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Abstract

Previous studies have now demonstrated that both genic and global hypomethylation characterizes the multiple myeloma
(MM) epigenome. Whether these methylation changes are associated with global and corresponding increases (or
decreases) in transcriptional activity are poorly understood. The purpose of our current study was to correlate DNA
methylation levels in MM to gene expression. We analyzed matching datasets generated by the GoldenGate methylation
BeadArray and Affymetrix gene expression platforms in 193 MM samples. We subsequently utilized two independent
statistical approaches to identify methylation-expression correlations. In the first approach, we used a linear correlation
parameter by computing a Pearson correlation coefficient. In the second approach, we discretized samples into low and
high methylation groups and then compared the gene expression differences between the groups. Only methylation of
2.1% and 25.3% of CpG sites on the methylation array correlated to gene expression by Pearson correlation or the
discretization method, respectively. Among the genes with methylation-expression correlations were IGF1R, DLC1, p16, and
IL17RB. In conclusion, DNA methylation may directly regulate relatively few genes and suggests that additional studies are
needed to determine the effects of genome-wide methylation changes in MM.
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Introduction

Multiple myeloma (MM) is an incurable late-stage plasma cell

malignancy which accounts for about 10% of all hematological

cancers [1]. Extensive analyses of gene expression profiles,

genomic copy number and whole genomic sequencing have

provided valuable insights into the molecular basis of MM [1,2,3].

These studies have led to the identification of several genetic and

molecular subtypes that are associated with unique clinical and

prognostic features. About one-half of myeloma patients have

recurrent immunoglobulin gene translocations, while the other

half are hyperdiploid [4]. While cyclin D regulation appears to be

an early event in myeloma, a variety of other secondary events

such as chromosome 13 monosomy and amplification of

chromosome 1q are also known to commonly occur [1,2,3].

In contrast to genetic characterizations, much less is known

about epigenetic changes in MM. Epigenetic modifications

constitute a number of complex and interdependent mechanisms

that have become recognized as critical facets of cancer

development and progression [5,6]. The biochemical modifica-

tions that govern epigenetics are DNA methylation, and post-

translational modifications of histone proteins [5,7,8]. About 80%

of CpG sites in mammalian cells are methylated, but both the

CpG sites and their degree of methylation are unevenly distributed

in the genome [9,10]. CpG dinucleotides are largely concentrated

in small regions termed ‘‘CpG islands’’, which are found in about

55% of human gene promoters [11]. CpG loci in promoter-

associated CpG islands are usually (but not always) unmethylated

[12]. Recently we conducted a study to assess differential CpG

methylation at about 1,500 genic loci during MM progression by

profiling CD138(+) normal plasma cells (NPC) and comparing

them to CD138(+) plasma cells from monoclonal gammapothy of

undetermined significance (MGUS), smoldering myeloma (SMM),

and MM specimens [13]. We showed that the vast majority of

differentially methylated genes were hypomethylated, and that the

overall degree of hypomethylation progressively increased with

tumor grade [13].

Presently, the precise role of methylation in regulating gene

expression is unclear. For many years, methylation was believed to

play a crucial role in repressing gene expression, perhaps by

blocking the promoters at which activating transcription factors

bind. Studies have shown that methylation near gene promoters

varies considerably depending on cell type, with more methylation

of promoters inversely correlating with low or no transcription

[14,15]. To explore the relationship between gene expression and

DNA methylation in MM, we employed two different comparison

methods. For these approaches we used DNA methylation data

obtained with the GoldenGate BeadArray technology along with

corresponding array-based gene expression data from 193 human

MM samples. We then validated the methylation-expression

associations of a few selected genes by bisulfite pyrosequencing
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and quantitative reverse transcriptase-PCR (qRT-PCR) in an

independent cohort of 43 MM samples.

Methods

DNA Methylation and Gene Expression Analyses
We used matching gene expression and methylation datasets

previously generated. The gene expression dataset was download-

ed from the Multiple Myeloma Genomics Portal (MMGP; http://

www.broadinstitute.org/mmgp) which was generated as part of

the Multiple Myeloma Research Consortium (MMRC) Genomics

Initiative. Samples included a mix of newly diagnosed and

previously treated patients with MM and covered the spectrum

of genomic alterations known for this disease. Gene expression

data was generated using the Affymetrix U133 Plus 2.0 arrays and

both data and sample annotation are available for download.

Methylation data was previously generated for 140 MM

samples using the GoldenGate Methylation Cancer Panel I

(Illumina) for direct measurement of DNA methylation at 1,505

CpG sites selected from 807 genes [13]. In the current study, we

expanded the methylation analysis to include 53 additional

samples totaling 193. Therefore a total of 193 samples had

matching DNA methylation and gene expression data and were

analyzed in the current study. Details on the methods of the

GoldenGate methylation assay and data analysis can be found in

our previous reference [13]. All 807 genes in the methylation

platform were covered by the gene expression array platform.

Correlating DNA Methylation to Expression Using
Pearson Correlation

Both methylation and gene expression data from 193 MM

samples were quantile-normalized to adjust technical variation

between samples and distributions were standardized across genes

and samples. A Pearson correlation coefficient (r) was computed

for each methylation and gene expression probe pair, where both

probes mapped to the same gene. A probe pair with r,20.370

(representing 1% of the left tail of the Pearson correlation

coefficient distribution) or r$0.239 (1% right tail), and P,0.01

after 10,000 random permutations was considered significant

(Figure 1A). Random permutation testing randomly shuffles the

sample to sample mapping between expression data points and

methylation data points and computes the probability that the

observed correlation coefficient does not occur by random chance.

