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Abstract

Scanning through genomes for potential transcription factor binding sites (TFBSs) is becoming increasingly important in this
post-genomic era. The position weight matrix (PWM) is the standard representation of TFBSs utilized when scanning
through sequences for potential binding sites. However, many transcription factor (TF) motifs are short and highly
degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs
do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to
the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF
and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the
similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing
structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA)
exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased
prediction accuracy and robustness compared with those using a more general energy function. The software is freely
available upon request.
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Introduction

One of the central challenges of this post-genomic era is to

decipher the complex regulatory networks that control gene

expression. It is generally true that increased morphological

complexity in organisms is not correlated with an increase in gene

number, but instead with an increase in regulatory complexity [1].

Gene expression is controlled at various stages involving many

factors, including regulatory RNAs, DNA binding proteins and

epigenetic modifications such as DNA methylation [2]. One major

regulatory component is the binding of transcription factors (TFs)

to specific DNA sequences that impart positive or negative control

on the transcription of corresponding target genes. Identifying a

comprehensive set of binding sites for a given TF is critical in

understanding the role of that TF in gene regulatory networks.

Despite this importance, the prediction of potential binding sites

for many TFs remains challenging [3].

Modern methods for the identification of TFBS mostly use

experimental data in combination with computational approaches.

The experimental data includes three dimensional (3D) structures

of TFs bound to DNA, immunoprecipitated DNA sequences

followed by hybridization to microarray chips (ChIP-chip) [4] or

massively parallel sequencing (ChIP-Seq) [5], Systematic Evolu-

tion of Ligands by EXponential enrichment (SELEX) [6,7], or

protein-binding microarrays (PBMs) [8]. While each of these

methods have proven to be useful, they each have their own

drawbacks. Methods relying on ChIP experiments are dependent

on the availability of high-quality antibodies against given proteins

of interests. For SELEX, one must be careful to avoid over-

selection because factors can bind in vivo to biologically important

medium- or low-affinity loci as well. A major problem with PBMs

is that in vitro affinities may differ from in vivo binding dependent

on the current state of the chromatin environment. However,

methods utilizing 3D structures of TFs do not have these

limitations. With an increasing number of solved structures of

protein/DNA complexes in Protein Data Bank (PDB) [9], it is

becoming more common to identify TFBSs using structural

information of solved protein/DNA complexes [10–29].

The general strategy of structural based prediction of TFBSs

includes two primary steps. First, one starts with a structure of a

TF bound with its cognate DNA sequence. This can be an

experimentally determined structure or one computationally

predicted through homology modeling and/or docking. The use

of computationally predicted structures is useful when no protein/

DNA complex structure information is available for candidate TF.

Second, a scoring function is used to evaluate the potential for
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binding between a TF and its cognate TFBS. The scoring function

can be based on molecular mechanics (MM) force fields

[25,26,30,31,32,33,34] or knowledge-based potentials [17,35,36].

Regardless of which scoring function is used, a PWM is generated

for a given TF by comparing the binding site one position at a time

to every potential nucleotide. The generated PWM can then be

used to scan sequences for putative TFBSs. A good TFBS

prediction model should be able to discriminate the real TFBS

from other nonsense sequences.

A great variability exists in the scoring functions used for

evaluating protein/DNA binding. Mm-based energy functions

have the advantage of being physically sound, but may suffer from

the transferability of derived parameters between molecules as well

as the high computational cost to obtain binding free energy.

Knowledge-based energy functions, on the other hand, are derived

from statistical analysis of known protein/DNA structures, similar

to knowledge-based potentials for protein structure predictions

[37]. There is again a great variability in how to derive knowledge-

based potentials. Several studies have suggested that an all-atom,

distance dependent potential is better for predicting TF/DNA

binding specificity [13]. For this reason, we recently extended a

previous potential based on the distance-scaled, finite ideal-gas

reference (DFIRE) state [38] to account for residue specific atom

types for protein/DNA binding [39]. The first application of

DFIRE to protein/DNA interaction employed hybrid special

atom types; using a total of 19 atom types covering all standard

amino acids and bases [18]. In our previous work, we added a

volume-fraction correction term to DFIRE to account for the

unmixable nature of protein and DNA atoms when residue-

specific atom types are used [39]. In addition, we added a low-

count correction and a reduced interaction distance cutoff. We will

designate the energy function derived in this former paper [39] as

vcFIRE.

