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Abstract

The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In
this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and
migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly
spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in
integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total
internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small
punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-
substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity
which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These
chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that
is observed.
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Introduction

The study of cell migration is essential for understanding a

variety of processes including wound repair, immune response and

tissue homeostasis; importantly, aberrant cell migration can result

in various pathologies [1,2,3]. However, the relationship between

cytoskeletal dynamics, including actin network growth, contractil-

ity, and adhesion, to cell shape and migration remains incom-

pletely understood.

Abl family tyrosine kinases are ubiquitous non-receptor tyrosine

kinases (NRTKs) involved in signal transduction [4,5,6]. They can

interact with other cellular components through multiple func-

tional domains for filamentous and globular actin binding, as well

as through binding phosphorylated tyrosines (SH2), polyproline

rich regions (SH3), DNA (Abl), and microtubules (Abl Related

Gene (Arg)) [7,8]. Abl family tyrosine kinases have also been found

to regulate cell migration [8,9]. In some cases, Abl family kinases

have been reported to promote actin polymerization and

migration [10] as well as filopodia formation during cell spreading

[11,12]. By contrast, in other studies Abl was found to restrain

lamellipodia extension [13,14] or inhibit initial cell attachment to

the substrate [15]. Abl family kinases have been suggested to

regulate cell adhesion size and stress fiber formation [16]; Li and

Pendergast recently reported that the Abl family member Arg,

could disrupt CrkII-C3G complex formation to reduce b1-integrin

related adhesion formation [17]. Thus, a complete understanding

of how Abl family kinases regulate cell migration is lacking [8,9].

In this study, we report that Gleevec (also called Imatinib/

STI571), an Abl family kinase inhibitor that is used as a chemo-

therapeutic agent for leukemia, produces a profound change in the

shape and migration of the rat Nara bladder tumor (NBT-II) cells

plated on collagen-coated substrates. Within 20 min of Gleevec

treatment the majority of NBT-II cells develop a new D-shaped

morphology and start migrating more rapidly and with greater

persistence. The new morphology is characterized by stronger cell-

substrate adhesion and an increase in the size and number of
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discrete adhesions which at the leading margin turnover more

rapidly. RhoA activity in Gleevec-treated cells was increased

which, via myosin activation, led to an increase in the magnitude

of total traction forces applied to the substrate. Upon Gleevec

treatment, these chemical and physical alterations combined to

produce the dramatic change in morphology and migration.

Results

Treatment with Gleevec induces a D-shaped morphology
in NBTII cells

The morphology of a migrating cell is related to cell migration

modes. NBTII is a rat-derived carcinoma cell line [18]. A normal

cultured NBTII cell shows typical epithelial morphology; however,

when NBTII cells were cultured on type I collagen-coated plastic

cell culture dishes for 4–12 h, they acquired a polarized shape and

migrate individually, exhibiting an epithelial to mesenchymal

transition (EMT) [19,20,21,22]). During our experiments, we

observed that NBTII cells on collagen had medium-sized lamellae

(Marked with ‘‘LM’’) and lamellipodia (Marked with ‘‘LP’’), some

filopodia (Marked with ‘‘FP’’) dynamically formed at the leading

edge of the cell, and multiple retraction fibers (Marked with ‘‘RF’’)

formed at the trailing edge of the cell. (Figure 1A, Movie S1).

Figure 1B shows NBTII cells cultured on type I collagen for 8 h

and then treated with 20 mM Gleevec, an inhibitor of the Abl

family of NRTK (Novartis, Stein, Switzerland) for 30 minutes

[23,24]). Within about 10 minutes of Gleevec addition, a profound

change in cell morphology can be observed (Movie S2). These

kinetics can be seen by the change in area of Gleevec-treated cells

occurring after about 5 minutes (Figure S1). Cells began to form

lamellipodial protrusions, which usually merged into a single,

intact lamella facing the migration direction (Movie S3). This cell

morphology may persist for over 8 hours. After Gleevec treatment,

cells had reduced numbers of both filopodia and retraction fibers.

The actin and microtubule cytoskeleton of NBTII cells or Gleevec-

treated NBTII cells differed somewhat (Figure 1C and 1D);

particularly noticeable were the number of f-actin rich retraction

fibers in the control cells. Gleevec-treated NBTII cells had about a

75% increase in migration speed compared with control NBTII

cells (Figure 1E) and maintained their direction significantly

better than control NBTII cells (Figure 1F) (Movie S4).

