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Abstract

We couple a species range limit hypothesis with the output of an ensemble of general circulation models to project the
poleward range limit of gray snapper. Using laboratory-derived thermal limits and statistical downscaling from IPCC AR4
general circulation models, we project that gray snapper will shift northwards; the magnitude of this shift is dependent on
the magnitude of climate change. We also evaluate the uncertainty in our projection and find that statistical uncertainty
associated with the experimentally-derived thermal limits is the largest contributor (, 65%) to overall quantified
uncertainty. This finding argues for more experimental work aimed at understanding and parameterizing the effects of
climate change and variability on marine species.
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Introduction

Temperature is a dominant factor shaping the distribution of

marine species [1] [2–3]. This overarching effect results from the

influence of temperature on a number of biological processes [4]

[5–6]. Using the terminology of Fry [7], temperature is a lethal

factor, a controlling factor and a directive factor. All animals have

thermal limits above and below which death is rapid. Within these

limits, temperature controls a number of rate processes including

gene expression, enzyme kinetics, metabolism, activity, consump-

tion, and growth. As a directive factor, fishes respond behaviorally,

metabolically, and ecologically to changes in temperature; the best

examples comes from seasonal migrations, which are distributional

responses related to changes in temperature [8]. Fry’s [7] factors

are analogous to the concept of the ecological niche [9], defined as

a multidimensional space within which a species can persist;

environmental and biological conditions define the dimensions

[10]. Temperature is a dominant environmental factor determin-

ing the size and distribution of the niche of many fish species [11].

The relation between temperature, a host of biological

processes, and species distributions leads to the expectation that

species distribution will change in response to changing temper-

atures [12–13]. Seasonal migrations by fishes are common in

temperate ecosystems [14] and variation in the timing of seasonal

migrations has been linked to interannual variability in the

seasonal cycle of temperature [15]. Inter-annual differences in fish

species distributions are also common and in many cases have

been linked to interannual temperature variability [16–17].

Further, an increasing number of studies document directional

shifts in fish distributions and increases in abundance, and link

these biological changes to climate variability and change [18–25].

In addition to observing changes in fish distribution and

abundance in the recent past, studies are developing projections of

changes in fish distribution and abundance under climate change

[26]. Earlier studies were based primarily on atmospheric general

circulation models, an understanding of atmosphere-ocean links,

and documented environmental influences on fish population;

these three pieces were combined conceptually to consider the

effect of climate change on various fisheries [27] [28–29]. More

recent studies used IPCC-class general circulation models,

including coupled atmospheric-ocean dynamics, combined with

biological models to project changes in abundance and distribu-

tion of fishes [30–34]. In all instances, with either conceptual links

or coupled models, climate change is predicted to change the

distribution of marine fishes; the magnitude of distributional

changes depends on the magnitude of climate change.

One approach to projecting changes in species range is the

niche-based model. This approach develops a statistical relation-

ship between current distribution and environmental conditions.

General circulation models, which project future environmental

conditions, are then used to project future species distribution [35–

36]. As a specific example, Cheung et al. [37][30] developed

niche-based models for more than 1700 species of fish and

projected changes in distribution. The model of Cheung et al.

[37][30] also included dispersal and recently has been revised to

include biogeochemical processes [38]. There are other specific

approaches to niche based modeling [34], but the common theme

is to statistically relate current species distribution to current
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environmental conditions and use this statistical relationship in

climate projections.

Here we develop a different type of niche model, one based on a

specific hypothesis that is supported by laboratory experiments

and field observations. Our study species is gray snapper (Lutjanis

griseus), which is a common coastal marine species found along the

southeast coast of the United States. We hypothesize that the

northern range is determined by overwinter mortality of juveniles

in nearshore and estuarine nursery habitats [39]. We empirically

link this hypothesis to the projections of general circulation models

and predict changes in the northern limit of gray snapper along

the east coast of the United States. We argue that the projections

are directly relevant to the numerous other species with estuarine

juvenile stages along the east coast of North America. Further, we

believe that the general approach is applicable globally to coastal

species whose ranges are limited by overwinter mortality. Finally,

we identify the main factors contributing to uncertainty in our

projections and outline future research necessary to reduce this

uncertainty.

Materials and Methods

Background on Species
Gray snapper (Lutjanus griseus) is a reef associated, tropical

species that occurs in the central Western Atlantic, extending from

Florida, through the Gulf of Mexico and along the northern and

central coast of Brazil [40]. Young-of-the-year gray snapper have

been reported as far north as Massachusetts [14], but adults are

rarely reported north of Florida [41]. Gray snapper make diel,

seasonal and ontogenetic movements between habitats [42–44], as

well as onshore-offshore movements related to spawning [43].

However, there is no evidence of large-scale, seasonal north-south

movements that would allow juveniles from north of Cape

Hatteras to move south and join adult populations off of Florida.

Thus, it is likely that juveniles in northern estuarine habitats are

expatriates and perish as water temperatures cool in the fall and

early winter [45].