Correlating DNA Methylation to Expression by
Discretizing Samples into methylated or unmethylated
Groups

Methylation and gene expression data from 193 MM samples

were quantile-normalized and standardized across genes and

samples. For each methylation probe with mean methylation level

m and standard deviation s, samples were categorized into three

different groups based on the distribution of values for each

methylation probe across the sample set: methylated (M), moderately

methylated or unmethylated (U). We therefore refer to this approach as

‘‘the discretization approach’’ because samples were discretized

into one of the three groups. Samples with methylation levels $

m+s (mean plus one standard deviation) were classified into the

methylated group; samples with methylation levels,m – s were

classified as unmethylated; and all other remaining samples were

considered moderately methylated samples for the given CpG locus

interrogated by the probe and not considered further. Every probe

in the methylation array had a gene expression probe that mapped

to the same gene and was analyzed. Differential gene expression

analysis comparing samples that were categorized as M and U was

conducted with a t-test without assuming equal variance (Matlab

software). If a gene was differentially expressed (P,0.05) between

samples in the M and U groups, we considered CpG methylation

to be correlated to expression of that gene.

Class Enrichments for Samples Classified as methylated or
unmethylated

Next we wanted to determine if samples in U and M groups had

a tendency to harbor certain chromosomal gains/losses or belong

to one of eight MM molecular subtypes based on the presence of

translocations and cyclin D expression profiles (TC class).

Chromosomal gains and losses, and TC class will be referred to

as ‘‘sample class.’’ The common chromosomal abnormalities

associated with MM considered in the sample class enrichment

analysis included: hyperdiploid status, 1q amplification, 13

monosomy, and 17p deletions [16]. The chromosomal status of

each sample was extrapolated from previously generated array-

based comparative genomic hybridization (aCGH) data as

previously described [13] and can also be downloaded from the

MMGP. In addition, a patient’s TC class was also used for sample

class enrichments. TC class is a gene expression-based molecular

classification system, which is used to identify all the major

cytogenetic categories in MM [4,17]. These include:

t(4;14)(p16;q32) (based on FGFR3/MMSET expression; referred

to as 4p16); t(14;16)(q32;q23) and t(14;20) (based on expression of

ITGB7 and MAF, referred to as Maf); t(6;14) assessed by high level

of CCND3 expression (referred to as 6p21); t(11;14)(q13;q32)

based on high level CCND1 expression (referred to 11q13);

hyperdiploid MM based on aberrant high CCND1 expression

with either low (referred to as D1) or high CCND2 expression

(referred to as D1+D2 group); and hyperdiploid MM with low

CCND1 but high CCND2 expression (referred to as D2). Presence

of the t(4;14), t(14;20) translocations, 17p deletion and 13

monosomy are associated with high risk MM [16]. The absence

of high risk features and presence of hyperdiploidy, and t(11;14) or

t(6;14) translocations are associated with good risk MM [16].

To perform the class enrichment analysis, we considered only

probes that had a statistically significant association with gene

expression by our discretization approach. First the frequency of a

sample class in U and M groups was determined to measure how

common a class is in each group. Statistical significance was

evaluated by performing 10 000 random permutation tests, which

randomly shuffles sample class labels and computes the probability

that the frequency of a given class doesn’t occur by random

chance. Class samples with P,0.05 were considered statistically

significant and enriched for the group it was identified in (either

the U or M groups).

Quantitative Reverse-transcriptase PCR (qRT-PCR)
cDNA was synthesized using 100 ng of total RNA in a 20 ml

reaction volume. The SuperscriptH III First Strand synthesis

system (Life Technologies, Carlsbad, CA) was used with the

following conditions: 10 minutes at 25uC, 30 minutes at 50uC, 5

minutes at 85uC and 20 minutes at 37uC with RNase H. QPCR

was subsequently performed on 10 ng of cDNA in a final volume

of 25 ml using the ABI 7900HT Fast (Life Technologies, Grand

Island, NY). SYBR green fluorescence was used for the detection

of amplification after each cycle. Negative (no template) controls

were run in parallel to confirm the absence of nonspecific

fluorescence in samples. Real-time qPCR was done using the

following protocol with PlatinumH SYBRH Green qPCR Super-

Mix (Life Technologies): 2 minutes at 95uC for activation of

PlatinumH Taq DNA polymerase, 15 seconds at 95uC, 30 seconds

DNA Methylation and Gene Expression in Myeloma
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at 59uC, and 30 seconds at 72uC for 40 cycles. Quantification was

based on the number of cycles necessary to produce a detectable

amount of product above background. To ensure specificity of the

PCR product, the melting curves for the sample products were

analyzed. The following QuantiTect Primer assays were pur-

chased (Qiagen, Valencia, CA) for PCR: Hs_DLC1_1_SG

(QT00026915); Hs_IGF1R_1SG (QT00005831);

Hs_CDKN2A_1_SG (QT00089964); and Hs_IL17RB_1_SG

(QT00025956). B-actin was used as an internal reference control.

The quantity of expression is calculated relative to the sample with

the lowest mean delta (D) Ct value for the gene of interest. The

equation used for relative fold-change was 2-DDCT
.