Gleevec treatment induced a pronounced change in cell

morphology when compared to control cells (Figure 1 and
Movies S1, S2, S3). To better determine the changes in cell

morphology, we used four parameters as defined in Figure 2B: (1)

Aspect ratio, the ratio of the widest dimension of the cell in the

direction perpendicular to the direction of migration divided by

the longest dimension of the cell in the direction of cell migration;

(2) Nuclear aspect ratio, the aspect ratio of the cell nuclear

region; (3) Area ratio, the ratio of the total cell area to the nuclear

area; and (4) Retraction fiber length, the population average of

the sum of the length of all retraction fibers in one individual cell

divided by the same parameter calculated for the control cells. The

results of our analysis revealed that cells treated with Gleevec had

significantly increased aspect ratio, nuclear ratio, and area ratio,

while having a reduced retraction fiber length ratio (Figure 2A).

Interestingly, unlike most known mesenchymal migrating cells,

which are typically elongated in the direction of migration,

Gleevec-treated cells were elongated in the direction perpendic-

ular to their movement and showed visual similarity to fish or

amphibian keratocytes [25,26,27] (Figure 1B) (movies 3,4).

Both Gleevec concentration and substrate adhesiveness
affect NBTII cell migration

To investigate the NBTII cell dose response for Gleevec

concentration we determined migration speed and persistence for

NBTII cells treated with different concentrations of Gleevec. Cells

were plated on substrates coated with 10 mg/ml collagen. The

concentration of Gleevec employed to inhibit Abl family kinase

activity was in the range of 0.25 mM to 50 mM. The average cell

migration speed reached a maximum (,2 mm/min), when a

20 mM concentration of Gleevec was used. For lower Gleevec

concentrations (0.25 mM, 1 mM), cells did not show a significant

speed increase. The highest concentration of Gleevec (50 mM)

actually caused cell migration speed to decrease (Figure 3A). The

ability of NBTII cells to migrate persistently in one direction was

also highest after treatment with 20 mM of Gleevec (Figure 3B).

Figure 1. Transformation of NBT-II cells morphology and
migratory phenotype after Gleevec treatment. A and B)
Representative DIC images of NBT-II cells plated on 10 mg/ml collagen
coated substrate. Control cell (A) and cell treated for 30 min with 20 mM
Gleevec. (B) Note that a lamellipodial protrusion and a D- (or fan)
shaped morphology occurs within 10 minutes of exposure to the Abl-
family inhibitor. Lamellae (Marked with ‘‘LM’’), lamellipodia (Marked
with ‘‘LP’’), filopodia (Marked with ‘‘FP’’) and retraction fibers (Marked
with ‘‘RF’’) were labeled accordingly. (C and D) Confocal fluorescent
images of the f-actin (Rhodamine-phalloidin, Red) and microtubules
(alpha-tubulin antibody, Green) in the control (C) and Gleevec-treated
cells (D). (E and F) Box and whisker plots of the average cell migration
speed (E) and directional persistence (F) for the control group (N = 60)
and NBT-II cells treated with 20 mM Gleevec (N = 60). Standard
deviations are indicated by the box sizes; maximum and minimum
data values are indicated by the extent of the whiskers. The bar and the
square inside the box are the median and mean value respectively.
Gleevec-treated NBTII cells migrate significantly faster and are more
persistent in their directionality (* p,0.001, by students t-test). Scale
bars are 20 mm.
doi:10.1371/journal.pone.0052233.g001

Gleevec Produces Changes in Cell Migration
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To investigate how the substrate adhesiveness influences NBTII

cell migration, we tested different concentrations of collagen for

substrate coating. With a higher collagen coating concentration,

more collagen would absorb to the substrate providing more

integrin binding sites, thereby presumably increasing cell-substra-

tum adhesions. For these experiments we used control NBTII cells

and cells treated with a 20 mM concentration of Gleevec. For

control NBTII cells, when the collagen coating concentration was

increased from 1 mg/ml to 100 mg/ml, both the migration speed

(Figure 3C) and persistence (Figure 3D) increased. For the

Gleevec-treated NBTII cells, the speed of migration was greatest

on the substrates with medium and higher adhesivity (10 and

100 mg/ml collagen). The largest difference in speed and

persistence between control and Gleevec-treated NBTII cells

occurred at a 20 mM of Gleevec concentration on 10 mg/ml of

collagen-coated substrates.