Given the promise of applying knowledge-based energy

functions to the prediction of TFBS sites, we were motivated to

explore other modifications that could improve the performance of

vcFIRE in this task. Here we considered three modifications to the

existing approach in vcFIRE: 1) reweighting of observed atom

pairs, 2) new smoothing approaches and 3) a dipolar approxima-

tion. These modifications were implemented because traditional

energy functions are biased towards larger structures that contain

more atoms and the dipolar approximation is useful to capture the

properties of dipolar atoms. The performance of the derived

energy functions using combinations of the three modified

approaches was tested for DNA sequence decoy discrimination,

docking decoy discrimination, recovering native base pairs, and

prediction of PWMs. After the energy functions were bench-

marked, the best performing energy function among them was

selected for use in prediction of TFBS for 16 known Saccharomyces

cerevisiae TFs. Applying the energy function with a fixed DNA

backbone to the upstream sequences of yeast open reading frames

(ORFs) produced binding energy profiles. Using experimentally

verified TFBSs, sensitivity and specificity were calculated to

determine the energy thresholds used to classify a given sequence

as a binding site. The quality of prediction was estimated by

prediction sensitivity, specificity and Receiver operating charac-

teristic(ROC) analysis, as well as a y-test [25] comparing derived

PWMs to characterized PWMs in databases.

Materials and Methods

Knowledge-based energy functions
In all of the following energy function tests, we assume rigid-

body docking during the formation of protein/DNA complexes

and neglect DNA deformation and conformational change of

proteins induced by DNA binding. In other words, intra-protein

and intra-DNA interactions are assumed to be unchanged during

binding, as in our previous work [39]. The free energy of

formation for a protein/DNA complex, DG, is approximated as:

DG~
X

i,j
�uu(i,j,r) ð1Þ

where the summation is over all atomic pairs between atom types i

and j that are a distance r apart. The details of how to derive this

knowledge-based energy function (Supplementary Text S1),

perform three new corrections(Supplementary Text S1) and

estimate the corresponding results (Supplementary Table S1,S2)

can be found in Supplementary Materials.

Predicting transcription factor binding sites
An illustration of our structural based strategy for predicting

TFBSs is shown in Figure 1. Knowledge-based functions were

evaluated for DNA sequence decoy discrimination, docking decoy

discrimination, recovering native base pairs, and prediction of

PWMs (refer to Supplementary Text S1,S2 and Table S1,S2 for

details). The best performing knowledge-based function (Supple-

mentary Table S1) was used to test the predictive power of the

structural-based recognition of TFBSs. Structures of 16 Saccharo-

myces cerevisiae TFs were obtained from PDB and experimentally

verified TFBS sites for these TFs were obtained from TRANSFAC

[40] and the Promoter Database of Saccharomyces cerevisiae (SCPD)

[41]. If two TFBSs for a given factor overlapped, the union of their

overlapping regions was chosen (e.g. the union of TFBSs

‘‘chr1:1984–2007’’ and ‘‘chr1:1988–2012’’ is ‘‘chr1:1984–2012’’).

The sequence for promoter regions (500 bp upstream of TSS) of

ORFs in S. cerevisiae strain S288C was downloaded from the

Saccharomyces Genome Database (SGD) [42]. The experimen-

tally characterized TFBSs were aligned to the promoters using

Blat [43]. In total, 127 experimentally verified TFBSs were

identified for the 16 TFs, distributed across the promoters of 87

Yeast ORFs. Table 1 includes a summary of the sites for these

factors.

PDB is the most extensive database of experimentally deter-

mined structures of proteins. We used the structure of a TF found

in the native structure of the TF/DNA complex as the structure

template when it was available in PDB. However, for some TFs,

there are no known structures of the TF in complex with DNA. In

these cases, if a structure exists with this TF in a complex with

another TF, the substructures extracted from the TF/TF

complexes were used instead. For example, there is no TF/

DNA complex available in PDB for MCM1. However, there is

structural information for the MCM1/MATAlpha2/DNA com-

plex (PDB id:1mnm) and this was used to obtain the substructure

of MCM1. The structural identifications of the 16 TFs used in this

study can be found in Table 1.

The RaPvcFIRE energy function has been identified as the best

performing knowledge-based energy function (Supplementary

Table S1). The energy potential based on RaPvcFIRE was

retrained on the same protein/DNA complex database after

removal of 8 structures homologous with the 16 TFs (see

Supplementary Table S3 for the list of all 208 structures used in

the training set). The derived energy function was then used to

predict the binding energy of TFs with TFBSs. For each of 16 TFs,

we obtained the position-specific energy matrix (PEM) by

substituting nucleotides at each position to each of the four

possible nucleotide pairs (A-T, C-G, G-C, T-A). Binding energies

of these base pairs at each position were calculated individually

Structural-Based Strategy for Predict TFBS
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Figure 1. Structural based strategy for predicting transcription factor binding sites. An illustration of the structural based strategy for
predicting transcription factor binding sites: a) A native structure of TF bound with TFBS (PDB id: 2ERE) is used as the structure template (image
created by Pymol [54]). Each base pair in the TFBS with length L (length of TFBS is listed in Table 1) is replaced by four kinds of base pairs and only the
energy of binding contributed by the substituted base pair and the TF is calculated after the replacement. A L64 position energy matrix (PEM) is then
generated for each TF. b) The sequences of ORFs (here for example YMR108W upstream 2470,2455) are threaded into a specific TF’s position
energy matrix to get the binding energy of a sequence with the TF. For example, the binding energy of a sequence CTGCCGGTACCGGC would be
given as En~EC