Here, we use chronic and acute thermal tolerance metrics for

juvenile gray snapper reported by Wuenschel et al. [39]. They

quantified the chronic threshold as the cumulative degree days

below 17uC survived by juveniles in the laboratory under ambient

decreasing fall temperatures. The value of 17uC is the physiolog-

ical threshold for growth under ad libitum ration [46]. They

quantified the acute thermal threshold as the lethal minimum

temperature for juveniles exposed to a constant rate of temper-

ature decline (3uC day21).

Overview of Modeling Approach
Our goal was to project the future northern limit of gray

snapper based on the hypothesis that northern range is limited by

thermal tolerance of juveniles during winter [39]. We also aimed

to quantify uncertainty in our projections using different climate

change scenarios, an ensemble of general circulation models, and

including statistical uncertainty in the empirical relationships used

to link species distribution to temperature. We develop an

empirical link between air temperature and thermal tolerance

metrics and then estimate the latitude where thermal tolerance will

be exceeded in the future under different climate scenarios.

Specifically, six steps were taken to develop the projections of

species northern range and to quantify uncertainty and these are

explained in detail below. The notation used for variables and

equations through these six steps are summarized in Table 1.

Step 1 General Circulation Models and Mean Bias
Correction

The Fourth Assessment Report (AR4) of the Intergovernmental

Panel on Climate Change (IPCC) [46] included simulations from

23 different GCMs run with standardized CO2 emission scenarios.

Here we use 14 of these models (Table 2) and three emission

scenarios: the commitment scenario, in which atmospheric CO2 is

fixed at 350 ppm through the 21st century; the B1 scenario, in

which CO2 increases to 550 ppm by the end of the 21st century;

and the A1B scenario, in which CO2 increases to 720 ppm by the

end of the 21st century. The 14 GCMs were chosen because the

results are publically available for the three climate scenarios

(commit, B1, and A1B) and for a retrospective analysis of the 20th

century (seen Table 2). Also, the models and scenarios included

simulations through 2100. Some of the models have more than

one run for one or more of the climate scenarios; only one run was

included for each model and scenario to ensure that the models

were treated similarly.

A given climate model may have systematic errors that result in

an overall bias [26]. To correct for this bias, we compared air

temperatures from the models’ 20th century runs to observed air

temperatures during the overlapping time period. For air

temperature observations, we used the National Centers for

Environmental Prediction (NCEP) and the National Center for

Atmospheric Research (NCAR) reanalysis (http://www.esrl.noaa.

gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.html)

[47]. This product combines observations and an atmospheric

model to produce an even grid of atmospheric variables, in our

case monthly mean surface air temperature with a spatial

resolution of 2.5u latitude by 2.5u longitude.

Our goal was to forecast thermal tolerance criteria at 12

estuaries along the east coast of the United States (see below). For

each estuary (j), the closest NCEP/NCAR grid cells were identified

and these were then matched to the closest grid cell in each climate

model (i). Minimum mean monthly winter air temperatures

(December through March) were calculated for each year in the

20th century model runs and in the NCEP reanalysis. Means from

overlapping years (1948–2000, 1948–2001, or 1948–2005 de-

pending on the climate model) were then calculated for the yearly

mean minimum monthly winter temperature for the 20th century

model runs ( �TTAM20th ) and for the NCEP/NCAR reanalysis (�TTAR)

minimum over the overlapping years. The difference between

these two means was defined as the mean bias correction (Dij) for

the specific climate model (i) and estuary (j).

Dij~�TT
AM20thij

{�TTARij ð1Þ

This value (Dij ) was used to adjust the air temperatures from the

climate models (TAMij ) to correct for systematic model bias and to

estimate the projected air temperature (TAPij ) in each model (i) for

each estuary (j).

TAPij~TAMij{Dij ð2Þ

Understanding the cause of systematic model bias is an active

area of research [48] [49–26]. A key assumption when applying a

simple bias correction is that the bias is independent of the

projected change [50]. We evaluated this assumption by calculat-

ing the correlation between bias and projected change for each

model (i), climate scenario (k), and estuary (j). There were no

significant correlations between bias and air temperature projec-
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tions. There were negative trends between bias and latitude, but

these trends were significant for only one of the fourteen climate

models. These analyses indicate that the bias corrections are

appropriate as a first order approach to remove systemic model

bias from the long-term projections.

Step 2 Relationship between Winter Water and Air
Temperatures

The next step was to develop a statistical model to predict estuarine

thermal tolerance thresholds from minimum monthly mean winter

air temperature. The thermal tolerance metrics were cumulative

degree days below 17uC and minimum daily winter temperature;

theseare thethermal tolerancecriteriadevelopedbyWuenschelet al.