Gleevec-treated NBTII cells are more adherent to their
substrate than control cells

The highly spread lamellae of Gleevec-treated NBT II cells

suggested that they had become more adhesive. Therefore, we

investigated cell adhesion strength using a laminar flow system

reported previously [28,29]. Basically, by varying the flow rate, the

system generates various shear stresses on cells attached in the flow

channel. When applied shear stress exceeds the global cell

adhesion strength, cells will detach from the substrate

(Figure 4A). Images showing the cells attached before and after

flow application were recorded and cell numbers were counted

(Materials and Methods, Figure S2). For our experiments, we

tested 100 dynes/cm2, 200 dynes/cm2 and 253 dynes/cm2 values

of shear stress (Figure S2G). We found that a shear stress of

200 dynes/cm2 is the most appropriate for estimation of the

relative NBTII cell adhesion strength. A shear stress of the

100 dynes/cm2 was too weak to affect cell attachment and a shear

stress of 253 dynes/cm2 quickly removed most of the attached

cells. We applied 200 dynes/cm2 shear stress for 1 min to the

control and Gleevec-treated NBTII cells which were plated four

hours before experiment on 10 mg/ml collagen. The fraction of

the remaining adherent cells was significantly larger for the cells

treated with Gleevec (Figure 4A). This result indicates that the

global adhesion strength between cells and collagen substrates was

increased after inhibition of Abl family kinases. By plotting the

fraction of adherent cells remaining after application of shear stress

vs. the applied shear stress, we could estimate that critical shear

stress at which 50% of the cells detached increased by about 10%

(from 214 to 236 dynes/cm2) when cells were treated with Gleevec

(Figure S2G).

We further transfected NBTII cells with GFP-Paxillin to

indicate adhesions and employed total internal reflection fluores-

cence microscopy (TIRFM) to monitor GFP-Paxillin localization

on the ventral surface of the cell. Adhesions were automatically

tracked and measured by an algorithm developed in a previous

report (Materials and Methods) [30]. Compared to control

NBTII cells (Figure 4B), Gleevec-treated cells (Figure 4C) had

an increased number of adhesions at their leading edge and wings;

in addition, the total adhesion number increased by ,25%

(Figure 4D) and the total adhesion area increased by ,70%

(Figure 4E).

Figure 2. Detailed analysis of cell morphology changes after Gleevec treatment. A) Cell morphology parameters (see text) were analyzed
and compared between NBT-II cells from the control group and the group treated with 20 mM Gleevec. B) Schematic figures depicting the calculation
of each cell morphology parameter. The 1st and 4th cells from the left, shown in panel B, are samples of control NBT-II cells; while the 2nd and 3rd cells
depict NBT-II cells that have been treated with Gleevec. Data are calculated from more than 50 cells for each group. Error bars indicate standard
deviations. Control and Gleevec treated cells are significantly different in all four parameters (* indicates p,0.001, by student’s t-test).
doi:10.1371/journal.pone.0052233.g002

Gleevec Produces Changes in Cell Migration
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To assess the extent of detachment by bond breakage versus

cohesive failure due to membrane rupture, we examined cells after

application of sheer stress using confocal microscopy as shown in

Figure S2H–J. This figure shows that NBT-II cell detachment

occurred predominantly at the level of integrin and other adhesion

bonds to the matrix coated substratum as opposed to membrane

rupture around the adhesion sites. We reached this conclusion

because the number of observations of membrane fragments or

remnant focal adhesions (Figure S2J) were few undetectable

indicating that most cells detached by breaking substrate adhesion

bonds.

Punctate adhesions are present at the leading edge of
Gleevec-treated D-shape NBT-II cells

TIRFM and Interference Reflection Microscopy were com-

bined to capture time-lapse images of adhesions in migrating

NBTII cells. The darker regions in interference reflection image

are usually considered regions which are closer to the substrate

[31]. In Figure S3A and S3B, the dark regions in interference

reflection images are generally co-localized with the GFP-Paxillin

regions in the TIRF image, indicating that those dark regions and

dots are actually cell adhesions. The images of the leading edge of

control and Gleevec-treated NBTII cells are shown in Figures 5A

to 5D and 5E to 5H, respectively. In interference reflection

images, the small punctate adhesions were only observed in the

leading edge of Gleevec-treated cells (Figure 5E and 5F) (Movie
S6), but not in control cells (Figure 5A and 5B) (Movie S5). As

shown in the TIRF images, compared with control cells

(Figure 5C and 5D) (Movie S7), D- shaped NBTII cells had

a larger amount of dotted GFP-Paxillin at their leading edge

(Figure 5G and 5H) (Movie S8). We measured the intensity of

GFP-Paxillin along the sample lines indicated in Figure 5C and
5G. For each cell, lines crossing the leading edge were summed

together and normalized (Materials and Methods). We found

that D-shaped NBTII cells had significantly increased intensity of

GFP-paxillin fluorescence signal in the vicinity of the leading edge

(Figure 5I). Adhesion turnover in the leading edge of a Gleevec-

treated cell was imaged and shown in Figure S3C or Movie S8.