1 zET
2 zEG

3 z:::zEC
L , meanwhile the binding energy of sequence offset by a position, TGCCGGTACCGGCT would be given as

Enz1~ET
1 zEG

2 zEC
3 z:::zET

L . c) The binding energies of all sequences are sorted from lowest to highest (Left), and the binding sites from
TRANSFAC and SCPD database (Right) are matched by overlapped position in the same ORF. Overlapped base pairs (Lo) with more than 50% of the
binding sites in database (Ld) is considered as True Positive [55]. Note that some binding sites are much longer than that in native complex structure
(Ln), in this case, we used Lo/Ln.50% as the criterion for classifying the site as the binding site. False Positive indicates a predicted TFBS not
overlapping any TFBSs in the databases. True Negative indicates a TFBS in the databases overlapping with a predicted result not classified as a TFBS.
d) Position energy matrix derived from PDB 2ere can be converted to PWM by Boltzmann formula [51]. The weblogo [56] of converted PWM where
b= 0.05. Position 3,12 is identical to part (e) position 1,10. e) MA0324.1 NAME: LEU3 from the JASPAR CORE database [50] as comparison. We
successful predicted most probability base pair on 9 out of 10 positions.
doi:10.1371/journal.pone.0052460.g001

Structural-Based Strategy for Predict TFBS
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using the trained knowledge-based function. The PEM is a 46L

matrix (where L is the length of the TFBS found in the native TF/

DNA complex structure) that can be converted to a PWM using

the Boltzmann formula (34,56) with the pairwise additivity

assumption. After obtaining the PEM for a specific TF, we

scanned the sequence consisting of 500 bp upstream of the start

codon of each ORF containing at least one known binding site

with this PEM. The binding energies of 500-L+1 sequences in each

promoter were sorted from low to high and the lowest 200 energies

were kept. The energy cutoffs for classifying a sequence as a TFBS

or not were determined by maximizing the prediction accuracy

compared with experimentally collected TFBSs. The prediction

accuracy was calculated as the sum of sensitivity [TP/(TP+FN)]

and specificity [TP/(TP+FP)] (TP: true positive, FN: false

negative, FP: false positive, definition as description in Figure 1c)

as described previously [44]. A DNA sequence with L bases was

classified as TFBS if its total binding energy is under the energy

cutoff.

Structural dependence
Recent research has shown that crystal structure quality greatly

influences the sensitivity of TFBS prediction [27]. Unfortunately,

high-quality TF/DNA complex structures exist for only a few

factors. We therefore investigated methodologies for TFBS

prediction when a crystal structure does not exist, but the

prediction of TF/DNA structure is possible because DNA

structure can be predicted along TF structure [45]. Random

translocation and rotational perturbations were applied to the

DNA in native complex structures, leading to newly generated

structures that differ from the original complex structures by as

much as 4 Å root mean square deviation (RMSD). These newly

generated structures were grouped according to their RMSD

values, with RMSD between (n21,n] grouped as RMSD,n

(n = 1,2,3,4). For example, group RMSD,1 contains 16 per-

turbed structures that differ from their native structures by

RMSDs ranging from (0,1]. Predictions were made separately

based on these newly formed structures as structure template. The

RMSD values of these perturbed structure templates can be found

in the Supplementary Table S4. In total, we obtained 80 structures

including the original native structures for 16 different TFs, and 4

perturbed structures for each TF.

Methodologies and Tests
Our tests found that methods used to train an energy function

with structures selected from PDB (e.g. vcFIRE) are overly

sensitive to the relative position of the TF to a binding site. This

can lead to difficulties in employing computationally predicted 3D

structures in structural-based TFBS predictions and limits the

effectiveness of our approach. We present here a strategy to

overcome the over sensitivity of traditional methods. This strategy

can briefly be described as training the energy function by the

structure template itself (tFIRE). Other tests related to this strategy

were also performed. As shown in Figure 2, a total of five parallel

prediction sets were constructed as described below.

Prediction Set 1 (Yeast_tFIRE). This set denotes our new

proposed strategy. The structure template itself is used in the

training set (for 16 factors with 5 RMSD groups, a total of 80

energy functions are trained and tested on the structure template).