[39]. The winter air temperature metric was minimum mean

monthly winter temperature. This metric links estuarine-specific

water temperature to large-scale temperature forcingover the scaleof

the eastern United States [51–54] [39] and matches the mechanistic

hypothesis of gray snapper range limit [39] with the output of climate

models. We used air temperatures from climate models because there

is a close association between air temperature and water temperature

in shallow estuarine systems [51] [53–55]. Further, the scale of the

AR4-classclimatemodels is typically1–2u latitude intheoceanand2–

3u latitude in the atmosphere [26], which is too course to resolve most

of the estuarine systemsalong the east coastof theU.S.Todevelop the

statistical relationship between thermal tolerance metrics and air

temperatures, we require daily records of estuarine water tempera-

ture (to estimate the thermal tolerance metrics) and annual records of

minimum monthly mean winter air temperature.

Daily estuarine water temperatures were obtained from 12 sites

along the east coast of the United States from Florida to New

Jersey (Figure 1). There are numerous records of coastal and

estuarine water temperatures along the east coast of the United

Table 1. Summary of the notation used for variables and equations.

Symbol Variable Description

i Climate model 14 climate models (see Table 2)

e Estuary 12 estuaries (see Figure 1)

y Year

k Climate scenario 3 scenarios: commitment, B1, and A1B scenarios

t Time periods 3 time periods: 1980–2000, 2040–2060, and 2080–2100

�TTAM20th ij Mean minimum monthly winter air temperature for estuary j
and climate model i estimate from the 20th century model runs

�TTARij Mean minimum monthly winter air temperature for estuary j
and climate model j from the NCEP/NCAR reanalysis

Dij Mean bias correction for each climate model and estuary

TAMij Modeled mean minimum monthly winter air temperature for estuary j
estimated by climate model i in the future

TAPij Projected (modeled – bias correction) minimum monthly winter
air temperature for estuary j estimated by climate model i in the future

TAPijk Projected minimum monthly mean air temperature from model i and for
estuary j and climate scenario k

TAR Minimum mean monthly winter air temperature from the NCEP/NCAR
reanalysis combining data across estuaries and years

NCEP/NCAR grid cells matched to estuary locations. Only used
continental grid cells in the comparison of NCEP/NCAR and
estuarine temperatures

MTT Thermal tolerance metrics for gray snapper including degree days ,17uC
and minimum daily winter temperature combining data across estuaries
and years

data from daily temperature measurements in 12 estuaries over
approximately 13 years [39]

MTTPijk Projected thermal tolerance metrics for estuary j, model i, and climate
scenario k

�MMTTPjkt Ensemble average projection of thermal tolerance metrics for
estuary j, climate scenario k and time period t

Ensemble average developed by averaging the projections of
all 14 climate models for the given estuary, climate scenario,
and time period

�MMTTPkt Ensemble average projection of thermal tolerance metrics for climate
scenario k and time period t; data from each estuary is used to develop a
predictive relationship for latitude (Lat)

M̂MCDDv17 Estimated thermal tolerance for gray snapper relative to the
cumulative degree days ,17uC metric

[39]

Latkt Latitude of a given thermal tolerance value for climate scenario k
and time period t

LatPkt Projected latitude of northern range limit for climate scenario k
and time period t

e3 Unexplained error associated with the statistical relationship
between MTT and TAR (eq. 3)

e5 Unexplained error associated with the statistical relationship

between and �MMTTPkt and Latkt (eq. 5)

doi:10.1371/journal.pone.0052294.t001
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States [56,57]. We choose locations based on several criteria:

geographic coverage, estuarine location (as opposed to coastal),

ongoing data collection, and more than 10 years of data collection.

The chosen locations are operated by several organizations and

overall have an average of 13 years of daily water temperature

observations. Two metrics were calculated from the daily

temperature records for each estuary: cumulative degree days

below 17uC and minimum daily winter temperature.

Minimum monthly mean winter air temperatures were derived

from the NCEP/NCAR reanalysis (see above). For each estuary,

the closest continental NCEP/NCAR grid cell was identified.

Winter air temperatures over the ocean were warmer than over

land and thus we only used grid cells over land to have a consistent

comparison between air and estuarine temperatures. In addition,

some of the estuaries were proximate to one NCEP/NCAR grid

cell, whereas other estuaries were in between grid cells. In this

latter case, air temperature values from the two proximate grid

cells were averaged for comparison to the estuarine thermal

tolerance metrics. After matching the NCEP grid to the location of

the estuaries, minimum mean monthly winter temperature

(December through March) was extracted from the NCEP/

NCAR reanalysis for each of the 12 estuaries.

Annual thermal tolerance metrics (MTT ) were compared to

annual minimum mean monthly winter air temperatures from the

NCEP/NCAR reanalysis (TAR) combining data across all estuaries

(j) and years with data (y) with the goal of developing a predictive

equation that could be used to project estuarine thermal tolerance

metrics from air temperatures and ultimately from climate models.

