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Abstract

This work examined if currently available electromyography (EMG) driven models, that are calibrated to satisfy joint
moments about one single degree of freedom (DOF), could provide the same musculotendon unit (MTU) force solution,
when driven by the same input data, but calibrated about a different DOF. We then developed a novel and comprehensive
EMG-driven model of the human lower extremity that used EMG signals from 16 muscle groups to drive 34 MTUs and satisfy
the resulting joint moments simultaneously produced about four DOFs during different motor tasks. This also led to the
development of a calibration procedure that allowed identifying a set of subject-specific parameters that ensured
physiological behavior for the 34 MTUs. Results showed that currently available single-DOF models did not provide the
same unique MTU force solution for the same input data. On the other hand, the MTU force solution predicted by our
proposed multi-DOF model satisfied joint moments about multiple DOFs without loss of accuracy compared to single-DOF
models corresponding to each of the four DOFs. The predicted MTU force solution was (1) a function of experimentally
measured EMGs, (2) the result of physiological MTU excitation, (3) reflected different MTU contraction strategies associated
to different motor tasks, (4) coordinated a greater number of MTUs with respect to currently available single-DOF models,
and (5) was not specific to an individual DOF dynamics. Therefore, our proposed methodology has the potential of
producing a more dynamically consistent and generalizable MTU force solution than was possible using single-DOF EMG-
driven models. This will help better address the important scientific questions previously approached using single-DOF
EMG-driven modeling. Furthermore, it might have applications in the development of human-machine interfaces for
assistive devices.
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Introduction

Human movement is the result of the actuation of joints in

upper and lower extremities. Joints are actuated by the coordi-

nated excitation of musculotendon units (MTUs). The multiple

MTUs spanning a joint reflect the redundancy of the human

neuromuscular system in which a prescribed joint moment and

motion can be the result of different MTU excitation strategies.

Understanding how this redundancy is solved in humans and how

MTUs develop force during movement is one of the biggest

challenges in biomechanics. This has been previously studied using

optimization-driven methodologies in which MTUs are assumed

to contribute to the experimentally measured joint moments

according to a chosen criterion that is presumed to be

generalizable across subjects and motor tasks [1,2,3]. However,

it has been shown that in humans the neuromuscular redundancy

is solved by means of the neural drive to MTUs, or MTU

excitation. In this scenario, MTUs are recruited independently of

the final joint moment and position, but rather based on the motor

task to be performed [4,5,6], and on the personal history of

training and pathology [7,8].

Surface electromyography (EMG) indirectly reflects the dynam-

ics of an individual’s neural drive and can be easily recorded

during human movement [9]. For this reason experimentally

recorded EMG signals have been used to directly drive simulations

of upper and lower extremity musculoskeletal models as an

alternative solution to optimization-driven methods

[10,11,12,13,14].

EMG-driven musculoskeletal modeling (EMG-driven modeling)

is a forward dynamics approach. In this, the EMG data

experimentally recorded from the major muscle groups are used

to drive multiple MTUs within a subject-specific physiologically

accurate model of the human musculoskeletal system. In this

scenario, the recorded EMG data directly determine the patterns

of MTU excitation and the resulting MTU force and moment.

This approach has the advantage, over optimization-driven

methods, of solving the neuromuscular redundancy problem

based on an individual’s estimate of the neural drive without
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having to make assumptions on how MTUs share the load about a

joint.

EMG-driven modeling requires an off-line calibration to

determine a number of model parameters that vary non-linearly

across subjects because of anatomical and physiological differences

[11]. During the calibration step, a nominal set of parameters is

initially used in the model to predict the MTU force and the

resulting joint moment as a function of EMG signals during a set

of calibration trials. The initial parameter set is repeatedly refined

until the mismatch between predicted and experimental joint

moments is minimized. Once an optimal, subject-specific,

parameter set if found, the calibrated EMG-driven model is

validated on a novel set of trials that was not used during

calibration [10,11,12,15]. During the validation step the calibrated

EMG-driven model behaves as an open-loop predictive system.

That is, it predicts MTU forces and the resulting joint moments as

a function of measured EMG signals and joint kinematics without

the need to track experimental joint moments.

The currently available state of the art EMG-driven modeling

methodologies employ calibration to create a robust model that

only accounts for one selected degree of freedom (DOF) of the

human limbs and for the associated MTUs spanning the specific

DOF. In this, the activity of the selected MTUs is constrained to

satisfy the joint moment or motion for the only selected DOF.

Such models (i.e. single-DOF models) have been designed for the

elbow flexion-extension [16], knee flexion-extension [11,13,17],

and ankle plantar-dorsi flexion [18,19]. When run in open-loop

(i.e. after calibration), single-DOF models have been shown to well

predict joint moments about the DOF for which the model was

calibrated. However, even though single-DOF models account for

the neuromuscular redundancy based on experimental EMG data,

it has never been examined whether they can be applied to predict

the MTU dynamics and the resulting joint moment with respect to

a different DOF than that used for calibration. In other words, is

the force, generated by the same MTU and driven by the same

input data during the same movement, predicted differently if

different single-DOF models are used? In this scenario it is worth

accounting for the fact that errors may be introduced when

calibrating an EMG-driven model with respect to a DOF (i.e. hip

flexion-extension) and using it to predict the action of MTUs and

the resulting joint moment with respect to a different DOF (i.e. hip

adduction-abduction). Single-DOF calibrations could therefore

result in models that would predict substantially different force

estimates for the same MTU and for the same data set of EMG

and joint kinematics. This could represent a major limitation of

currently available single-DOF models and would pose the

question of how to combine together solutions from different

single-DOF models if the predictions across the MTUs that are

shared by different single-DOF models do not match.