Prediction Set 2 (All_vcFIRE). This set denotes our TFBS

predictions employing the energy function described in our

previous work [39]. It consists of all 212 TF/DNA structures in

PDB which we have tested/trained using energy functions. The

maximum sequence identity between each two structures in this

set is below 35% as culled by PISCES [46]. To evaluate the

general applicability of this method, structures of proteins with

sequences identical to the 16 yeast structures described above were

also removed from this training set (a protein was considered

identical if the BLAT score was more than 2500). Here only one

energy function is trained, predictions are made over 80 structure

templates.

Prediction Set 3 (Yeast_vcFIRE). We also investigated

whether training the energy function using only structures

characterized from yeast produced better results. In this set, all

native TF/DNA structures from yeast were used in the training

set, including the 16 structures shown in Table 1. Similar to the

All_vcFIRE set, only one energy function is trained but predictions

are made over 80 structure templates.

Prediction Set 4 (Yeast_tFIRE_Mutant). To estimate the

contribution of DNA sequence in tFIRE, each position of the

DNA sequence was mutated to a random base pair with equal

possibility prior to training to form 64 decoys as structure

templates. With 16 native structures, a total of 80 energy functions

were trained and tested on the structure template itself over 5

RMSD groups. The mutant DNA sequences can be found in

Supplementary Table S5.

Prediction Set 5 (Yeast_tFIRE_Reference). In each of the

tests described above, the energies of the high-information content

positions in the TFBS are much lower than the energies in the low-

information content positions. For example, in Figure 1b, the

energy for the T-A base pair in the first position is 217.53 while

the other possible base pairs have energies greater than zero. In

order to investigate if the information content of motif was

affecting the success of the prediction, we set the energies of all

Table 1. Data Summary.

TFa PDB chain idb Nsites
c NORF

d Nresidue
e LTFBS

f

GAL4 3coq_A,B 15 7 178 19

GCN4 1ysa_C,D 18 11 114 16

HAP1 1hwt_C,D,G,H 9 5 287 19

LEU3 2ere_A,B 5 5 120 14

MATA1 1yrn_A 1 1 49 13

MATALPHA2 1apl_C 10 7 59 12

MCM1 1mnm_A,B 26 21 166 20

MCM1_MATALPHA2 1mnm_A,B,C,D 1 1 320 25

NDT80 1mnn_A 1 1 290 13

PHO4 1a0a_A,B 4 1 126 16

PPR1 1pyi_A,B 1 1 158 14

PUT3 1zme_C,D 3 2 140 14

RAP1 1ign_A 24 18 189 18

TBP 1ytb_A 7 4 180 12

TFIIA 1ytf_C 1 1 192 13

TFIIA_TBP 1ytf_A,C 1 1 372 15

The transcription factors (TFs), their structure identifications and the number of
experimentally verified transcription factor binding sites (TFBS) in yeast.
aTranscription factor name, ‘_’ denotes transcription factors found in complex.
bThe structure used to represent the TF.
cThe number of binding sites collected from TRANSFAC and SCPD.
dThe number of ORFs these binding sites reside.
eThe number of residues in the TF.
fThe length of TFBS. Based on related PDB structure file, base-pairs that atoms
are 10 Å away from the nearest atoms on the TF are excluded from the count.
doi:10.1371/journal.pone.0052460.t001

Structural-Based Strategy for Predict TFBS
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non-lowest energy base pairs to zero and examined the prediction

accuracy.

Results

Comparison to alternative approaches
If a given factor has a well-characterized PWM, it is

straightforward to identify potential TFBSs. However, if a well-

characterized PWM does not exist, there are several strategies that

can be followed. Furthermore, if a commonly regulated set of

sequences thought to contain a common motif exists, de novo motif

discovery approaches can be used to identify statistically overrep-

resented motifs in these sequences. The PWMs corresponding to

these motifs can then be used to scan through the sequences to find

potential TFBSs. To compare the use of 3D structure information

in the prediction of potential TFBSs with these more traditional

approaches, we list in Table 2, a comparison of our structure-

based approach with several of the most popular de novo motif

discovery methods (MEME [47], AlignACE [48] and BioPros-

pector [49]). For most TFs, employing the 3D structure can

produce better prediction accuracy. Motif discovery methods

suffer when working with such small sequence sets. Furthermore, if

no experimental data exists to determine sequences with potential

common regulatory motifs exists, but a 3D complex structure of

the TF/DNA complex is available, the PWM can be generated

using the methods described here. There are also cases for which

de novo motif discovery methods perform better than 3D structure

methods. The use of AlignACE, BioProspector for GAL4 as well

as the use of MEME for HAP1 outperform our structure-based

approach. We speculate that this is because the promoter regions

of the commonly regulated ORFs have a strong enrichment in

these binding sites.

