assumption that collagen fibril surfaces are too widely

separated to allow direct interfibrillar linkages to occur (Figure 8D),

and indicate that the formation of cross-links between collagen

molecules and proteoglycan core proteins (Figure 8E) is unlikely.

On the other hand, the absence of any noticeable abnormality in

the swelling behaviour of cross-linked corneas allowed to swell

freely in saline solution seems inconsistent with the restricted

swelling of similarly treated corneas placed in a humidity chamber

(where no leaching of proteoglycans occurs) [17]. This could be

explained by the existence of indirect cross-linkage between

collagen fibrils via their attached proteoglycan core proteins

(Figure 8G). Furthermore, comparison of our swelling study with

that of Wollensak et al. [20] has for the first time produced

scientific evidence that may explain why the beneficial effects of

improved corneal thickness and transparency seen in riboflavin/

UVA cross-linked bullous keratopathy corneas, fade with time

[14,15,16]. It seems that the transient decrease in stromal

thickness following treatment, may be largely attributable to the

deturgescent effect of the dextran, which once removed from the

tissue allows the osmotic balance of the cornea to be gradually

restored. Indeed bullous keratopathy corneas dehydrated with

40% glucose for 24 hour prior to cross-linking produced much

longer-lasting reductions in corneal thickness (up to 8 months) [45]

than those cross-linked without prior dehydration [14,15],

presumably due to the corneal oedema limiting the penetration

of riboflavin (and hence dextran) into the deeper layers of the

cornea during the standard cross-linking procedure.

By a process of elimination, it seems that riboflavin/UVA cross-

links most likely occur within (Figure 8A) and between (Figure 8C)

collagen molecules positioned at the surface of fibrils, within

proteoglycan core proteins (Figure 8F) and between proteoglycan

core proteins attached to an individual fibril or adjacent fibrils

(Figure 8G). The former (Figure 8A and C) would explain both the

increased stiffness of the tissue after riboflavin/UVA cross-linking

[7,8] and its reported [9] and here confirmed resistance to

enzymatic attack.

With regard to the latter mentioned scenarios (Figures 8F and

G), Spoerl et al [46] have shown that treatment of corneas with a-

amylase (to remove interfibrillar substances) results in reduced

tissue stiffness, thereby indicating that the interaction between

collagen fibrils and the interfibrillar substances plays a role in

determining the biomechanical properties of the cornea. Cross-

links formed within and between the core proteins of proteogly-

cans (Figures 8F and G) or other fibrillar and FACIT collagens

present in the corneal stroma may therefore be expected to

contribute to the observed increase in tissue stiffness following

riboflavin/UVA cross-linking.

The formation of cross-links at the above mentioned sites is

further supported by the contradictory evidence of collagen fibril

diameter changes following cross-linking when measured here by

x-ray scattering or by others using electron microscopy [47]. In

our x-ray scattering study, the absence of any detectable change in

collagen fibril diameter (at any tissue depth) following treatment

was consistent with the fact that no changes in intermolecular

Figure 9. Schematic showing likely collagen shrinkage during electron microscopy processing of cross-linked and non-cross-linked
corneas. (i) The theoretical structure of a coated collagen fibril (F) in the corneal stroma (as proposed by Fratzl and Daxer [48]). The coating (outer
limit shown as a broken line), consists mainly of proteoglycans (P) which are attached to the fibril and form a porous network with fractal dimension.
We propose that riboflavin/UVA induced cross-links are formed within the coating of the collagen fibril between proteoglycan core proteins and/or
on the surface of the fibril within and between collagen molecules (M) (ii) and prevent the usual shrinkage associated with tissue dehydration during
electron microscopy processing (iii and iv). Hence, when viewed by electron microscopy, collagen fibrils in riboflavin/UVA treated corneas (iv) may
misleadingly appear larger in diameter than those in untreated corneas (iii).
doi:10.1371/journal.pone.0052860.g009
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spacing were observed. However, electron microscopy studies

found relatively larger fibrils in the anterior stroma (and also to a

lesser extent the posterior stroma) of riboflavin/UVA treated

rabbit corneas compared to their untreated controls [47]. We

hypothesise that the discrepancy between these two studies is due

to both the location of the riboflavin/UVA induced cross-links and

the processing techniques involved in electron microscopy which

result in tissue dehydration. As shown by Fratzl and Daxer [48]

the drying of the cornea appears to occur in two-stages. At

physiological hydration the interfibrillar matrix alone is dehydrat-

ed but when the cornea reaches its critical point of drying (H = 1)

the fibrils themselves become dehydrated. The change in fibril

diameter between H = 1 and H = 0 (dry state) corresponds to the

difference in the diameters measured at physiological hydration by

x-ray scattering [40] or electron microscopy (using a low

temperature resin embedding technique) [49] and those measured

by electron microscopy for fixed and stained samples [50]. Based

on the fact that fibrils in the hydrated matrix of the normal cornea

are never seen to be touching [50], Fratzl and Daxer [48] built on

the ideas of Twersky [51] to propose a model (Figure 9i) in which

collagen fibrils of a constant diameter are themselves surrounded

by an outer coating (consisting predominantly of proteoglycans

bound at specific sites along the fibril [52]), the diameter of which

is determined by water content. Therefore, the apparent 10%

reduction in fibril diameter which occurs following electron

microscopy processing [40] may in fact be partially due to

shrinkage of this outer coating rather than shrinkage of the fibril

itself (Figure 9ii). Using this model and supported by the findings

in this paper, we hypothesise that the cross-links formed during

riboflavin/UVA therapy occur at the surface of the fibril and

within the outer coating of the fibril (Figure 9iii) and thereby

restrict its shrinkage during tissue dehydration (Figure 9iv). Such a

model would explain the absence of any detectable difference in

collagen fibril diameter between treated and untreated rabbit, pig

and human corneas when measured at near physiological

hydration using x-ray scattering and also the comparably larger

diameter fibrils in cross-linked corneas (up to 12% larger in rabbits

[47] and 15% larger in hens [43]) compared to untreated corneas

when examined in a dehydrated state by electron microscopy.

In this study we have provided the first evidence that riboflavin/

UVA induced cross-links do not exist between or within collagen

fibrils but possibly occur at the surface of the fibrils and within the

proteoglycan rich coating surrounding them. The results of this

study lead us to believe that the longevity of improved corneal

stability following cross-linking is dependant on the rate of collagen

turnover in the cornea; this is believed to be an extremely slow

process, similar to that of skin and cartilage collagen (whereby the

half life is estimated to be 15 and 117 years respectively) [53] and

is likely to be even slower in cross-linked corneas as a result of the

increased resistance to enzymatic digestion.
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