Based on the above-mentioned considerations, this study had

three aims. The first aim was to verify if the currently available

EMG-driven models, which were calibrated about a single DOF,

could provide the same unique MTU force solution when

calibrated with respect to different single DOFs. Second, because

it was found that currently available single-DOF calibrations did

not result in the same calibrated EMG-driven model, we

examined whether the development of a more comprehensive

model that accounted for multiple DOFs and for a larger set of

MTUs could address limitations in single-DOF EMG-driven

modeling. To-this-end, we developed a multi-DOF EMG-driven

musculoskeletal model (multi-DOF model) of the human lower

extremity. Our proposed model used EMG signals recorded from

16 muscle groups to drive 34 MTUs and produce a single force

solution that satisfied joint moments generated around four DOFs

including hip adduction-abduction (HipAA), hip flexion-extension

(HipFE), knee flexion-extension (KneeFE), and ankle plantar-dorsi

flexion (AnkleFE). This led to the development of a more

comprehensive calibration procedure that allowed identifying a

set of subject-specific parameters that ensured physiological

behavior for the large MTU set. Third, we examined whether

the multi-DOF calibrated model could predict joint moments, of

the included DOFs, with comparable accuracy with respect to

each individual model calibrated about a single-DOF. We then

examined and compared the force solution produced by the multi-

DOF and single-DOF models for both MTUs acting about one or

more joints and DOFs.

Single-DOF EMG-driven modeling has been consistently

applied to answer questions in many scientific areas, ranging

from motor control to injury development, from biomechanics to

rehabilitation robotics [16,18,19,20,21,22,23,24]. However, for

these questions to be addressed properly, the development of

multi-DOF EMG-driven modeling is crucial. This will allow

attaining confidence that the predicted MTU force solution is

generalizable across DOFs, i.e. it satisfies joint moments with

respect to multiple DOFs simultaneously. Furthermore, it will

allow predicting and analyzing the dynamics of a larger set of

MTUs than it was possible with current single-DOF models. This

will provide a more reliable means of MTU force estimation from

experimental EMG data resulting in a deeper understanding of the

neuromuscular dynamics during the human movement. Finally, it

may open-up to the development of robust neuromuscular human-

machine interfaces for the simultaneous and proportional control

of multiple DOFs in wearable assistive devices such as powered

orthoses and prostheses.

Methods

Data collection and analysis procedures
One healthy male subject (age: 28 years, height: 183 cm, mass:

67 kg) volunteered for this investigation and gave his informed,

written consent. The project was approved by the Human

Research Ethics committee at the University of Western Australia.

The motion data acquired from the subject were static

anatomical poses and dynamic gait trials. During all trials, the

three-dimensional location of retro-reflective markers placed on

the subject’s body was recorded (250 Hz) using a 12-camera

motion capture system (Vicon, Oxford, UK). During the dynamic

trials, ground reaction forces (GRFs) and EMG data were

collected (2000 Hz) synchronously with marker trajectories using

an in-ground force plate (AMTI, Watertown, USA), and bipolar

electrodes with a telemetered EMG system (Noraxon, Scottsdale,

USA) respectively. Both GRFs and marker trajectories were low-

pass filtered with a fourth-order Butterworth filter. Cut-off

frequencies (between 2 and 8 Hz) were determined by a trial-

specific residual analysis [25]. EMGs were processed by band-pass

filtering (10–450 Hz), then full-wave rectifying and low-pass

filtering (6 Hz). The resulting linear envelopes were normalized

with respect to the peak processed EMG values obtained from the

entire set of recorded trials.

From the dynamic trials collected, two distinct datasets were

created; one for the calibration of the single-DOF and multi-DOF

models and the other one for the validation. The calibration

dataset included two repeated trials of four motor tasks including

walking (WK) (1.360.25 m/s), running (RN) (2.560.5 m/s),

sidestepping (SS) (1.960.35 m/s), and crossover (CO)

(1.860.15 m/s) cutting maneuvers. A different dataset was used

to validate the calibrated EMG-driven models. This included ten

repeated novel trials for each of the four considered motor tasks

Multi-DOF EMG-Driven Musculoskeletal Modeling
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(WK, RN, SS, and CO). The novel trials used for the model

validation were performed at the same speeds as those used for the

model calibration. However, none of the trials in the validation

dataset were included in the calibration dataset, i.e. there was no

intersection of data between the two datasets. The four motor tasks

were chosen because 1) they allowed producing substantially high

moments (i.e. always greater than 50 Nm) about the four

considered DOFs (HipAA, HipFE, KneeFE, and AnkleFE), and

2) because they reflected different MTU recruitment strategies and

contraction dynamics. This allowed investigating whether our

proposed multi-DOF model could predict joint moments simul-

taneously produced about the four considered DOFs while

accounting for different MTU operation strategies.

Using the software OpenSim [26], a generic model of the

human musculoskeletal geometry [2] was scaled to match the

individual subject’s size and body proportions. During this process,

virtual markers were created and placed on the musculoskeletal

geometry model based on the position of the experimental markers

recorded from the static standing poses. In this process, the

anthropomorphic properties of the anatomical segments and

MTUs were linearly scaled based on the relative distances between

experimental markers and their corresponding virtual markers.

The adjusted segment and MTU properties included: anatomical

segment length, width, depth, center of mass location, and mass

moment of inertia, as well as MTU insertion, origin, and MTU-to-

bone wrapping points. In addition, certain MTU parameters (e.g.

tendon slack length, optimal fiber length, and maximum isometric

force) were adjusted to the individual using the procedure outlined

in the upcoming Multi-DOF EMG-driven Model section [14].