Comparison of structure-based strategies
We tested a number of different training sets, as shown in

Figure 3. A summary of each of the various training sets is

described below. First, training the energy function and making

predictions using the native structure itself gives the best prediction

(see results for Yeast_tFIRE with group RMSD,0). The

sensitivity is 0.82, which is slightly lower than the 0.85 sensitivity

of the All_vcFIRE set group RMSD,0. However, the specificity is

0.75, higher than 0.55 of the All_vcFIRE set group RMSD,0.

This indicates a 12% improvement on accuracy (sensitivity plus

specificity). Furthermore, the prediction accuracy of the Yeast_t-

FIRE set is very robust to the structure template we are using. The

average accuracy along 5 RMSD group is 1.51+/20.04.

Meanwhile, the All_vcFIRE set can only achieve an accuracy of

1.20+/20.17.

Second, the prediction accuracy of All_vcFIRE decreases if the

DNA component is different from its native structure. This

confirms the structural dependence along the relative position

between TF and DNA, similar to what has been reported by

Alamanova and colleagues [27]. This structural dependence is also

seen with the Yeast_vcFIRE group. Among these training sets,

training with structures of factors only characterized in yeast (i.e.

Figure 2. Prediction accuracy on different structures set.
Prediction accuracy on different structures set, where RMSD,0 denotes
using native structure in PDB. Group RMSD,n(n = 1,2,3,4) indicate that
structure templates have the same protein structure with native
structure, but the DNA have been changed by basic translocation and
rotation. The RMSD between the changed DNA and the native DNA part
is (n-1,n]. Different training sets are shown in various symbols. a) Each
prediction in Yeast_tFIRE is using the structure template itself as the

training set. b) All_vcFIRE using all 212 TF/DNA structures in PDB which
we have tested our energy functions on in a previous study [39]. c)
Yeast_vcFIRE set using all yeast TF/DNA structures as the training set,
including the 16 structures shown in Table 1. d) Yeast_tFIRE_Mutant set
training each energy function with one structure, but each position of
the DNA sequence is mutated to a random base pair with equal
possibility. e) Yeast_tFIRE_Reference set all non-lowest energy values
from Yeast_tFIRE to zero.
doi:10.1371/journal.pone.0052460.g002

Structural-Based Strategy for Predict TFBS
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Yeast_vcFIRE set) produced better results than with all non-

homology TF/DNA complex structures (i.e. All_vcFIRE set). We

also note that for these two sets, the results of site prediction using

the training set with RMSD,4 indicates that the All_vcFIRE set is

superior. We speculate that this is caused by X-Ray resolution

error in that all of the structures used have resolution below 3 Å

(except 1pyi with 3.2 Å resolution).

Third, to further assess the importance of the sequence in the

complex structure, we tested the training group Yeast_tFIRE_-

Mutant, which replaces the DNA sequence from native structure

with random base pairs. This group performed worst, with an

average accuracy along 5 RMSD groups of 1.00+/20.02. This

emphasizes the importance of the TFBS sequence in the structure

template for TFBS prediction.

In summary, we observed that the prediction accuracy of

Yeast_tFIRE_Reference was reduced by about 5% along 5

RMSD groups with an average accuracy of 1.43+/20.04. This

indicates that the degenerate positions are useful (for example, the

binding of some factors may be controlled by the combination of

two or more degenerate positions). The full results for these

prediction sets can be found in Supplementary Tables S6 and S7.

A summary of the prediction accuracy for the various methods

is shown in Table 3. For MCM1, the prediction specificity is only

0.49, but 22 of total 26 predicted sites are ranked as the top scoring

windows in the corresponding promoter. It is possible that there

are viable binding sites in these sequences that have not been

experimentally confirmed, artificially lowering the specificity.

Comparison to use of PWM alone
There are 12 TFs from our test set with PWMs in JASPAR [50].

We selected these PWMs to form a JAS-PWM set (there is no

Table 2. Comparison to other methods.