Numerous empirical formulations were evaluated including least

squares regression and generalized linear models with Gaussian

and Gamma distributions. We determined that the best model was

a second order polynomial least squares regression with a square-

root transformation of the thermal tolerance metrics:

(MTT )
1=2~a3zb3TARzc3TAR

2ze3 ð3Þ

where a3, b3, and c3 are parameters estimated with linear least

squares regression and e3 is the unexplained error associated with

the regression (eq. 3). The square root transformation addresses

the issue that the cumulative degree thermal tolerance metric

could not go below zero and the second order polynomial

addresses additional nonlinear aspects of the relationship between

air temperatures and estuarine water temperatures across estua-

rine locations.

Step 3 Thermal Tolerance Metric Projections
The predictive equation developed above (eq. 3) was then used

in combination with the mean bias correction (eq. 2) to project the

two thermal tolerance metrics (MTTP) from the projected

minimum mean monthly air temperature (TAP) for each climate

model (i), estuary (j), and climate scenario (k):

(MTTPijk)
1=2~a3zb3TAPijkzc3TAPijk

2ze3 ð4Þ

Thermal tolerance metrics were forecast from 2010 to 2100 for

12 estuaries along the U.S. east coast.

Step 4 Relationship between Projected Winter Water
Temperature and Latitude

Once estuarine thermal tolerance metrics were projected with

the climate models, a statistical relationship was derived between

the projected metrics and latitude (Lat). First, the projected

thermal tolerance metrics (MTTPijk) were averaged over three time

periods (t): 1980–2000, 2040–2060, and 2080–2100. This averag-

ing is necessary because climate models do not produce annual

predictions. Due to climate variability, a given year in the model is

not expected to match that in nature. Averaging over 20 years

reduces the climate variability signal and allows the climate change

signal to be examined [26]. The 1980–2000 period was chosen

because these years were included in all the 20th century model

Table 2. List of general circulation models (GCMs) used in this study and their associated modeling centers.

Modeling Center GCM

Bjerknes Centre for Climate Research, Norway BCM2.0

Canadian Centre for Climate Modeling and Analysis, Canada CGCM3
(T47 resolution)

Centre National de Recherches Meteorologiques, France CM3

Australia’s Commonwealth Scientific and Industrial Research Organization, Australia Mk3.0

Meteorological Institute, University of Bonn, Germany
Meteorological Research Institute of KMA, Korea
Model and Data Group at MPI-M, Germany

ECHO-G

Institute of Atmospheric Physics, China FGOALS-g1.0

Geophysical Fluid Dynamics Laboratory, USA CM2.1

Goddard Institute for Space Studies, USA E-R

Institute for Numerical Mathematics, Russia CM3.0

Institut Pierre Simon Laplace, France CM4

National Institute for Environmental Studies, Japan MIROC3.2 medres

Meteorological Research Institute, Japan CGCM2.3.2

National Centre for Atmospheric Research, USA CCSM3

UK Met. Office, United Kingdom HadCM3

Three CO2 emission scenarios from 14 GCMs were used. Data were obtained from the Model and Data Group (M&D) at the Max-Planck-Institute for Meteorology (http://
www.mad.zmaw.de/IPCC_DDC/html/SRES_AR4/index.html).
doi:10.1371/journal.pone.0052294.t002
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runs. Second, for each estuary (j), climate scenario (k), and time

period (t), the projected thermal tolerance metrics were averaged

over the 14 climate models (i), which resulted in ensemble average

projected thermal tolerance metrics ( �MMTTPjkt) for each estuary,

scenario, and time period.

We then developed the statistical relationship between latitude

(Lat) and the ensemble averaged thermal tolerance metrics

( �MMTTPkt) using the data from the different estuaries. Again,

numerous empirical formulations were evaluated including least

squares regression and generalized linear models with Gaussian

and Gamma distributions. We determined that the best model was

a first order polynomial least squares regression with a square-root

transformation:

Latkt~a5zb5( �MMTTPkt

1=2)ze5 ð5Þ

where a5 and b5 are parameters estimated with linear least squares

regression and e5 is the unexplained error associated with the

regression (eq. 5).

The statistical models represented by equation 5 are general-

izations of the projected changes in the latitudinal gradient of

thermal tolerances. Changes in latitude with climate change can

then be calculated for any specific thermal tolerance value for

either metric.

Step 5 Projections of Northern Range Limits
Cumulative degree days below 17uC (CDD ,17) was the

thermal criteria most closely linked to northern range limit in gray

snapper [39] and thus this metric was used to project changes in

range of gray snapper. The specific thermal tolerance of gray

snapper (M̂MCDDv17 = 210.76122 [95% confidence interval] days

below 17uC) was substituted into regression equation (5) and used

Figure 1. Map showing estuarine locations from which observed temperature records were used and for which projections were
made for winter estuarine water temperatures. Color-coding for sites is based on latitude (red more southern, blue more northern). Full list of
sites is provided in [39] http://dx.doi.org/10.1016/j.jembe.2012.08.012.
doi:10.1371/journal.pone.0052294.g001
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to estimate latitude at the thermal criteria for the three climate

scenarios (commit, B1, and A1B) and the three time periods

(1980–2000, 2040–2060, and 2080–2100).