After the anthropomorphic scaling, the OpenSim Inverse

Kinematics (IK) algorithm [26] solved for joint angles that

minimized the least-squared error between experimental and

virtual markers. The joint moments that needed to track the IK-

generated angles were obtained using Inverse Dynamics (ID) and

Residual Reduction Analysis (RRA) [26]. The joint moments

produced by this pathway were called ‘‘the experimental’’

moments. The alternate pathway to estimate the joint moments

was by the EMG-driven model.

Multi-DOF EMG-driven Model
The multi-DOF EMG-driven model was developed from the

previously published KneeFE single-DOF (KneeFE-DOF) model

[11] and comprises five main components (Figure 1): Musculo-

tendon Kinematics, Musculotendon Activation, Musculotendon

Dynamics, Moment Computation, and Model Calibration.

The Musculotendon Kinematics component (Figure 1a) used

MTU-specific multidimensional spline functions to produce

instantaneous estimates of MTU length ‘mt, and three-dimension-

al moment arms r as a function of joint angles [27].

The Musculotendon Activation component (Figure 1b) allocat-

ed the EMG linear envelopes e(t) experimentally measured from

16 muscle groups to 32 MTUs in the model (Figure 2). In this

allocation, two muscle groups that shared the same innervation

and contributed to the same mechanical action were assumed to

have the same EMG pattern [28]. This was then used to drive the

corresponding MTUs within each muscle group. According to this

convention the gluteus medius EMGs also drove the gluteus

minimus MTUs. The lateral hamstring EMGs drove both the

biceps femoris short head and long head MTUs. The medial

hamstring EMGs drove both the semimembranosus and the

semitendinosus MTUs. The adductor group EMGs drove the

adductor magnus, longus and brevis MTUs. The peroneous group

EMGs drove the peroneus longus, brevis and tertius MTUs. The

vastus intermedius EMG activity was derived as the mean between

the vastus lateralis and vastus medialis EMGs [10,11,29]. EMG

signals could not be recorded from the illiacus and psoas MTUs

that were too deep for surface recordings. However, we modeled

their passive elastic force contribution, as it was found to be

substantially high during the validation trials: 13169N across CO

trials, 12569N across SS trials, 24664N across RN trials, and

14367N across WK trials. The passive elastic force of the illiacus

and psoas MTUs was quantified during the validation trials using

the Musculotendon Dynamics component (Figure 1c) and by

setting the MTU activation to zero. This allowed predicting the

resistive force produced by these MTUs to compression and

stretching as a function of joint angle. The remaining lower

extremity muscles were not accounted for because they were too

deep for EMG recording and had a small physiological cross-

sectional area. The MTUs in the model with HipAA, HipFE,

KneeFE, and AnkleFE moment arms accounted for the 91%,

87%, 95%, and 80% of the total physiological cross-sectional area

respectively. The MTU-allocated e(t) were then processed by a

recursive filter to model the MTU twitch response to the EMG

onset and were further adjusted to account for the non-linear

EMG-to-force relationship [10,11]. The resulting signal was called

the MTU activation a(t).

In the Musculotendon Dynamics component (Figure 1c), each

MTU had fibers modeled using generic force-velocity f (vm), force-

length passive fP(lm), and active fA(lm) curves. These were

normalized to maximum isometric muscle force (Fmax), optimal

fiber length, and maximum muscle contraction velocity [30]. The

tendon dynamics was modeled using a non-linear force-strain

function f (e)normalized to Fmax [30]. Using biomechanical

parameters from [31], the MTU force Fmt was calculated as a

function of a(t), fiber length lm, and fiber contraction velocity vm:

Fmt~Ft~Fm cos(w(lm))

~ a(t)f (lm)f (vm)zfP(lm)½ �Fmax cos(w(lm))
ð1Þ

where Ft and Fm were the tendon and fiber force, and w(lm) was

the pennation angle that changed with instantaneous fiber length

assuming the muscle belly had a constant thickness and volume

[11]. At each time frame, lmwas determined from ‘mt so to

guarantee the equilibrium between Ft and Fmin Equation 1 [11].

Finally, the Moment Computation component (Figure 1d) esti-

mated the joint moments Mx as the sum of the product of Fmt and

rX , with X M (HipAA, HipFE, KneeFE, AnkleFE).

The Model Calibration process (Figure 1e) determined the

values for a set of parameters that vary non-linearly across subjects

and cannot be determined experimentally or from the literature.

The initial parameter values were taken from the literature [32]

and were subsequently adjusted to the individual subject by

varying them within predefined boundaries. This ensured MTUs

always operated within their physiological range [11]. Parameters

were adjusted using a simulated annealing algorithm [33] until the

objective function fE~ EHipAAzEHipFEzEKneeFEzEAnkleFE

� �
was minimized equally for each DOF. Each DOF error term

EHipAA,EHipFE ,EKneeFE ,EAnkleFE

� �
was the sum of the root mean

square differences between the predicted and experimental joint

moments calculated over the eight calibration trials. Calibration

for the single-DOF models only adjusted the parameters for the

MTUs associated to the single DOF X of interest so to minimize

the associated single fitting error term EX [11].

In the Musculotendon Activation component two global (i.e. it

applies to all MTUs) activation filtering coefficients were

constrained to vary between 21 and 1 to realize a stable positive

solution and a critically damped impulsive response for the

Multi-DOF EMG-Driven Musculoskeletal Modeling
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recursive filter [10,11,12]. One global shape factor parameter was

also altered between 25 and 0 to account for the non-linear

EMG-to-force relationship [11].

In the Musculotendon Dynamics component, muscle strength

coefficients were adjusted and used to scale the MTU-specific

Fmax to maintain the relative strength across MTUs [11,14].