Transcription Factor NS
a NO

b Our AlignACEd BioProspectore MEMEf

SEc SPc AUCc SEc SPc AUCc SEc SPc AUCc SEc SPc AUCc

MCM1_MATALPHA2 1 1 1.00 1.00 1.00 - - - - - - - - -

PPR1 1 1 1.00 1.00 1.00 - - - - - - - - -

NDT80 1 1 1.00 1.00 1.00 - - - - - - - - -

LEU3 5 5 1.00 1.00 1.00 0.40 1.00 0.76 1.00 0.83 0.98 0.60 1.00 0.88

MATA1 1 1 1.00 1.00 1.00 1.00 0.07 0.42 - - - - - -

TFIIA_TBP 1 1 1.00 0.50 0.91 - - - - - - - - -

GAL4 15 7 0.80 1.00 0.90 1.00 1.00 1.00 0.60 1.00 0.91 0.67 0.62 0.80

MCM1 26 21 0.96 0.49 0.86 0.65 0.85 0.85 0.65 0.94 0.83 0.85 0.16 0.61

MATALPHA2 10 7 0.50 0.83 0.83 0.90 0.08 0.47 0.30 1.00 0.68 0.10 1.00 0.64

TBP 7 4 0.71 0.83 0.81 1.00 0.07 0.57 1.00 0.12 0.60 0.86 0.06 0.39

PHO4 4 1 1.00 0.29 0.78 1.00 0.44 0.78 - - - - - -

PUT3 3 2 0.67 1.00 0.76 1.00 0.17 0.59 1.00 0.05 0.46 0.33 0.50 0.67

GCN4 18 11 0.39 0.78 0.72 0.56 0.06 0.29 0.17 1.00 0.63 0.06 1.00 0.44

HAP1 9 5 0.89 0.12 0.68 0.75 0.06 0.56 0.89 0.06 0.46 1.00 0.20 0.73

RAP1 24 18 0.12 1.00 0.66 0.11 1.00 0.20 0.41 0.07 0.22 0.83 0.14 0.58

TFIIA 1 1 1.00 0.14 0.62 - - - - - - - - -

Averageg 7.94 5.44 0.67 0.78 0.80 0.71 0.48 0.59 0.67 0.56 0.64 0.59 0.52 0.64

Most of tFIRE prediction is better than others. Except the use of AlignACE, BioProspector for GAL4 as well as the use of MEME for HAP1 outperform our structure-based
approach.
aNS: Number of sites collected from TRANSFAC and SCPD.
bNO: Number of ORFs these binding sites taking place.
cSE: Sensitivity [TP/(TP+FN)]. SP: Specificity [TP/(TP+FP)]. AUC: Area Under Receiver operating characteristic Curve.
dAlignACE [48] v4.0 result using parameter as: number of columns = LTFBS.
eBioProspector [49] result as: motif width = LTFBS; top motifs to report = NSites.
fMEME [47] v4.3.0 result as: maximum motif width = LTFBS; maximum sites = NSites; maximum motif number = NSites.
gAverage value over LEU3, GAL4, MCM1, MATALPHA2, TBP, PUT3, GCN4, HAP1, RAP1.
doi:10.1371/journal.pone.0052460.t002

Figure 3. Performance of three de novo methods and tFIRE
using GCN4 as an example. The prediction results of binding are
shown in the ROC plot. The ROC curves were generated by plotting the
true positive rate [TP/(TP+FN)] (y-axis) against the false positive rate [FP/
(TN+FP)] (x-axis). The AUC values for the three methods is shown in
parentheses.
doi:10.1371/journal.pone.0052460.g003
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PWM for PPR1, TFIIA, MCM1_MATALPHA2, or TFIIA_TBP

in JASPAR).

For prediction, a PEM can be converted to a PWM (Pre-PWM)

with the Boltzmann formula [51]:

pi
j~

exp {bEi
j

� �

P
i~ A,C,G,Tf g

exp {bEi
j

� � ð2Þ

where Ei
j is the position energy at position j for base pair i,b = 0.05.

We also define an Even-PWM as where the expected frequency

of A,C,G,T on each position is 0.25 as for the reference.

As shown in Table 4, the result of Pre-PWM is better than

Even-PWM (paired t-test two-tailed p-value equals 0.0005; p-

values were calculated using paired t-test from CPAN Perl module

Statistics::Distributions and Statistics::DependantTTest).

PWM for TF-TF complex
Many transcription factors do not bind alone on the genome but

instead bind as part of complexes, often forming TF-TF dimers.

For example, MCM1 binds in a complex with MATALPHA2 and

TFIIA binds together with TBP. We generated the predicted

PWMs of MCM1 and MATALPHA2 as the MCM1/MATAL-

PHA2 complex (Figure 4). The PWM of MCM1/MATALPHA2

complex is most likely to be a superposition of MCM1 and

MATALPHA2 PWMs. This indicates that both MCM1 and

MATALPHA2 have strong binding infinity to DNA, so that their

Table 3. Prediction accuracy.