LatPkt~a5zb5(M̂MCDDv17)
1=2 ð6Þ

Rates of change were then calculated (km yr21) from the

current period to compare with other studies.

Step 6 Assessing Uncertainty
Planque et al. [58] reviewed the incorporation of uncertainty

into projections of species shifts as a response to climate change.

They identified seven types of uncertainty: observational process,

conceptual model formulation, numerical model formulation,

parameter estimates, model evaluation, spatial and temporal

scales, and adaptability of living systems. Within this construct, we

focus our analysis of uncertainly on the climate model formula-

tions and parameter estimate uncertainty. We treat the other

sources of uncertainty in the discussion. Overall, we assess which

aspects of our approach created the most uncertainty as a way to

guide future research and to develop more precise projections.

To consider the effect of climate model formulation, emission

scenario, statistical downscaling, and parameter estimate uncer-

tainty, we performed the above 5 steps for each climate model,

scenario, and time period recalculating equations 3, 5, and 6 and

incorporating the error terms e3 and e 5 and the uncertainty in the

thermal tolerance estimates (M̂MCDDv17). For each model (n = 14),

scenario (n = 3), and time period (n = 3), 100 iterations of

equations 3, 5, and 6 were performed adding the error terms

from a normal probability distribution with a m= 0 and s= (model

mean squared error)K (for e3 and e5) or s= thermal estimate

standard error (for error on M̂MCDDv17). This resulted in 12,600

estimates of the latitude of northern range. These results were

analyzed using a general linear model with model, scenario, and

time period as categorical variables and the error values as

continuous variables. The goal was to determine which factor was

responsible for the greatest amount of variability (e.g., uncertainty)

in the estimate of northern range. The sums of squares were used

to assign a proportion of variance to each factor and these

proportions were ranked.

Results

Relationship between Winter Water and Air Temperature
Over the scale of the east coast of the United States, thermal

tolerance metrics could be predicted from air temperatures

(Figure 2). Most of the variability in cumulative degree days

,17uC could be predicted by minimum mean monthly air

temperature (r2 = 0.92; Figure 2A). Similarly, most of the

variability in minimum daily winter temperature could be

predicted by minimum mean monthly air temperature (r2 = 0.83;

Figure 2B). The resulting predictive equations were then used to

estimate thermal tolerance metrics from monthly winter air

temperatures derived from the climate models (eq. 4).

Winter Water Temperature Projections
Climate model projections indicated increasing minimum mean

monthly winter air temperatures over the course of the 21st

century (Figure 3, column 1). The magnitude of warming

increased with latitude and depended on the climate scenario,

with greater atmospheric CO2 resulting in greater warming.

Cumulative degree days ,17uC were projected to decrease

through the 21st century in all estuaries (Figure 3, column 2). The

magnitude of decrease increased with latitude and depended on

climate scenario, with a greater decrease occurring at higher

atmospheric CO2 concentrations.

Minimum estuarine daily temperatures were projected to

increase through the 21st century in all estuaries (Figure 3, column

3). The magnitude of change decreased with increasing latitude

owing to the non-linear relationship with air temperature (see

Figure 2). Further, the magnitude of change increased with

increasing atmospheric CO2.

Relationship between Projected Winter Water
Temperature and Latitude

Not surprisingly, latitude was well estimated using the two

winter water temperature metrics: cumulative degree days ,17uC
and minimum daily winter temperatures (Figure 4 and 5). The

linear models using the square root of thermal tolerance metrics as

independent variables (eq. 5) explained on average 97 and 98%

across the climate scenarios (commit, B1, and A1B) and time

periods (1980–2000, 2040–2060, and 2080–2100). The latitude of

a given value of cumulative degree days ,17uC increased as the

amount of CO2 in the atmosphere increased (Figure 4A) and

increased into the future (Figure 5A). The same pattern was

observed for daily minimum winter temperature. The relation

between thermal temperature metrics and latitude may not be

continuous; there may be breaks associated with biogeographic

breaks (e.g., Cape Canaveral and Cape Hatteras). However, more

complex models did not statistically improve the fit and thus, the

relatively simple empirical relationship (eq. 5) was used here.

Projections of Northern Range Limits
Gray snapper range was projected to move northward through

time and with increased CO2 emissions (Figure 6). The greatest

projected northern range was for the period 2080–2100 and the

A1B scenario. Under the commit scenario, there is an initial

northward movement (0.8 km yr21), but then this movement

ceases. Estimated rate of northward shifts were 1.0–1.3 km yr21

under the B1 scenario and 1.7–1.8 km yr21 under the A1B

scenario.