Strength coefficients were varied between 0.5 to 2 and gathered

MTUs in 11 groups according to their functional action including

uniarticular hip flexors, uniarticular hip extensors, hip adductors,

hip abductors, uniarticular knee flexors, uniarticular knee exten-

sors, uniarticular ankle plantar flexors, uniarticular ankle dorsi

flexors, biarticular quadriceps, biarticular hamstrings, and biar-

ticular calf muscles.

MTU-specific tendon slack lengths lt
s, and optimal fiber lengths

lm
O were also adjusted in the Model Calibration. However, prior to

calibration, initial values for these parameters were found using

the preferred scaling method (i.e. the seventh method) among the

ones presented by Winby et al. [14]. This method adjusted the

initial values of lt
s and lm

O , obtained from literature [8,29,31,32], so

that the muscle fiber and the tendon functional operating ranges

were preserved between the generic and scaled musculoskeletal

models [14]. However, this scaling assumed the subject being

investigated had MTU properties of an average healthy individual.

Therefore, these initial values were further adjusted in the Model

Calibration to better reflect the actual subject’s MTU intrinsic

properties [10,11,13,14,16]. During this process, parameters were

constrained to vary so that lt
s~initial value+5% and

lm
O~initial value+2:5%.

Validation Procedure
The validation comprised three tests to assess the single-DOF

and multi-DOF models prediction ability and one to assess the

computation time. In the three tests for prediction ability, the

calibrated multi-DOF and single-DOF models predicted Fmt and

MX solely using experimental EMG and joint angle data from the

stance phase during the 40 validation trials. Data from the same

motor task were time-normalized using a cubic spline and

averaged across trials, producing motor task-specific ensemble

average curves for the predicted Fmt, MX , and for the matching

experimental joint moments M
_

X .

The first test assessed whether single-DOF models produced

different force estimates for the same MTU using the same input

data and during the same movement. If single-DOF calibrated

models did not produce a unique MTU force solution, and if the

predictions across the MTUs that are shared by different single-

DOF models did not match, then this would imply the

impossibility of combining together solutions from different

single-DOF models and predict joint moments about multiple

DOFs simultaneously. For this purpose, the Fmt for a MTU

spanning D DOFs (e.g. HipAA, HipFE and KneeFE for the rectus

femoris), was predicted and averaged during the 40 validation

trials, using the D associated single-DOF models. This produced D

ensemble average Fmt curves for each MTU. The D ensemble

average Fmt curves were then arranged into all possible P~
PD{1

p~1

p

pairs. A pair-specific coefficient of the squared Pearson product

moment correlation R2
p was then calculated as an index of shape

similarity between the two single-DOF models solutions in the

specific pair p being considered. The normalized root mean

squared deviation (NRMSDp) was also calculated for every pair p

to reflect differences in magnitude:

NRMSDp~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i~1

Fmt
1,i {Fmt

2,i

� �2

s

max(Fmt
1 ,Fmt

2 ){min(Fmt
1 ,Fmt

2 )
ð2Þ

where Fmt
1 and Fmt

2 represented the forces predicted by two single-

DOF models in the specific pair being considered. The pair-

specific R2
p and NRMSDp coefficients were then further averaged

across pairs giving inter-item coefficients R2 and NRMSD per

MTU. In this analysis, uniarticular knee and ankle MTUs were

not accounted for because they only had one associated single-

DOF model.

Figure 1. The schematic structure of the multi-DOF EMG-driven model. It comprises of five components: a) Musculotendon Kinematics, b)
Musculotendon Activation, c) Musculotendon Dynamics, d) Moment Computation, and e) Model Calibration Process. The multi-DOF EMG-driven
model is initially calibrated using the Model Calibration component. After calibration the EMG-driven model is operated in open-loop.
Musculotendon units force and the resulting moments are determined as a function of EMG signals and three-dimensional joint angles, without
tracking experimental joint moments. Joint moments are predicted with respect to four degrees of freedom (DOFs): hip adduction-abduction
(HipAA), hip flexion-extension (HipFE), knee flexion-extension (KneeFE), and ankle plantar-dorsi flexion (AnkleFE).
doi:10.1371/journal.pone.0052618.g001
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The second test compared the joint moment prediction

accuracy of the multi-DOF model to that of the four single-

DOF models using the task-specific ensemble average curves. To-

this-end, the mean absolute error (MAE) and its standard

deviation (s) were calculated:

MAE~
1

N

XN

i~1

DM
_

X ,i{MX ,i D ð3Þ

where N refers to the number of points in the ensemble average

curves. Furthermore, a measure of the percentage MAE (%MAE)

was calculated by dividing Equation 3 with respect to the range of

variation assumed by the experimental joint moment M
_

X , (i.e.

max(M
_

X ){min(M
_

X )).

The third test compared the multi-DOF model Fmt solutions to

those obtained by the single-DOF models. The Fmt for a MTU

spanning D DOFs was computed using the multi-DOF and the

associated single-DOF models. Then, for each MTU, the R2 and

NRMSD coefficients were calculated between the multi-DOF

model Fmt solution and each of the single-DOF models Fmt

solutions respectively.