Bisulfite Pyrosequencing Analysis
For DNA methylation analysis using pyrosequencing technol-

ogy, 500 ng of DNA was bisulfite treated (EZ DNA Methylation

kit, Zymo Research, Irvine, CA). PCR and sequencing primers for

the genes DLC1, IL17RB, CDKN2A and IGF1R were designed

with the PyroMark Assay Design software 2.0 (Qiagen, Valencia,

CA) by EpigenDX (Hopkinton, MA). Primer sequences for

pyrosequencing can be purchased directly from EpigenDX. Assay

design details can be found in Table 1. PCR was first performed

in a thermocycler (Bio-Rad, Hercules, CA) with 0.2 mmol/L of

each primer using the following protocol: 2 minutes at 95uC for

activation of PlatinumH Taq DNA polymerase, 30 seconds at

95uC, 30 seconds at 56uC, 30 seconds at 72uC for 45 cycles and 5

minutes at 72uC. One of the PCR primers for each pair was

biotinylated for purification of PCR products on Sepharose beads

(Amersham Biosciences, Piscataway, NJ). The Sepharose beads

containing the immobilized PCR product were washed and

denatured using a 0.2 mol/L NaOH solution as recommended by

the manufacturer. Subsequently, 0.2 mmol/L pyrosequencing

primers were annealed to the purified single-stranded PCR

product and PCR products were sequenced using the PyroMark

MD System (Qiagen) as per the manufacturer’s instructions. The

methylation status of each locus was analyzed as a T/C SNP using

QCpG software and the percent methylation for each locus was

analyzed. Pyrosequencing interrogated 7, 14, 32, 10 CpG sites for

DLC1, p16, IGF1R and IL17RB respectively (Table 1). Data is

presented as an average of all loci analyzed.

Results

Identification of Methylation-expression Correlations as
Computed by Pearson Correlation

To identify DNA methylation events that correlate to gene

expression levels we first computed a Pearson correlation

coefficient in a cohort size consisting of 193 MM samples. For

this we used 1,505 probes on the methylation BeadArray and the

Affymetrix gene expression probe sets that mapped to the same

gene. A negative correlation was defined when the directionality of

change for expression and methylation were in the opposite

direction (e.g. presence of methylation and loss of expression, or

vice versa). A positive correlation occurred when the directionality

Figure 1. Methods used to identify genes with methylation-expression correlations. (A) Pearson correlation was used to measure linear
relationships between DNA methylation and gene expression levels for 1505 CpG probes represented on the GoldenGate Methylation BeadArray. The
panels represent examples of a gene with high (left) and low (right) Pearson correlation coefficients when analyzing DNA methylation levels (x axis)
against gene expression levels (y axis). (B) A discretization approach was used to classify samples into methylated (M) or unmethylated (U) groups
based on the mean (m) methylation value and standard deviation (s) of a given probe. Statistically significant gene expression differences between M
and U groups indicated a methylation-expression correlation for the gene in question.
doi:10.1371/journal.pone.0052626.g001
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of changes was the same between methylation and expression (e.g.

presence of methylation and positive expression, or vice versa).

Only 31 (2.1%) CpG loci (corresponding to 24 unique genes) had

at least one gene expression probe with a statistically significant

correlation, where 19 loci had negative correlations, and the other

12 had positive correlations (Table 2). These 31 loci showed

correlation coefficients ranging from |0.297| to |0.593|. Based on

the genes of the GoldenGate methylation array, our data suggests

that DNA methylation in MM is, therefore, not strongly associated

with gene expression.

We then examined if the 31 correlated loci were specifically

associated with CpG islands or non-CpG islands by examining the

average distance to transcriptional start site (TSS) as per the

annotation of probes on the GoldenGate array. We found that the

31 CpG sites were generally not associated with CpG islands

(P = 0.661) and similarly, only 3 of 12 probes showing positive

correlations were located within CpG islands (P = 1.000, Table 3).

Positively correlated loci were, on the other hand, significantly

associated with non-CpG islands (P = 0.002). In contrast, of 19

methylation probes showing negative correlations, 18 were

associated with CpG islands (P = 0.009). Loci with positive

correlations were, in general, 480 base pairs (bp) upstream of

the TSS compared with negatively correlated methylation probes,

which on average were 149 bp upstream of the TSS (Table 3).

Identification of Methylation-expression Correlations
Using a Discretization Approach

In addition to the genes with statistically significant Pearson

correlation coefficients, we examined methylation-expression

correlations using a non-linear approach. This is referred to as a

discretization approach because samples are categorized into different

groups according to their methylation levels for each probe on the

methylation BeadArray (Figure 1B). Samples with one standard

deviation above or below the mean for any given probe were

considered methylated (M) or unmethylated (U), respectively. Statisti-

cally significant gene expression differences between samples in the

M and U groups would suggest a methylation-expression

correlation at a given locus. By applying this method, we identified

382 CpG loci (25.3%, 309 unique genes) with methylation-

expression correlations. When averaged across 382 probes, there

were 30 samples in the M groups and 27 samples in the U groups.

Of 382 loci, 113 loci had positive correlations and 269 loci had

negative correlations. The top 40 correlations using the discretiza-

tion method are shown in Table 4. This included the top 20

probes with positive correlations and the top 20 probes with

negative correlations. We also included an additional 8 probes that

were common to genes identified by Pearson correlation but did

not rank in the top 40.

We also examined whether CpG loci were located in CpG

islands or non-CpG islands (Table 5). Consistent with the

Pearson method above, the discretization approach demonstrated

that loci with positive correlations were significantly associated

with non-CpG islands (P = 9.2661026) and loci with negative

correlations were significantly associated with CpG islands

(P = 3.2961026).