Transcription Factora TPb FNb FPb SEb SPb SE+SPb AUCc NTSites
d NSites

e NTORF
f NORF

g

MCM1_MATALPHA2 1 0 0 1.00 1.00 2.00 1.00 1 1 1 1

PPR1 1 0 0 1.00 1.00 2.00 1.00 1 1 1 1

NDT80 1 0 0 1.00 1.00 2.00 1.00 1 1 1 1

LEU3 5 0 0 1.00 1.00 2.00 1.00 5 5 5 5

MATA1 1 0 0 1.00 1.00 2.00 1.00 1 1 1 1

TFIIA_TBP 1 0 1 1.00 0.50 1.50 0.91 0 1 0 1

GAL4 12 3 0 0.80 1.00 1.80 0.90 12 15 7 7

MCM1 25 1 26 0.96 0.49 1.45 0.86 22 26 18 21

MATALPHA2 5 5 1 0.50 0.83 1.33 0.83 6 10 5 7

TBP 5 2 1 0.71 0.83 1.55 0.81 4 7 4 4

PHO4 4 0 10 1.00 0.29 1.29 0.78 1 4 1 1

PUT3 2 1 0 0.67 1.00 1.67 0.76 2 3 2 2

GCN4 7 11 2 0.39 0.78 1.17 0.72 8 18 5 11

HAP1 8 1 56 0.89 0.12 1.01 0.68 3 9 2 5

RAP1 3 21 0 0.12 1.00 1.12 0.66 11 24 8 18

TFIIA 1 0 6 1.00 0.14 1.14 0.63 0 1 0 1

Average 5.13 2.81 6.44 0.81 0.75 1.56 0.85 4.88 7.94 3.81 5.44

Standard Deviation 6.17 5.64 14.81 0.27 0.33 0.37 0.13 5.93 8.48 4.53 6.26

tFIRE can achieve a average AUC at 0.8560.13 and many of the predictions are top ranked TFBS.
aTranscription factor name, ‘_’ denotes complex by two transcription factors.
bTP: true positive. FN: false negative. FP: false positive. SE: Sensitivity [TP/(TP+FN)]. SP: Specificity [TP/(TP+FP)].
cArea Under Receiver operating characteristic Curve.
dNTSites: Number of sites ranked top, the higher the better discrimination ability in ORF.
eNSites: Number of sites collected from TRANSFAC and SCPD.
fNTORF: Number of prediction on how many ORFs achieved top ranked TFBS.
gNORF: Number of ORFs these binding sites taking place.
doi:10.1371/journal.pone.0052460.t003

Table 4. PWM similarity to well-characterized PWM.

Transcription Factor Pre-PWMb Even-PWMc

GAL4 0.15 0.32

GCN4 0.12 0.32

HAP1 0.33 0.40

LEU3 0.22 0.48

MATA10 0.73 0.70

MATALPHA20 0.31 0.64

MCM10 0.34 0.41

NDT80 0.11 0.44

PHO4 0.19 0.54

PUT3 0.40 0.52

RAP1 0.49 0.52

TBP0 0.17 0.43

Average 0.30 0.48

Standard Deviation 0.18 0.12

y-test of predicted PWM to experimental PWM demonstrates prediction
accuracy. The smaller y-test compared to Even-PWM the better.
This table shows the y-test [25] value of each TF’s predicted PWM(Pre-PWM) via
experimental PWM collected from JASPAR(33) while Pre-PWMs are converted
from PEM by Boltzmann formula [51].
Also y-test of Even-PWM with an equal frequency of 0.25 for A,C,G,T at each
position compared to experimental PWM.
doi:10.1371/journal.pone.0052460.t004
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complex’s binding pattern contains both MCM1 and MATAL-

PHA2 binding patterns.

TFIIA, which does not bind DNA directly, shows a very weak

PWM, as expected. The TFIIA/TBP complex leads to a very

different PWM prediction as compared to TBP alone. This is due

to the fact that the DNA sequence used to train the energy

function in the TBP-DNA complex is GTATATAAAACGG,

while the sequence in the TFIIA_TBP-DNA complex is

TGTATGTATAAAAC. This indicates that TFIIA may not

contribute to transcription by binding DNA directly, but may be

involved by altering the TBP structure [52].

Discussion

We propose three new corrections based on volume fraction

corrected, pseudo-count added, ideal-gas reference (vcFIRE) state

for protein/DNA interactions. They are 1) reweighting of

observed atom pairs, 2) new smoothing approaches and 3) a

dipolar approximation. The new proposed methods further extend

the statistical energy function derived with the distance-scaled

FIRE (DFIRE) state that was originally developed for proteins

[38,53] and applied to protein/DNA interactions (DDNA [36],

DDNA2 [39], the energy function obtained by training all non-

homology structures in PDB by vcFIRE). Improvements over

DDNA2 by FIRE-based energy functions are observed in four

different tests: threading and docking decoy discriminations,

recovery of native base pairs, and prediction of binding profiles.

The improvements are not only reproduced by each correction

but also by the combinations of these corrections. These

corrections are useful for developing new knowledge-based energy

functions, and for improving prediction methods based on new

energy functions.