Figure 2. Allocation of experimental EMG signals to individual musculotendon units. The first level of each tree represents innervation
zones in the human lower extremity. The second level represents the 18 muscle groups that are innervated from the corresponding innervation zone.
At the second level, italic-style written names, connected by a dotted line to the first level, represent muscle groups for which experimental
electromyography (EMG) signals could not be recorded (a, b, and g). The remaining 16 groups at the second level represent the muscles from which
EMG signals were experimentally recorded. The third level represents the associated musculotendon units (MTUs) within each muscle group. All MTU
names were abbreviated from the associated muscle group names in the second level with exception of the biceps femoris long and short head
(bicfemlh, bicfemsh), semimembranosus (semimem), semitendinosus (semiten), adductor magnus, longus, and brevis (addmag, addlong, addbrev),
and peroneus longus, brevis and tertius (perlong, perbrev, pertert). The gluteus minimus, medius, maximus, and the adductor magnus are modeled
by three individual MTU compartments. Within each tree, branches have different colors referring to EMG signals recorded separately.
doi:10.1371/journal.pone.0052618.g002
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In the fourth test the multi-DOF model calibration and

execution time were examined. Calibration time was calculated

as the time needed to calibrate the multi-DOF model on the eight

calibration trials. Execution time was calculated as the average

time needed to compute one time point from all DOF joint

moments 1000 times repeatedly. Tests were performed on an

8 GB RAM Intel i7 CPU.

Results

The first test (Figure 3) revealed substantial differences, both in

shape and magnitude, for Fmt predicted by different single-DOF

models. A comparison between the HipAA-DOF and the HipFE-

DOF models showed Fmt solutions with the weakest shape

similarity for the adductor magnus (R2~0:57) and gluteus

minimus (R2~0:47). A stronger shape similarity was observed

in the adductor longus (R2~0:77) and gluteus maximus

(R2~0:79), with values above 0.89 for the gluteus medialis and

adductor brevis. However, in terms of magnitude, the HipAA-

DOF and HipFE-DOF models Fmt solutions were substantially

different for all MTUs with NRMSD ranging between 0.45 and

0.77.

The Fmt estimated using the HipAA-DOF, HipFE-DOF, and

KneeFE-DOF models for the biarticular hip-knee MTUs had the

lowest shape correlations for the gracilis (R2~0:32), rectus

femoris (R2~0:23), semitendinosus (R2~0:27), and sartorius

(R2~0:55) to which also corresponded substantially high magni-

tude differences (NRMSD = 0.72, 0.51, 0.43, and 0.51 respectively).

The single-DOF solutions for the semimembranosus, tensor

fasciae latae, and biceps femoris long head assumed good shape

similarities (R2 = 0.71, 0.79, and 0.98) and low magnitude

differences (NRMSD = 0.38, 0.35, and 0.12).

The Fmt estimated using the KneeFE-DOF and AnkleFE-DOF

models for the biarticular knee-ankle MTUs had poor shape

correlations both for the gastrocnemius lateralis(R2~0:25) and

medialis (R2~0:17) to which corresponded magnitude differences

of NRMSD = 0.5 and NRMSD = 0.27 respectively.

In the second test (Figure 4), the multi-DOF model predicted

joint moments simultaneously produced about four DOFs during

the four considered motor tasks. Furthermore, the multi-DOF

model predicted moments, at each included DOF, with compa-

rable performance to the four single-DOF models. The %MAEs

(and associated MAEs respectively) in joint moments estimation

(histograms in Figure 4) for the four DOFs were (mean and SD

across tasks) 0.1260.03 (17.9563.83 Nm) for the AnkleFE-DOF

model and 0.0960.01 (14.1963.55 Nm) for the multi-DOF

model, 0.1260.04 (23.7565.89 Nm) for the KneeFE-DOF model

and 0.1260.05 (26.2264.88 Nm) for the multi-DOF model,

0.260.04 (26.467.82 Nm) for the HipFE-DOF model and

0.260.07 (27.9968.02 Nm) for the multi-DOF model, 0.260.07

(27.39611.38 Nm) for the HipAA-DOF model, and 0.260.03

(26.06611.26 Nm) for the multi-DOF model.

The third test (Figure 5) compared multi-DOF and single-DOF

models Fmtsolutions for all MTUs revealing the multi-DOF model

prediction strategy corresponded to a mixture of single-DOF

model prediction strategies. The multi-DOF model solutions were

similar both in shape and in magnitude to the single-DOF models

solutions for a subset of biarticular hip-knee MTUs including

tensor fasciae latae (R2.0.77 and NRMSD,0.3 VDOFs), biceps

femoris long head (R2.0.98 and NRMSD,0.25 VDOFs), rectus

femoris (R2 = 0.90 and NRMSD = 0.16 for the HipHFE-DOF),

and semitendinosus (R2 = 0.91 and NRMSD = 0.18 for the

KneeFE-DOF), for a subset of uniarticular hip MTUs including

gluteus maximus (R2.0.73 and NRMSD,0.38 VDOFs), and

gluteus medius (R2.0.85 and NRMSD,0.29 VDOFs), for a subset

of uniarticular ankle MTUs including peroneus brevis (R2 = 0.99

and NRMSD = 0.01), peroneus tertius (R2 = 0.76 and

NRMSD = 0.16), and soleus (R2 = 0.99 and NRMSD = 0.04), and

for a subset of uniarticular knee MTUs including vastus medialis

(R2 = 0.99 and NRMSD,0.08), and biceps femoris short head

(R2 = 0.99 and NRMSD = 0.05).

The multi-DOF model solution for gracilis and adductor brevis

were highly similar in shape to both the HipAA-DOF (R2 = 0.95,

and 0.99 respectively) and HipFE-DOF (R2 = 0.80, and 0.91

respectively) models solutions but similar in magnitude to only the

HipAA-DOF model solution (NRMSD = 0.16, and 0.11 respec-

tively). The multi-DOF model solution for the sartorius was similar

in shape to the HipAA-DOF (R2 = 0.96) and to the HipFE-DOF

(R2 = 0.78) models solutions but different in magnitude with

respect to all single-DOF models solutions (NRMSD.0.55

VDOFs). For the remaining MTUs, the multi-DOF and single-

DOF models solutions were substantially different both in shape

and in magnitude (Figure 5).