Among the correlated genes were DLC1, p16, IGF1R and

IL17RB. Only DLC1 and IGF1R were identified by both Pearson

correlation and discretization methods. The genes p16 and DLC1

were methylated (based on two and three CpG probes respec-

tively) and expressed (positive correlation), while IGF1R and

IL17RB were unmethylated (based on two and one CpG probes

respectively) and expressed (negative correlation). To validate the

expression relationship for each of these genes with methylation

we performed qRT-PCR analysis on 46 samples selected

randomly as a subset of the 193 MM samples used in the study.

The results of the gene expression array for each of the four genes

were compared against the qRT-PCR data for M and U groups. A

positive methylation-expression correlation was confirmed for

each methylation probe representing p16 (Figure 2A) and DLC1

(Figure 2B). Similarly, a negative correlation was confirmed for

IGF1R (Figure 2C) and IL17RB (Figure 2D). Differences in

expression between U and M groups were statistically significant

(P,0.05, by t-test).

Sample Class Analysis Reveals Enrichments of
Chromosomal Aberrations and TC Class for Samples
Classified as methylated and unmethylated for Different
Genes

We performed a molecular class enrichment analysis to identify

genomic characteristics associated with samples in both the

methylated and unmethylated sample groups for each of the 382

methylation probes identified above. The data are presented in

Table 4. Higher methylation levels of p16 (2 CpG probes),

IGF1R, IL17RB and DLC1 (2 of 3 CpG probes) were associated

with hyperdiploid MM (Figure 3, Table 4). Other enrichments

included 13 monosomy and 1q gain for p16 and DLC1 genes

(Table 4). The 4p16 TC class was also associated with samples

exhibiting higher levels of DLC1 methylation (Table 4). In

contrast, low-level methylation of p16 (1 of 2 probes), IGF1R (1 of

2 probes), DLC1 or IL17RB was strongly associated with

nonhyperdiploid MM. In addition, low-level methylation (U

Table 1. Summary of assay details for CpG sites interrogated by bisulfite pyrosequencing.

Gene symbol Assay ID Assay location TSS (bp) Genomic locus (GRCh37/hg19) CpG island Number of CpGs

DLC1 ADS1077FS2 59UTR 143 to 218 chr8:13372253-13372178 No 4

DLC1 ADS2121FS Promoter 297 to 259 chr8:13372492-13372454 No 3

IGF1R ADS2177FS1 59UTR 104 to 159 chr15:99192303-99192358 Yes 11

IGF1R ADS2177FS2 59UTR 166 to 241 chr15:99192365-99192440 Yes 15

IGF1R ADS2122re Intron 1 722 to 780 chr15:99192921-99192979 Yes 8

IL17RB ADS2166FS2 Promoter 104 to 177 chr3:53880710-53880783 Yes 10

p16 ADS1193FS1 Promoter 2240 to 2207 chr9:21975337-21975304 Yes 3

p16 ADS1193FS2 Promoter 2209 to 2183 chr9:21975306-21975280 Yes 6

p16 ADS1067FS1 59UTR 208 to 232 chr9:21974890-21974866 Yes 7

doi:10.1371/journal.pone.0052626.t001
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groups) showed enrichments for 1q gain (DLC1), 11q13 molecular

class (IGF1R, IL17RB, and DLC1) or 4p16 (IGF1R). It is

important to note that the sample combination that makes up U

and M groups are different even for probes belonging to the same

gene. This accounts for the different class enrichments observed

within different probes representing one gene. Representative

Table 2. CpG loci with statistically significant methylation-expression relationships as determined by Pearson correlation.

Probe ID Gene symbol Correlation coefficient* CpG island TSS (bp)

CHFR_P501_F CHFR 20.404 Yes 2501

DAPK1_E46_R DAPK1 20.399 Yes 46

DAPK1_P10_F DAPK1 20.385 Yes 210

FRZB_E186_R FRZB 20.375 Yes 186

GPX1_P194_F GPX1 20.587 Yes 2194

GPX1_E46_R GPX1 20.405 Yes 46

GSTP1_E322_R GSTP1 20.593 Yes 322

HIF1A_P488_F HIF1A 20.417 Yes 2488

IGF1R_P325_R IGF1R 20.428 Yes 2325

IGSF4_P86_R IGSF4 20.45 Yes 286

IGSF4_P454_F IGSF4 20.405 Yes 2454

IMPACT_P186_F IMPACT 20.375 Yes 2186

MEST_E150_F MEST 20.383 Yes 150

MGMT_P281_F MGMT 20.545 Yes 2281

MGMT_P272_R MGMT 20.453 Yes 2272

P2RX7_P119_R P2RX7 20.438 No 2119

SPARC_E50_R SPARC 20.387 Yes 50

TJP1_P326_R TJP1 20.488 Yes 2326

TJP1_P390_F TJP1 20.42 Yes 2390

CASP3_P420_R CASP3 0.327 Yes 147

CYP2E1_E53_R CYP2E1 0.374 No 53

DLC1_E276_F DLC1 0.322 No 276

DLC1_P695_F DLC1 0.495 No 2695

GLI3_E148_R GLI3 0.297 No 148

HLA-DPB1_P540_F HLA-DPB1 0.389 No 2540

HOXA5_P1324_F HOXA5 0.339 Yes 21324

HOXA5_P479_F HOXA5 0.5 Yes 2479

PADI4_P1011_R PADI4 0.343 No 21011

S100A12_P1221_R S100A12 0.458 No 21221

S100A4_P887_R S100A4 0.385 No 2887

SNRPN_P230_R SNRPN 0.313 No 2230

*Average correlation is shown for loci with more than one gene expression probe.
doi:10.1371/journal.pone.0052626.t002

Table 3. Relationship to CpG islands and TSS for genes with methylation-expression correlations identified by computing a
Pearson correlation coefficient.