Assessing Uncertainty
Most of the variance in the estimate of northern latitude resulted

from uncertainty in the thermal tolerance estimate (M̂MCDDv17)

(Table 3; i.e., the variance in CDD ,17uC thermal tolerance

metric). Uncertainty resulting from the relationship between

thermal tolerance and latitude (ee5) also contributed a large

amount of variance. A relatively small amount of uncertainty was

attributed to the climate models themselves; under scenarios B1

and A1B, all individual models projected a poleward range

extension (Figure 7). If each scenario and time period is analyzed

separately, the average variance attributable to climate models is

,0.1%. Thus, a majority of uncertainly is related to the biological

parameterization of thermal tolerance (M̂MCDDv17) and the

estimate of the spatial distribution of the thermal tolerance metrics

(eq. 5). There is relatively little uncertainty related to differences

among the 14 climate models. Further, there is relatively little

uncertainty associated with the method of statistical downscaling

(eq. 3).

Gray Snapper Distribution and Climate Change
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Discussion

Projected Poleward Movement
The modeling conducted here projects that adult gray snapper

distribution will move northwards over this century. The rate of

movement is dependent on CO2 emissions, with greater north-

ward shifts projected with increasing CO2 emissions. Under the

ensemble average and A1B emission scenario, gray snapper are

estimated to be distributed half way up the coast of Georgia by

2100 (31.2u N); the most extreme climate model projections

estimates that gray snapper will be found up to the Georgia-South

Carolina border by the end of the century (31.9u N) (Figure 7).

The rates of poleward movement estimated in our study are

broadly consistent with observed and projected changes from

other studies. Nye et al. [22] estimated an annual change of

1.5 km yr21 in the center of biomass of fishes on the northeast

U.S. continental shelf. These rates of change are lower than the

19 km yr21 observed for marine species in general [59] and lower

than the 4.5–5.9 km yr21 projected for marine fishes globally from

2000–2050 [30]. These differences may result from many factors.

1) Our estimates are species specific whereas the estimates cited

above are global averages over more than a 1000 fish species and

more than 50 marine taxa respectively [30][59]. 2) Our estimates

are regionally specific (east coast of the United States) whereas the

estimates cited above are again global in nature [37][59]. Regional

differences in the effect of climate change on marine fishes have

been found [37]. Our results also demonstrate regional differences;

the decrease in cumulative degree days ,17uC is greater further

towards the pole (Figure 4 and 5) suggesting greater range

extensions for species that are more tolerant of colder winters. 3)

The link between air temperature and estuarine temperature may

mediate the effect of climate change on coastal fishes. Similar

projections for land animals indicate a 0.6 km y21 rate of change

[13]. Thus, changes in the ocean may be greater than changes

over land [30]; changes in estuarine and coastal systems may be

intermediate between the land and ocean. There are other

possible explanations, some of which are discussed in more detail

below. The overarching conclusion of these studies and other

observations are consistent across species and systems; marine

species are shifting poleward and will continue to shift poleward in

the future. The extent of the poleward shift is dependent in large

part on the future of CO2 emissions.

Our results suggest a differential rate of winter estuarine

warming over the U.S. east coast. Many of the climate models

used in our ensemble project increased warming with increased

latitude. This is consistent with historic ocean observations, with a

greater rate of warming in the northeast U.S. shelf compared to

the southeast U.S. shelf [56]. This result is also consistent with the

idea of differential warming between the northeast and southeast

United States [60]. These results suggest that for species at the

northern edge of their range, the more cold-tolerant the species is,

the more habitat that will open along the east coast of the U.S.

This ‘opening of thermal habitat,’ however, is simply dependent

on degree days and does not consider other aspects of habitat. The

rate of change in cumulative degree days ,17uC is higher at

higher latitudes whereas the rate of change of minimum daily

temperature is higher at lower latitudes (Figure 8). The implication

is at a given latitude, the importance of chronic versus acute

thermal tolerances could switch at some point in the future. Thus,

there is the potential for a switch in the dominant factor affecting

the northern range in gray snapper; currently cumulative degree

days appear to be limiting, but at some point in the future

minimum daily temperature may become more important. These

results emphasize the need to better understand both the

physiology and ecology of thermal tolerance as well as the physics

of temperature extremes [61]. Higher latitude areas are projected

to warm faster, particularly in the northern hemisphere [62], but

whether our results are applicable to other temperate marine

systems remains unclear.

One novel aspect of this study is the formal assessment of

uncertainty in the climate projection of northern range of gray

snapper. The full range of factors contributing to uncertainty

identified by Planque et al. [58] was not examined, but a number

of important factors were considered. Limitations of the observa-

tion methodology (observational uncertainty) were not included. A

number of observations were used to develop the projections

presented here and uncertainty in these observations was not

included in the projection model: for example, estuarine temper-

atures, diver-based adult censuses, and cold-tolerance experiments

with juveniles. We are making the implicit assumption that

Figure 2. Relations between winter water temperature and air
temperature in 12 estuaries along the east coast of the United
States. Points represent winter temperatures in a given year in a given
estuary. Estuarine water temperatures are expressed as (A) cumulative
degree days ,17uC and (B) minimum daily winter temperature (Dec-
Mar). Air temperature is expressed as minimum monthly mean winter
temperature. Gray line represents the least squares regression fit based
on eq. 3. Color of the symbol represents the latitude of the source
estuary for the water temperature data (see Figure 1).
doi:10.1371/journal.pone.0052294.g002
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measurement error makes only a small contribution to the overall

uncertainty in our projections.