A further comparison of results from the biarticular rectus

femoris and tensor fasciae latae was conducted to better show the

limitations associated to single-DOF Fmt solutions and for

Figure 3. First test results: comparing MTU force estimates
across single-DOF models. Square of the Pearson product moment
correlation coefficient (R2) and normalized root mean squared
deviation (NRMSD) between musculotendon unit (MTU) forces predict-
ed by different single degree of freedom (DOF) models including: hip
adduction-abduction (HipAA), hip flexion-extension (HipFE), knee
flexion-extension (KneeFE), and ankle plantar-dorsi flexion (AnkleFE)
single-DOF models. The MTU names abbreviations are defined in
Figure 2. Values for the addmag, gmin, gmax, and gmed have been
reported as the average between the individual values associated to the
three units each muscle is composed of (Figs. 2a, d, and e).
doi:10.1371/journal.pone.0052618.g003
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demonstrating how the R2 and the NRMSD coefficients relate to

differences across single-DOF Fmt solutions (Figure 6). In this, the

two MTUs were chosen as they represented two opposite

conditions: 1) the rectus femoris, with single-DOF model solutions

denoted by low shape similarity and by high magnitude

differences, and 2) the tensor fasciae latae, with single-DOF model

solutions denoted by a high shape similarity and by low magnitude

differences. For the rectus femoris the KneeFE-DOF and HipAA-

DOF models estimated a negligible contribution for this MTU to

running, which were substantially different from the solution

produced by the HipFE-DOF model that predicted a substantial

contribution of this MTU. Figure 6 also depicts the multi-DOF

model solution which was similar in shape and in magnitude to

that estimated by the HipFE-DOF model (also see Figure 5). On

the other hand, single-DOF estimates for the tensor fasciae latae

were well correlated with each other’s as well as with the

corresponding multi-DOF estimate (Figures 5 and 6).

The fourth test revealed that the average calibration time for the

multi-DOF model was 20 h and 35 min and the average

execution time was 18.460.4 ms.

Discussion

This study investigated the limitations associated to the

currently available state of the art EMG-driven musculoskeletal

models that constrain MTUs to satisfy joint moments with respect

to a single DOF. It also aimed to show the importance of using a

more comprehensive EMG driven model that accounts for

multiple DOFs and for a larger set of MTUs. To this end, we

developed a lower extremity musculoskeletal model that used

EMG signals recorded from 16 muscle groups to predict the force

developed by 34 MTUs. Furthermore, we developed a calibration

procedure that allowed calibrating the multi-DOF model param-

eters so that the estimated MTU forces: 1) were consistent with

experimental EMGs, 2) were the result of physiological MTU

operation, and 3) satisfied joint moments about multiple DOFs

over different contractile conditions associated to four motor tasks:

WK, RN, CO, and SS. Results showed that the models calibrated

with respect to different single-DOFs generated different MTU

force solutions for the same input data and MTU set. On the other

hand, our proposed multi-DOF model provided a unique MTU

force solution that satisfied all DOFs and was therefore more

generalizable because it was not specific to an individual DOF.

The first test showed that although the same EMG signals and

joint kinematics were used to drive the four single-DOF models,

they produced substantially different force predictions for all

MTUs, implying multiple solutions to the MTU force prediction

problem (Figure 3). This would lead one to the question about

which single-DOF model to choose to analyze the MTU force

contribution, especially for MTUs that span multiple joints.

Figure 4. Second test results: comparing joint moment estimates between multi-DOF and single-DOF models. Ensemble average
curves with associated standard deviation for the experimental joint moments about four degrees of freedom (DOF) including: hip adduction-
abduction (HipAA), hip flexion-extension (HipFE), knee flexion-extension (KneeFE), and ankle plantar-dorsi flexion (AnkleFE). The reported data are
from the stance phase with 0% being heel-strike and 100% toe-off events. The ensemble average curves are also reported for the matching joint
moment predicted by the four corresponding single-DOF models and by the multi-DOF model. The percentage mean absolute error (%MAE) is
reported in a histogram form and quantifies the percentage error between the experimental joint moments and those predicted by the multi-DOF
model and by the four single-DOF models respectively. Ensemble average curves and %MAEs are shown for four motor tasks including: walking (WK),
running (RN), side-stepping (SS), and cross-over (CO) cutting maneuvers.
doi:10.1371/journal.pone.0052618.g004
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Furthermore, if the predictions across the MTUs that are shared

by different single-DOF models do not match, then how would

one combine different single-DOF solutions to predict MTU force

and joint moment about multiple DOFs and joints? These are

major limitations of using single-DOF models that were never

pointed out in the literature and provided the main reason for the

need of a multi-DOF model.

The second test results showed that the multi-DOF model could

concurrently predict joint moments with similar accuracy to those

from the four single-DOF models (Figure 4). For some DOF

moments, in particular tasks, the multi-DOF model performed

better than the equivalent single-DOF calibrated model. There-

fore, the inclusion of multiple DOFs in the model structure did not

influence the accuracy in joint moment prediction with respect to

a particular DOF.

The third test demonstrated the ability of the multi-DOF model

of using mixed single-DOF prediction strategies across MTUs

(Figure 5). This allows accounting for the fact that different MTUs

may not necessarily use a specific single-DOF prediction strategy

but rather a combination of different single-DOF prediction

strategies simultaneously. This suggests our proposed methodology

can further generalize the MTU behavior than previously

presented single-DOF models.

Furthermore, experimental results suggested that our proposed

multi-DOF modeling methodology could produce EMG-driven

MTU solutions that better reflect the actual activated MTUs than

single-DOF models. In the case of the rectus femoris the multi-

DOF model produced force estimates that better matched with

previously obtained findings (Figure 6) [11,34]. It is known that

during running the rectus femoris is active to mostly generate hip

flexion, especially in late stance and early swing [11,34]. However,

the KneeFE and HipAA-DOF models estimated a negligible

contribution of this MTU that did not reflect its physiological

behavior. The reason is that the KneeFE-DOF and HipAA-DOF

models did not account for the rectus femoris ability of generating

moment about the HipFE-DOF during running. On the other

hand, the multi-DOF calibrated model predicted a force of this

muscle that was consistent with its generally accepted role as it

properly constrained the rectus femoris operation to both the knee

and the hip joints. This provided confidence that our proposed

methodology can properly constrain EMG-driven MTUs to satisfy

multiple DOF dynamics to better reflect the way lower extremity

muscles respond to the mechanical demand during movement.