Number of
probes CpG island

Non-CpG
island

P-value* for CpG
island

P-value* for non-
CpG island Average TSS

Median
TSS

All methylation loci 1,505 1,044 461 N/A N/A 2227.1 2165

Loci with correlation 31 21 10 0.661 0.489 2277.3 2230

Loci with positive correlation 12 3 9 1.000 0.002 2480.3 2509.5

Loci with
negative correlation

19 18 1 0.009 0.999 2149.1 2186.0

*Hypergeometric P values are given.
doi:10.1371/journal.pone.0052626.t003
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Table 4. Top 40 methylation loci with statistically significant methylation-expression correlations using the discretization approach.

Probe ID Gene symbol
CpG
island TSS (bp)

Direction of
correlation*

Sample class enrichment in
methylated samples (P-value){

Sample class enrichment in
unmethylated samples (P-
value){

CAV2_E33_R CAV2 Yes 33 2 None None

CCND1_E280_R CCND1 Yes 280 2 1q amp (0.0028), D2 (0.0248) 11q13 (0.0322)

CHFR_P501_F CHFR Yes 2501 2 13 monosomy (0.0343), 1q
amp (0.0112), D2 (0.0031)

None

DAPK1_E46_R DAPK1 Yes 46 2 D2 (0.0424) H (0.0176), D1 (0.0360)

DNASE1L1_P39_R DNASE1L1 Yes 239 2 D1+D2 (0.0365) H (0.0446)

(FRZB_E186_R) FRZB1 Yes 186 2 4p16 (0.0045) 11q13 (0.0411)

GPX1_P194_F GPX1 Yes 2194 2 NH (0.0069), 1qAmp (0.0335),
11q13 (0.0039), 4p16 (0.0004)

D1 (0.0389)

GSTM2_P109_R GSTM2 No 2109 2 None None

GSTP1_E322_R GSTP1 Yes 322 2 H (0.0026), D1 (0.0031) None

(HIF1A_P488_F) HIF1A Yes 2488 2 None 13 monosomy (0.0028), 4p16
(0.0016)

IGF1R_E186_R IGF1R{ Yes 186 2 H (0.0014), D1 (0.0003) NH (0.0049), 4p16 (0.0024)

IGF1R_P325_R IGF1R{ Yes 2325 2 H (0.0004), D1 (0.0002) 11q13 (0.0401)

IGSF4_P86_R IGSF4 Yes 286 2 None H (0.0259)

(IGSF4_P454_F) IGSF4 Yes 2454 2 D1 (0.0370) 17p del (0.0330)

IL17RB_E164_R IL17RB{ Yes 2560 2 H (0.0058) NH (0.0353), 11q13 (0.0103), Maf
(0.0172)

(IMPACT_P186_F) IMPACT Yes 2186 2 1q amp (0.0419) None

(MEST_E150_F) MEST Yes 150 2 None None

MGMT_P281_F MGMT Yes 2281 2 None None

MGMT_P272_R MGMT Yes 2272 2 None None

(P2RX7_P119_R) P2RX7 No 2119 2 H (,0.0001), D2 (0.0207) None

PTK2_P735_R PTK2 Yes 2735 2 D1 (0.0328) None

ROR2_E112_F ROR2 Yes 112 2 None None

SFN_E118_F SFN Yes 118 2 None NH (0.0016), 17p del (0.0151)

(SPARC_E50_R) SPARC Yes 50 2 H (0.0311) 1q amp (0.0399)

TGFA_P642_R TGFA Yes 2642 2 None None

TJP1_P326_R TJP1 Yes 2326 2 None None

(TJP1_P390_F) TJP1 Yes 2390 2 None None

VBP1_P194_F VBP1 Yes 2194 2 D1+D2 (0.0414) 17p del (,0.0001)

ACVR1B_E497_R ACVR1B Yes 497 + None None

CASP3_P420_R CASP3 Yes 147 + None D2 (0.0317)

CDH17_P376_F CDH17 No 2376 + D1+D2 (0.0446) 1q amp (0.0371)

DLC1_P695_F DLC1{ No 2695 + H (,0.0001), D1 (0.0014) NH (0.0001), 1q amp (0.0121),
11q13 (,0.0001)

DLC1_E276_F DLC1{ No 276 + H (0.0280), D1 (0.0265) NH (0.0209), 11q13 (0.0265)

DLC1_P88_R DLC1{ No 288 + 13 monosomy (0.0113), 1q
amp (0.0072), 4p16 (,0.0001)

NH (0.0403)

FRZB_P406_F FRZB1 Yes 2406 + 6p21 (0.0435) None

HLA-DPB1_P540_F HLA-DPB1 No 2540 + None 11q13 (0.0226)

HOXA5_P1324_F HOXA5 Yes 21324 + H (0.0466) None

HOXA5_P479_F HOXA5 Yes 2479 + H (0.0171) 4p16 (0.0030)

ITPR2_P804_F ITPR2 Yes 2804 + 1q amp (0.0338) 13 monosomy (0.0260)

p16_seq_47_S188_R p16{ Yes 188 + H (0.0216), 13 monosomy
(0.0278), D1 (0.0348)

NH (0.0018), Maf (0.0016)

p16_seq_47_S85_F p16{ Yes 285 + H (0.0289), D1 (0.0332) None

PADI4_P1011_R PADI4 No 21011 + None None

DNA Methylation and Gene Expression in Myeloma

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e52626



sample class enrichment patterns for these four genes are shown in

Figure 3.