Uncertainty in the conceptual model also was not examined,

but a formal hypothesis was presented that can be tested in the

future. We hypothesize that northern range of gray snapper is

determined by overwinter survival of young-of-the-year related to

thermal tolerance. We did not identify a specific mechanism of

overwinter mortality (e.g., predation vs. starvation vs. physiology).

Our conceptual model is more specific than general niche-based

models, in that we identified a specific ontogenetic stage and

season in which distribution is determined and we developed

specific parameters measuring the physiological boundary of

wintertime niche for juvenile gray snapper. It would be interesting

in the future to compare projections among a number of niche-

based models including the more general models [30] and our

more specific model to begin to understand conceptual model

uncertainty. It would also be useful be develop this approach using

bioenergetic models that would capture the physiological tradeoffs

of metabolism, growth, and activity [63].

Uncertainty in the numerical model formulation was evaluated

through the use of 14 general circulation models (GCM’s). Each

general circulation model simulates the ocean-atmosphere-land

system. Overall these models are similar, but differ in numerous

details and this ensemble-based approach is becoming the norm in

climate projections of living marine resources [26]. We used a bias

correction, which is a simple approach. We did not evaluate

uncertainty in the model specific bias term but our use of an

ensemble of models includes the uncertainty in the bias correction

between models. Additionally, other downscaling approaches

could be used; we did not evaluate the uncertainty introduced

by our choice of using a simple bias correction relative to other

techniques. Future studies could examine the magnitude of

uncertainty related to these issues. In our evaluation, very little

of the overall uncertainty was attributed to the specific GCM and

all GCM’s projected an increase in the poleward extent of gray

Figure 3. Projections of winter temperature metrics at four estuaries along the east coast of the United States (metrics: minimum
mean monthly winter air temperature, cumulative degree days ,176C, and minimum daily estuarine water temperature). Gray line
represents observations, orange line represents projections under the commit scenario (350 ppm CO2 by 2100), blue line represents projections
under the B1 scenario (550 ppm CO2 by 2100), and the green line represents projections under the A1B scenario (720 ppm CO2 by 2100). A 40 year
LOWESS filter (tension = 0.25) of the mean annual projections from 14 general circulation models is displayed (see Table 1). Shading represents
standard error around mean. Observed and projected thermal tolerance metrics were blended over the period 2001 to 2010; the blended value in
2005 is 0.5 * observed +0.5 * projected.
doi:10.1371/journal.pone.0052294.g003
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snapper (Figure 7). Thus, we conclude that numerical model

formulation contributes only a minimal amount of uncertainty in

our specific case. This result is qualitatively similar to Hare et al.

[32] in which 14 GCM’s all projected a similar response of

Atlantic croaker to climate change.

The dominant source of uncertainty that we were able to

evaluate was parameter uncertainty. We included three CO2

emission scenarios, each of which contributes a suite of parameters

to the GCM’s. We also included uncertainty in our mapping of

temperature on latitude and in the thermal limit of gray snapper.

Parameter uncertainty is relatively straightforward to include in

climate projections since it is often obtained from the statistical

error of a parameter estimate [58]. Parameter uncertainty in the

estimate of thermal tolerance was the dominant source of

uncertainty (Table 3), indicating the need to improve parameter

estimates for inclusion in coupled biology-climate models.

Uncertainty in the performance of projection models can result

in the uncertain identification of the ‘‘best’’ predictive model [58].

Validation of independent datasets is likely the best form of model

evaluation. In the case of gray snapper, our ability to evaluate

model performance is limited. The model correctly projects the

current northern limit of gray snapper but there is no historical

time series of species distribution with which to compare. Further,

there is little trend in temperatures along the southeast U.S. [60],

so past changes in distribution along the southeast U.S. shelf might

be minimal. In the Gulf of Mexico, gray snapper have spread

northward as overwintering conditions have become more

favorable [23], thus supporting our choice of a model based on

overwinter mortality. These comparisons are qualitative and the

best evaluation of our model will be revisiting the projections in

the future and comparing with observations.

The scale of data, models, and projections also can generate

uncertainty [58]. As an example, scaling mismatch between the

grain size of environmental variables and distributional data (i.e.,

species data) can amplify the uncertainties inherent in each of the

datasets. We did not include scale uncertainty in our projections,

but our parameterization of mapping thermal conditions to

latitude was a major source of uncertainty (Table 3). Higher

spatial resolution of the observation and models could reduce this

uncertainty. We used a simple averaging approach to match

temperatures from the 2–3u climate model grid to each specific

estuary. Given the large-scale coherence in temperature along the

U.S. east coast [54–56], this simple routine is likely adequate.