Experimental results also showed that both the single-DOF and

multi-DOF EMG-driven models could not produce joint moment

estimates that exactly matched the experimental joint moments

(Figure 4). This is in part related to two main limitations of surface

EMG: 1) the inability to access EMG data from deeply located

MTUs, and 2) difficulties in characterizing the EMG frequency

bandwidth to best drive the musculoskeletal model [35]. First,

surface EMG does not permit the activity of deeply located MTUs

to be measured. In the current study this meant the EMG-

dependent active forces generated by the illiacus and psoas MTUs

could not be predicted. This resulted in the HipFE joint moment

estimated during walking being smaller than the associated

experimental moment during the hip-flexing phase of stance (i.e.

70%–100%) (Figure 4). The absence of the deep hip flexor EMG-

dependent force contribution would also affect the prediction of

hip flexion moments during the swing phase. Second, limitations

in characterizing the appropriate EMG frequency bandwidth

resulted in the EMG-driven model’s inability to predict the high

frequency components of the experimental joint moments

(Figure 4). EMG linear envelopes are obtained by high-pass

filtering, rectifying, and low-pass filtering the raw EMG signals

using pre-defined cut-off frequencies. In the literature there has

been a great debate about the most appropriate cut-off frequencies

to be used in this process. Potvin and Brown [36] showed that

using high-pass cut-off frequencies greater than 100 Hz resulted in

significant and substantial improvements in MTU force estimates.

Alternatively, Bobet and Norman [37] suggested that the high-pass

filtered and rectified signal should then be low-pass filtered with a

cut of frequency in the range of 1–3 Hz. Others suggested cut off

frequencies in the range of 5–30 Hz for high-pass filtering and 3–

10 Hz for low-pass filtering [8,10,12,17]. This confusion across the

literature is probably due to the use of time-invariant cut-off

frequencies that fail at representing the continuous modulation of

the frequency spectrum of the neural excitation. This is in fact a

function of multiple variables, including the dynamics of the

neural drive, the muscle contraction effort, and the dynamics of

the task [9]. A potential approach to limit the above-mentioned

problems is the use of hybrid EMG-driven/optimization-driven

procedures in which the activity of MTUs that cannot be

measured is predicted using an optimization-based approach.

Furthermore, the experimentally measured EMG linear envelopes

can be continuously adjusted in the time and frequency domains

Figure 5. Third test results: Comparing MTU force estimates
between single-DOF and multi-DOF models. Square of the
Pearson product moment correlation coefficient (R2) and normalized
root mean squared deviation (NRMSD) between musculotendon unit
(MTU) forces predicted by the multi-DOF model and by the single-DOF
models custom-made to the four degrees of freedom (DOFs): hip
adduction-abduction (HipAA), hip flexion-extension (HipFE), knee
flexion-extension (KneeFE), and ankle flexion-extension (AnkleFE). MTUs
names are defined as in Figure 2. Values for the addmag, gmin, gmax,
and gmed have been reported as the average between the individual
values associated to the three units each muscle is composed of
(Figs. 2a, d, and e).
doi:10.1371/journal.pone.0052618.g005
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to account for tracking errors of the joint moment high-frequency

components [38]. Alternatively, extracting motor unit action

potentials using high-density EMG grids permits extracting richer

information on the actual muscle neural excitation and on its

continuous frequency bandwidth modulation. Motor unit action

potentials directly reflect the discharge in the axons of the motor

neurons innervating the motor unit and therefore represent a

direct measurement of the neural drive to muscles. However,

although high-density EMG represents an exciting solution to

address current limitations in EMG-driven modeling, it is

currently only feasible during isometric conditions [9].

The present results showed that the multi-DOF model could

predict MTU forces and joint moments within the range of DOFs,

tasks, and gait cycle phases (i.e. stance phase) on which the model

was calibrated. However, how the model predicts (i.e. extrapolates)

outside the range of these DOFs, tasks, and gait cycle phases

requires an extensive and structured research, which was beyond

the scope of this study. It could be that there are certain DOFs,

trials, and gait cycle phases that provide better control over the

final calibrated model than other calibration data, and that these

data enable robust extrapolation across all manner of tasks, DOFs,

and phases. This is important to be determined as the size of the

calibration data set also affects the speed at which calibration can

occur. Indeed, our proposed multi-DOF model relies upon an off-

line calibration procedure that was time consuming. However, the

fourth test results showed that the model open-loop operation

could be performed in a time close to that of the muscles

electromechanical delay (i.e. between 10 ms and 20 ms) [39].

Future work should also focus on the design of faster calibration

algorithms. In this context, the use of muscle models that do not

require an explicit integration of the MTU dynamics equations

could considerably speed up the calibration process as it was

shown in [15].

This work presented a study on one subject only and, therefore,

may not be completely generalizable. However, the proposed

EMG-driven musculoskeletal model was scaled and then calibrat-

ed to the actual subject to account for the subject-specific 1)

anthropometry, 2) EMG-to-activation mapping, and 3) MTU

intrinsic properties. First, with regards to the anthropometric

scaling, our procedure linearly scaled the mass distribution and

dimensions of every segment in the model as well as the MTU

insertion, origin, and MTU-to-bone wrapping points according to

the subject’s anthropometry [26]. Second, the EMG-to-activation

filtering coefficients have a day-to-day variation due to a number

of factors such as the electrode placement and position, as well as

the skin impedance. However, studies have shown that the re-

calibration of these parameters can well account for different

electrodes positioning by maintaining high joint moment predic-

tion accuracy across testing sessions [11,20]. Therefore, this

validation did not need to be re-examined in the current study.