Comparison of Methods for Methylation-expression
Correlated Genes

Next we examined the degree of overlap between the two

methods used to determine methylation-expression correlations.

Of 31 CpG loci detected by computing a Pearson correlation

coefficient, 26 were also detected by the discretization approach.

The five CpG probes that were identified only by Pearson

correlation were the following: CYP2E1_E53_R, DAPK1_P10_F,

GLI3_E148_R, GPX1_E46_R, and S100A4_P887_R. When we

examined these five loci unique only to the Pearson method, we

discovered that the methylation values for those genes were

clustered to one end of the methylation scale. This explained their

exclusion from the discretization approach, which relies on

methylation values falling on both low and high ends of the

methylation spectrum. Of the 26 common loci, the direction of

correlation was always the same. There were 17 negatively

correlated and 9 positively correlated loci in common to the two

analysis methods (Figure 4).

Validating Methylation-expression Correlations of
Selected Genes by Bisulfite Pyrosequencing and qRT-PCR
in an Independent Cohort

In order to confirm the reliability of our findings we obtained 43

additional MM patient samples and performed bisulfite pyrose-

quencing and qRT-PCR to analyze DLC1, p16, IGF1R and

IL17RB for CpG methylation and expression respectively. These

samples were used as part of MMRC Genomics Initiative but were

not included as part of the 193 samples used to make the original

observations, and thus constitute an independent validation

sample cohort. Percent methylation (average of all CpG loci

interrogated by pyrosequencing) and relative expression fold-

change values were log2-transformed. We interrogated a total of 7,

14, 32, and 10 CpG sites for DLC1, p16, IGF1R and IL17RB

respectively. These loci covered many more loci then interrogated

by the GoldenGate array and were clustered in two different genic

regions (Table 1). Next we computed a Pearson correlation

coefficient and applied the discretization approach to the dataset

as described above to confirm the relationship of methylation to

gene expression for the selected genes.

Computing a Pearson correlation coefficient demonstrated

positive methylation-expression trends for DLC1 and p16 and

Table 4. Cont.

Probe ID Gene symbol
CpG
island TSS (bp)

Direction of
correlation*

Sample class enrichment in
methylated samples (P-value){

Sample class enrichment in
unmethylated samples (P-
value){

S100A12_P1221_R S100A12 No 21221 + 4p16 (,0.0001) 1q amp (0.0338), 17p del
(0.0364), 11q13 (0.0350)

SLC6A8_P409_F SLC6A8 Yes 2409 + None None

SNRPN_P230_R SNRPN No 2230 + 4p16 (0.0029) 13 monosomy (0.0314), 1q amp
(0.0204), D2 (0.0025)

THBS1_P500_F THBS1 Yes 2500 + None None

TNFRSF10C_P612_R TNFRSF10C No 2612 + None H (0.0292), 17p del (0.0154), D2
(0.0020)

WNT10B_P993_F WNT10B Yes 2993 + NH (0.0114) None

Additionally, loci in common with the Pearson correlation method are shown in parentheses.
*(2) indicates a negative methylation-expression correlation, where high methylation correlates to lower expression or vice versa. (+) indicates a positive correlation
where high methylation correlates to increased expression or vice versa.
{P values were obtained after 10,000 random permutations of each class label.
{Gene was selected for further validation.
1The methylation level of the probe FRZB_P406_F has a positive correlation with gene expression by both Pearson correlation and the discretization method, while the
other probe FRZB_E186_R has a negative methylation-expression correlation by both methods. Only the FRZB_P406_F probe is shown for the discretization method
due to its statistical significance.
doi:10.1371/journal.pone.0052626.t004

Table 5. Relationship to CpG islands and TSS for genes with methylation-expression correlations identified by the discretization
approach.

Number of
probes

CpG
island

Non-CpG
island

P-value* for CpG
island

P-value* for non-CpG
island Average TSS Median TSS

All methylation loci 1,505 1,044 461 N/A N/A 2227.1 2165

Loci with correlation 382 274 108 0.137 0.890 2222.5 2153

Loci with positive
correlation

113 57 56 1.000 9.26E-6 2282.7 2186.0

Loci with negative
correlation

269 217 52 3.29E-6 1.000 2197.2 2151.0

*Hypergeometric P values are given.
doi:10.1371/journal.pone.0052626.t005
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negative correlation trends for IGF1R and IL17RB (Figure 5,
6). Similar to the original analysis (Table 2), the validation

analysis demonstrated statistically significant Pearson correlations

only for IGF1R and DLC1. IGF1R had significant Pearson

correlation coefficients (r = 20.5390, P = 0.0001) based on the

analysis of 8 CpG sites located about +700–+800 bp of the TSS

and 24 CpG sites located about +100–+250 bp of the TSS

(Figure 5C and 6C). For DLC1, average methylation of seven

CpG sites analyzed by pyrosequencing demonstrated a low

correlation (r = 0.1974, P = 0.1002), which was due mainly to

two CpG loci (circled in Figure 6B) located in a non-CpG

island region +143 and +180 bp of the TSS. When these loci

were excluded, DLC1 also showed statistically significant

correlation (r = 0.4317, P = 0.0021) based on the remaining 5

Figure 2. Confirming expression trends by qRT-PCR for correlated genes identified by discretization approach. Box plots represent gene
expression levels generated by either microarray or qRT-PCR. Data are shown for samples classified as U or M based on the methylation status of p16
(A), DLC1 (B), IGF1R (C), or IL17RB (D). For microarray data, probe intensities are plotted on the y-axis. Relative fold-change differences are plotted for
data generated by qRT-PCR. The number of samples in each group is displayed above each plot. The GoldenGate BeadArray probe names are
indicated above each pair of box plots.
doi:10.1371/journal.pone.0052626.g002
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CpG loci (Figure 5B). The reasons for this are unclear but is

suggestive that CpG loci, particularly those in non-island

regions, can have site-specific regulatory effects.