However, there is no doubt that higher resolution climate models

would reduce the spatial uncertainty of our model. In addition,

increasing the spatial resolution of temperature observations could

improve the model. This increase in spatial resolution could be

achieved by both observations for more estuarine areas along the

Figure 4. Estimated latitude of thermal tolerance metrics in 2080–2100 under three climate change emission scenarios. The gray line
and shading represent the thermal tolerance metric and 95% confidence intervals for gray snapper juveniles as determined from an experimental
study [39].
doi:10.1371/journal.pone.0052294.g004
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coast and from mapping temperatures within each specific estuary.

There are likely areas of thermal refuge that vary from estuary to

estuary [64] [65–66]. Quantifying the amount of thermal habitat

in each estuary could be used to derive an estimate of total area of

overwintering habitat available, which could be relevant to range

and population abundance.

The final source of uncertainty identified by Planque et al. [58]

is the adaptability of living systems. We assume the thermal

tolerance of gray snapper will remain constant into the future, yet

adaptation may generate unexpected resilience to climate change

[67]. The selective pressures on marine fish can be mitigated by

the ability to move [68–69], potentially limiting the selective

pressures for adaptation. For gray snapper specifically, larvae are

dispersed along the entire U.S. east coast. Genetic differences exist

between gray snapper from the Gulf of Mexico and the eastern

coast of Florida [70]; this pattern is seen in many other fishes as

well [71–72]. In gray snapper from the Gulf of Mexico, there is

evidence for isolation-by-distance [70], so despite the potential for

broad larval dispersal, there is the possibility for local genetic

differences to arise. Such genetic separation has yet to be evaluated

on the southeast coast of the United States. Further, the broader

issue of adaptation in thermal tolerance of marine fish needs to be

investigated in detail [73].

Figure 5. Estimated latitude of thermal tolerance metrics under the A1B emission scenario at three time periods. The gray line and
shading represent the thermal tolerance metric and 95% confidence intervals for gray snapper juveniles as determined from an experimental study
[39].
doi:10.1371/journal.pone.0052294.g005

Figure 6. Estimated northern range limit of gray snapper
during three time periods and under three emission scenarios.
The heavy and light gray lines represent the estimate of current
northern range limit and standard error as determined from field
observations [39].
doi:10.1371/journal.pone.0052294.g006
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Our analyses allowed assessment of the relative magnitude of

uncertainty generated by different aspects of the forecasting

approach. These results suggest that most of the uncertainty can

be assigned to the parameter uncertainty related to the thermal

tolerance threshold. This emphasizes the need for experimental

studies to support the development of ecological climate forecasts.

This need has been pointed out by others in much broader context

[74] [75–76], but it remains important to emphasize that

experimental studies are critical to developing and improving

the predictions of the effect of climate change on living marine

resources.

Conclusions
Our results indicate that gray snapper along the southeast coast

of the United States will spread northward in the coming decades.

Larvae are already dispersed well north of the adult range and the

northward spread of adults will occur as a result of warming

during the winter. This projection is based on the hypothesis that

northern range of gray snapper is determined by distribution of

overwinter mortality of young-of-the-year [39]. This hypothesis

and the resulting projection do not include ecological interactions

such as predation and structural habitat requirements. Inclusion of

Figure 7. Estimated northern range limit of gray snapper
during two time periods and under three emission scenarios.
Results for each of the 14 GCMs are provided to present the range of
projections that compose the ensemble. The heavy and light gray lines
represent the estimate of current northern range limit and standard
error as determined from field observations [39].
doi:10.1371/journal.pone.0052294.g007

Table 3. Percent variance in estimate of gray snapper
northern range attributable to different factors.

Parameter Percent Variance

Thermal Tolerance Estimate 65.3

Mapping to Latitude 20.8

Unexplained Error 6.0

Time Period 5.6

Scenario 1.8

Model 0.5

Statistical Downscaling 0.0

Value calculated by dividing sums of squares from a general linear model by the
total error.
doi:10.1371/journal.pone.0052294.t003

Figure 8. Change in projected cumulative degree days ,176C (dark line) and change in minimum daily temperature (gray line) by
latitude under the A1B scenario comparing 1980–2000 and 2080–2100.
doi:10.1371/journal.pone.0052294.g008
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additional factors in a range model will serve to restrict projected

range. By analogy the realized niche (determined by ecological

interactions) is a subset of the fundamental niche (determined by

environmental tolerances) and the forecasts here represent a

maximum range extension, not limited by other environmental or

ecological processes. These other processes will also be changed by

climate, therefore additional complexity incorporating ecological

interactions will be needed to develop more complete models of

species distributions. In addition, it is important to more fully

capture uncertainty in projections, which will serve to communi-

cate the certainty in a projection (e.g., gray snapper will spread

northward) and also can be used to identify key areas of research

(e.g., improved estimates of thermal tolerance). The major source

of uncertainty identified here is the parameter estimate of thermal

tolerance, not the climate model, climate scenario, or statistical

downscaling approach. This identifies the biological parameteri-

zation of coupled climate-biology models as the highest priority in

future research to understand the effect of climate change on the

distribution and abundance of marine species.
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