We have shown here that combining knowledge-based energy

functions (e.g. with structural data) and experimental binding site

data into TFBS predictions leads to improved methods to identify

potential TFBSs. Our results also confirm the importance of TFBS

sequence of structure template in recognizing TFs. The Yeast_t-

Figure 4. Predicted PWMs of two TF-TF complexes and their subunits. The PWM of MCM1/MATALPHA2 complex is most likely to be a
superposition of the MCM1 and MATALPHA2 PWMs. This indicates that MCM1 and MATALPHA2 both have strong binding affinity to DNA. Their
complex’s binding pattern contains both MCM1 and MATALPHA2 binding patterns. Conversely, TFIIA, which does not bind DNA directly, shows a
very weak PWM, as expected. The TFIIA/TBP complex leads to a very different PWM prediction as compared to TBP alone. This indicates that TFIIA
may not bind DNA directly, but it may alter the TBP structure [52].
doi:10.1371/journal.pone.0052460.g004
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FIRE_Reference set also shows that the recognition of the lowest

energy base pair is not the most critical component of TFBS

prediction. Training a knowledge-based energy function with a

single TF/DNA complex is conceptually similar to scanning for

TFBSs with a consensus sequence. However, if a 3D structure of

the TF/DNA complex exists, the tFIRE approach can be used

even if there are too few confirmed binding sites to construct a

consensus sequence.

One limitation of tFIRE is the availability of TF/DNA complex

structures, but the results for the Yeast_tFIRE set shows that the

experimentally solved TF/DNA complex structure may not be a

prerequisite to predict TFBSs. This new proposed strategy is

insensitive to the related position between DNA and TF. Along

with a protein/DNA docking approach, this strategy could be

widely applied to not only DNA-binding proteins but also to other

regulatory proteins. Furthermore, homology modeling can be used

to build the protein structure if there is no available structure in

databases. By this approach, we can potentially predict binding

sites for all regulatory proteins, which is a critical step in

constructing of gene expression regulatory networks.

Supporting Information

Table S1 Energy function estimation result. Bold indi-

cates the best of these eight methods. aMethod denotes energy

functions derived with different approaches, as explained in

‘‘Systems and Methods’’ section. ‘R’ denotes the use of reweight of

observed atom pairs. ‘a’ denotes the use of smaller bins with

smoothing. ‘P’ denotes thhe use of dipolar approximation.
bThreading decoys of 51 complexes collected by Kono and Sarai

[1], the ratio how many structures out of 50,000 with random

DNA sequences have higher energy than the native structure. cZ-

Score measures the ability of an energy function to discriminate a

native DNA sequence from randomly generated DNA sequences,

the lower the better. dNear-native docking decoy sets of 45

protein-DNA complexes from Robertson and Varani [2], the ratio

how many structures out of 2000 lowest-RMSD decoys have

higher energy than the native structure. Decoys for each complex

generated from restraints around native complex structures by

FTDock. eZ-Score measures the ability of an energy function to

discriminate a native DNA sequence from its near-native docking

decoys. fThe median value of the lowest rmsd structure in top five

decoys ranked by various energy functions. The best possible

median value is 0.44 Å. gBase-pair recovery rates average on ten-

fold cross validation. Randomly selected 200 complexes are

divided randomly into 10 parts (‘‘folds’’). In ten tests, nine folds are

used for training and the remaining fold is for testing. hAccuracy of

PWM prediction based on y-test values for 19 complexes by

various methods.

(DOC)

Table S2 The rmsd value of the lowest energy complex
structure selected by various energy functions. This tables

using 2000 lowest-RMSD docking decoys as described before,

shows the lowest energy structure’s RMSD to the native structures.
aProtein data bank identification code. bThe degree of overall

DNA deformation. cThe lowest RMSD decoy. dThe median value

of the lowest rmsd structure in top five decoys ranked by various

energy functions. eHow many decoy set successful discriminated

the lowest RMSD structures.

(DOC)

Table S3 PDB list for predict TFBS.

(DOC)

Table S4 RMSD list for Different Structure Templates.

(DOC)

Table S5 Training set for Yeast_Self_Mutant. Nmutated

bases have been mutated from Nsequence in Yeast_Self_Mutant set.

(DOC)

Table S6 Prediction Results.

(DOC)

Table S7 Prediction Result for Top Ranked ORFs. To

suppress the effect of experimental-unknown binding sites and the

potential difference between chromosomes, the top ranked ORF

numbers were shown in here. These number denotes in each set,

for how many ORFs, our lowest energy sequences are overlapping

the experimental binding sites. 1. Kono H, Sarai A (1999)

Structure-based prediction of DNA target sites by regulatory

proteins. Proteins-Structure Function and Genetics 35: 114–131.

2. Robertson TA, Varani G (2007) An all-atom, distance-

dependent scoring function for the prediction of protein-DNA

interactions from structure. Proteins-Structure Function and

Bioinformatics 66: 359–374.
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Text S1 Derivation of Knowledge-based Energy func-
tions.
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