Next we applied the discretization approach by categorizing the

43 samples into M and U categories based on the mean and

standard deviation of percent methylation values and then

compared the gene expression differences between the U and M

groups as described above. Consistent with our array-based

findings, p16 (Figure 7A) and DLC1 (Figure 7B) demonstrated

positive methylation-expression tendencies. IGF1R (Figure 7C)

and IL17RB (Figure 7D) demonstrated negative correlations, as

expected. However, this analysis led to statistical significance only

when U and M groups were compared for IGF1R (P = 0.0021).

The other three genes, while demonstrated expected trends, did

Figure 3. A diagrammatic representation of sample class enrichments for selected genes. Samples classified as M or U by the discretization
approach are indicated by green and blue bars respectively. The genomic context of samples in each group are shown as white, black or red bars. A
representative locus is shown for p16 (A), DLC1 (B), IGF1R (C) and IL17RB (D).
doi:10.1371/journal.pone.0052626.g003

Figure 4. Comparison of Pearson and discretization approaches used to identify methylation-expression correlations. The Venn
Diagram displays the total number of overlapping loci with positive/negative methylation-expression correlations identified by computing either a
Pearson correlation or applying the discretization method.
doi:10.1371/journal.pone.0052626.g004
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not reach a significant P value (P,0.05) but by only a small margin

in most cases (Figure 7). We feel this is related to the small

number of samples that ultimately comprised U and M groups

(Figure 7).

Determining the Frequency of Differential CpG
Methylation in MM

In order to further examine the low number of methylation-

expression correlations in MM as identified by the GoldenGate

methylation array, we determined the frequency of differential

CpG methylation 193 MM samples assayed. We conducted a

differential methylation analysis by comparing 193 MM samples

to NPC as previously described [13]. We identified 222

differentially methylated loci. Of these, 186 were hypomethy-

lated. We found that 92% of samples displayed hypomethylation

in at least 50% of hypomethylated CpG loci on the array and

52% displayed hypomethylation in at least 75% of probes.

These data indicate that there is a disproportionately higher

frequency of CpG hypomethylation than there is altered

expression for the genes examined; further supporting the

notion that methylation is poorly correlated to gene expression.

Discussion

The aberrant epigenetic landscape of a cancer cell is charac-

terized by global genomic hypomethylation, CpG island promoter

hypermethylation of tumor suppressor genes, changes in histone

modification patterns, altered nucleosome positioning, as well as

altered expression profiles of chromatin-modifying enzymes

[10,11,18]. The purpose of the current study was to determine

the association of DNA methylation to gene expression in MM.

Typically, DNA hypermethylation at promoter regions represents

a mechanism of transcriptional silencing, while a decrease in DNA

5-methylcytosine may ultimately facilitate the aberrant expression

of proto-oncogenes [19,20,21]. More recently, studies have also

shown that when genes are active, their CpG island promoters are

situated in nucleosome-depleted regions [11,18].

The findings of our study demonstrated that DNA methylation

was, in general, weakly associated with gene expression when

Figure 5. Validation of methylation-expression relationships by Pearson correlation for p16, DLC1, IGF1R and IL17RB using
pyrosequencing and qRT-PCR in an independent sample set. Scatter plots depict the extent of linear correlation of DNA methylation (x axis)
to gene expression (y axis) for p16 (A), DLC1 (B), IGF1R (C), IL17RB (D) in 43 MM samples. Methylation data was generated by bisulfite pyrosequencing
and the average percent methylation for all CpG loci interrogated is shown. Gene expression relative fold-change was obtained by qRT-PCR. Pearson
correlation coefficients are shown and P values are generated by random permutation tests.
doi:10.1371/journal.pone.0052626.g005
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specific loci representing about 800 genes were examined. Reasons

for the lack of correlation could include that 5-methylcytosine may

be necessary but not sufficient for regulating gene expression and

that the nature of chromatin formed on a methylated template is

what renders it transcriptionally active or inactive. Moreover,

researchers in the field are now suggesting that DNA methylation

may not be the predominant pathway for silencing genes [18]. 5-

methylcytosine must be removed by either passive or active

mechanisms to establish a permissive state for subsequent gene

expression and it is not always clear whether methylation changes

are a result of transcription or whether they stabilize transcrip-

tionally incompetent states [18].

Nevertheless, we identified a subset of genes that were either

negatively or positively correlated to DNA methylation. For this

subset of genes, genes with inverse methylation-expression

correlations were generally situated within CpG islands upstream

of TSS and those with positive correlations were associated with

non-CpG islands. Our data is consistent with other genome-wide

studies of the methylome, which emphasized that the position of

methylation influences its relationship to gene expression [14,15].

For example, methylation at CpG sites, in the vicinity of TSS, or

located at the edges or ‘‘shores,’’ of promoter-associated CpG

islands has been inversely correlated with gene expression [15].

Methylation in gene bodies, which are mostly CpG-poor, does not

block and might even stimulate transcription elongation, and may

impact splicing [14,15,18].