Third, the non-linear scaling and then calibration procedure were

used to determine the subject’s MTU parameters including:

tendon slack length, optimal fiber length, and maximal isometric

force. This procedure used initial estimates obtained using the

preferred method presented by Winby et al. [14], which were

further calibrated to the individual subject using the non-linear

optimization procedure as previously outlined. This procedure

could in general account for subjects with varying muscular

strength and operating ranges, [10,11,13,14] thereby permitting

potential investigations on people with musculoskeletal patholo-

gies. Indeed, the calibration step was successfully used in people

who suffered stroke [40,41], and who had anterior cruciate

ligament deficits [18]. Studies have also shown that, once the

MTU tendon slack length, optimal fiber length, and maximal

isometric force have been properly identified, their values do not

change, at least over the short term [11,20]. In this scenario, these

parameters need to be identified only once for the specific subject

[10,11]. However, this assumption might not be valid when the

subject’s muscle function properties are altered as a result of

dramatic changes in their exercise habits, disease status, or

neurorehabilitation treatments. This scenario would require the

MTU parameters to be re-calibrated. Nevertheless, despite the

limited sample in the current study, the scaling and calibration

procedures allow our methods to be applied across individuals

without relying on the existence of specific anthropomorphic

models, while accounting for the individual’s muscle activation

patterns across multiple DOFs. This represents an improvement in

current state of the art methodologies were the recruited subjects

Figure 6. MTU force estimates between single-DOF and multi-DOF models. Ensemble average curves for the force predicted for the tensor
fascia latae (tfl) and the rectus femoris (recfem) musculotendon units (MTUs) over 10 running trials. The reported data are from the stance phase with
0% being heel-strike and 100% toe-off events. MTU forces were predicted by the multi-DOF model and by the single-DOF models custom-made to
the three degrees of freedom (DOFs) spanned by the two MTUs: hip adduction-abduction (HipAA), hip flexion-extension (HipFE), and knee flexion-
extension (KneeFE).
doi:10.1371/journal.pone.0052618.g006
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were chosen to be of similar build of the anatomical model

[11,42]. However, a more general model validation across

different pathologies will be the subject of future work.

Our proposed methodology predicted joint moments during the

stance phase only. The main reason for this was that calibration

included trials of running, as well as sidestepping and crossover

cutting maneuvers. For these motor tasks the swing phase occurred

partially, or totally, out of the motion capture volume. Therefore

there was an incomplete swing phase data available for calibration

across trials. The second, although much lesser reason, was that

joint moments were estimated using inverse dynamics, which

strongly relies on the magnitude of GRFs [26]. During the swing

phase of locomotion, the GRFs are zero, which means the inverse

dynamics calculations become highly sensitive to segmental

inertial parameters that are difficult to measure in vivo. These

include the segment mass, the location of the segment center of

mass, and the mass moment of inertia [26,43], which were only

scaled linearly to the subject’s size. Inverse dynamics measure-

ments of joint moments during the swing phase may therefore not

be reliable and we preferred to not use these for the model

calibration and for the subsequent validation step. Future work

will focus on 1) using better methods for extracting subject-specific

segmental parameters (e,g using MRI), and 2) predicting joint

kinematics rather than joint moments, using full forward dynamics

models [44], or non-parametric methods such as Bayesian filtering

[45]. This will allow extending the analyses presented in this study

to the whole gait cycle thus increasing the applicability of our

proposed methodology.

Future work is also needed to validate whether the use of

experimentally derived subject-specific anatomy and MTU

parameters from imaging techniques (i.e. MRI and ultrasound)

[46] and the use of high-density electromyography [47] could

increase the EMG-driven model reliability and decrease the

influence of the off-line calibration that was observed to be

substantially high in single-DOF models. However, improvements

in current imaging techniques and high-density electromyography

are still needed to allow applying these methodologies to the study

of a large set of MTUs and individuals during dynamic movement

[47].

The above-mentioned points refer to limitations that apply to

any EMG-based musculoskeletal modeling methodology. In this

context, it is important noting that the aim of our proposed work

was not that of addressing all those limitations in one single study.

Our aim was to demonstrate the clear disadvantages of single-

DOF EMG-driven modeling and that the associated limitations

could be addressed using our proposed multi-DOF modeling

methodology. In this scenario, this work needed to compare the

two methods under the same conditions including: subject sample,

motor task sample, EMG signal processing procedure, and model

calibration and scaling procedure.

In conclusion, this work proposed a novel EMG-driven

musculoskeletal model of the human lower extremity and a

calibration procedure that allowed identifying individual MTU

parameters that could be used to predict a single MTU force

solution, from experimentally measured EMGs, that was dynam-

ically consistent with multiple DOF moments. Results showed that

our proposed methodology could be applied to study dynamic

movement and account for different muscle contractile conditions

(i.e. different motor tasks). Our experimental results suggested that

the multi-DOF model solutions better reflected the way MTUs

respond to the mechanical demand resulting in a more accurate

reflection of the actual muscle behavior than it was possible with

previously proposed single-DOF models. This may help obtaining

a deeper understanding of the neuromuscular dynamics during the

human movement and better addressing the important scientific

questions previously approached using single-DOF EMG-driven

modeling. The proposed methodology may also have direct

implications in neurorehabilitation technologies especially for the

design of EMG-based human-machine interfaces for the control of

powered orthoses and prostheses that imply the simultaneous

actuation of multiple joints.
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