To validate the presence of both negative and positive

methylation-expression correlations we selected four genes for

further study. DLC1 and p16 showed a positive methylation-

expression correlation (based on the methylation levels of seven

and 14 CpG sites respectively), and IGF1R and IL17RB both had

a negative correlation (based on the methylation levels of 32 and

10 CpG sites respectively). DLC1 (deleted in liver cancer 1), a

tumor suppressor gene that encodes a RhoGTPase-activating

protein, is recurrently downregulated or silenced in various solid

tumors and hematological malignancies because of epigenetic

modifications or genomic deletion [22,23]. In MM, previous

studies have shown methylation and inactivation of DLC1 in a

high frequency of myeloma cell lines [22,23]. The same group also

reported hypermethylation of DLC1 in 11 of 14 primary MM

samples but without mention of the gene expression levels [22,23].

Deregulation of DLC1 by DNA methylation is likely to be

important in the pathogenesis of multiple myeloma by altering

signaling associated with Rho-GTPases, which impacts cytoskel-

Figure 6. Pearson correlation coefficients calculated for methylation of individual CpG loci. Graphs show the Pearson correlation
coefficient (y-axis) of individual CpG loci analyzed by pyrosequencing to the expression level for the corresponding gene. The distance to TSS is
shown (x-axis) to demonstrate the proximity of each CpG locus to each other. Each CpG locus analyzed for p16 (A), DLC1 (B), IGF1R (C) and IL17RB (D)
is depicted as a point on the graph.
doi:10.1371/journal.pone.0052626.g006
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etal architecture and cellular motility. Indeed, re-expression of

DLC1 in MM has been shown to inhibit myeloma cell migration

[22,23]. The tumor suppressor gene p16 is known to be frequently

hypermethylated in MM [24,25,26,27]. Several reports from our

labs and others have shown that the frequency of p16

hypermethylation increases with the progression of MM

[24,25,28] without affecting gene expression levels [25].

Hypomethylated genes that are inversely correlated to gene

expression are of particular interest and could represent potential

oncogenes. Among these include IGF1R (Insulin-like growth

factor receptor 1) and IL17RB (Interleukin-17 receptor B).

Although little is known regarding the role of IL17RB in MM, a

recent study observed that IL-17 produced by TH17 cells

promotes MM cell growth, colony formation and tumor growth

in vivo via IL17R [29]. Thus, additional studies around IL17RB

are warranted to determine whether IL17RB can be used for

therapeutic targeting in MM. IGF1R, which demonstrated the

strongest correlation of the four genes, is a transmembrane

tyrosine kinase that is frequently overexpressed in tumors

including MM. IGF1R-methylated samples (based on the meth-

ylation levels of two CpG probes) tended to be hyperdiploid, and

those samples with low levels of methylation were associated with

the 4p16 TC class, which is a poor prognostic factor in MM. Our

class enrichment analysis for IGF1R confirms findings demon-

strating that overexpression of IGF1R is associated with the 4p16

TC class [30]. Insulin growth factor-1 (IGF-1) is an important

survival and growth factor in MM and various other malignancies

[31,32,33]. Recent efforts have shown in vitro and clinical efficacy

of targeting IGF1R in MM using small molecule inhibitors or a

humanized anti-IGF1R monoclonal antibody [34,35,36,37]. Our

Figure 7. Validation of methylation-expression relationships using a discretization approach for p16, DLC1, IGF1R and IL17RB by
pyrosequencing and qRT-PCR in an independent sample set. Bisulfite pyrosequencing data for 43 independent samples was used to
discretize samples into methylated (M) or unmethylated (U) groups based on the percent methylation values obtained for p16 (A), DLC1 (B), IGF1R (C)
and IL17RB (D). The average of all CpG loci interrogated by pryosequencing for each gene was used in the analysis. Differential gene expression
analysis was conducted by qRT-PCR to compare the expression of each gene between U and M groups. Positive methylation-expression correlations
were confirmed for p16 and DLC1. A negative correlation was validated for IGF1R and IL17RB. The number of patients in U and M groups is given
above each box plot. Y-axis represents expression levels by plotting relative fold-change (22DDCT).
doi:10.1371/journal.pone.0052626.g007
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study lends further evidence to the potential importance of IGF1R

as a therapeutic target in MM.

In summary our data demonstrates that DNA methylation is

poorly correlated to the expression of approximately 800 genes

when specific loci were examined. Other methylation platforms,

such as the 450 K Infininum array by Illumina and MethylC-seq,

were not available at the time we performed our methylation

studies so we were not able to extend our findings beyond the

,800 gene set or to cover a larger number CpG loci per gene.

Still, however, the genes on the GoldenGate array represent many

of the most relevant cancer-associated genes. Furthermore, our

validation studies examined many more CpG loci beyond those

interrogated by the array. Undoubtedly, more studies are needed

to fully appreciate methylation-expression relationships in MM. In

our study we also identified a number of interesting class

enrichments, whereby a genetic characteristic was linked to the

methylation (or lack of ) of a particular CpG locus. These

enrichments often differed for different loci within the same gene.

While we currently don’t understand the scope of these findings, it

is possible that site-specific methylation can be preferential to

tumors with certain genetic features and can alter the biology of

patients of different subtypes in different ways. Additionally,

exploring the reasons why low and high methylation levels of genes

such as DLC1, p16, IGF1R and IL17RB were associated with

non-hyperdiploid or hyperdiploid MM respectively are among the

findings that warrant further investigation. The identification of

these clinically-pertinent class enrichments warrant future studies

to examine the biological and prognostic relevance of site-specific

CpG locus methylation and its relationship to tumor class.

Discerning the spectrum of DNA methylation functions will

undoubtedly be essential for further understanding myelomagen-

esis and for developing strategies and novel drugs to target the

epigenome in MM.
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