Figures S3D-G are TIRF images of EGFP-Paxillin in Gleevec-

treated cells, showing a rim of punctate adhesions at the leading

margin as a common feature. The size distribution of punctate

adhesions in Gleevec-treated NBTII cells had a peak at ,350 nm

in diameter, and the average area of punctate was 0.1 mm2. The

dimensions of many punctate adhesions are close to the diffraction

limit of the microscope, and some punctates may be even smaller

in dimension. Observation of the TIRF movies suggested that

Figure 3. NBTII cell migration behavior depends on substrate adhesiveness and Gleevec concentration. A) and B) Graphs depicting the
average cell migration speed (A) and persistence (B) of NBT-II cells from the control group (no inhibitor) and NBT-II cells treated with different
concentrations of Abl family kinase inhibitor (Gleevec). Cells were cultured on 10 mg/ml collagen coated substrates. Gleevec concentration has
significant effect to both cell migration speed and persistence (ANOVA, p,0.05). Cells treated with 5 mM or 20 mM Abl kinase inhibitor migrated
significantly than control cells, while 20 mM and 50 mM group also migrated more persistently than control cells. The significance between control
and each Gleevec treated groups was tested by one-way ANOVA followed by Bonferroni’s post hoc test, (*) p,0.05. C) and D) Graphs depicting the
average cell migration speed (C) and persistence (D) of NBT-II cells on substrates coated with 1 mg/ml, 10 mg/ml, and 100 mg/ml collagen. The
average migration speed and persistence of control and Gleevec cells are presented with gray and black bars, respectively. Significance of differences
in migration speed and persistence between control and Gleevec treated cells were marked in the figure (* p,0.001, by students t-test). For all panels
(A–D), results are calculated from more than 30 cells in each group. The error bars indicate standard deviations.
doi:10.1371/journal.pone.0052233.g003

Gleevec Produces Changes in Cell Migration
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these punctate adhesions near the leading edge turned over very

rapidly; indeed, intensity analysis [32] indicated an average

lifetime of ,70 s; by contrast, adhesions at the cell wings are

much more stable with lifetimes in excess of 5 minutes (Figure
S3H–I).

b1 integrin-containing cell adhesions are important for
maintaining D-shape morphology and migration status

Next, we asked whether integrins were important for the

Gleevec induced-phenotype. To competitively disrupt Integrin-

collagen binding we employed two different agents: an RGD-

containing peptide (Gly-Arg-Gly-Asp-Thr-Pro) [33] and direct b1

integrin blocking antibodies, because b1 integrin is known to bind

type I collagen [34,35,36]. We found that either 1 mg/ml of b1

integrin blocking antibody or 100 mg/ml RGD-containing peptide

(G5646, SIGMA) quickly decreased cell migration speed

(Figure 6A) and reverted the Gleevec-treated cell morphology

approximately back to control NBTII cells (Figure 6B–D).

Gleevec induces changes in actin cytoskeleton, p-MLC
localization and traction

The filamentous actin and active myosin were detected by

fluorescent phalloidin and phosphorylated myosin light chain

antibodies, respectively. The distribution of active myosin in

control and Gleevec-treated NBTII cells differs. In the case of the

control cells, active myosin is localized around the cell nucleus so

that some appears near the central part of the trailing edge, with

little near the leading edge (Figure 7A–C). By contrast, the

distribution of active myosin II in Gleevec-treated cells is

distributed further away from the nucleus and the rear margin

of the cell, mainly at the backside of cell wings, much like

keratocytes (Figure 7D–F). Since the active myosin status is

associated with cell contractility, we compared the traction

distribution between the two groups utilizing an elastic substrate

methodology [37,38,39,40,41,42]. Figure 7G–H show the color-

coded magnitudes of the bead displacements mapping for control

and Gleevec-treated cells, respectively. The white line drawn

indicates the outline of the cell. The insets are the phase image of a

control (7G) or a Gleevec-treated cell (7H). Figure 7I–J shows the

calculated constrained traction map for control and Gleevec-

treated cells with the insets showing magnified traction maps at the

cell wing regions. Tractions are much higher in the wings of the

Gleevec-treated cells than control cells (Figure 7J) where

immunofluorescence labeling by anti-p-MLC antibody indicates

a concentrated region of active myosin proximate to the high

traction regions (Figure 7F). The Gleevec-treated cells generated

a remarkable almost four-fold greater total traction force than

control NBTII cells (Figure 7K).

Effects of RhoA family GTPases on D-shaped NBTII cell
migration

The rapid response of NBTII cells to Gleevec suggests that the

inhibition of the Abl-family kinases is altering active signaling

pathways [8,43] as opposed to affecting transcriptional regulation.

Because of the importance of RhoA GTPase in cell shape and

migration [44,45,46], we measured its activity before and after

Gleevec treatment. Using a RhoA activity pull down assay, we

found that RhoA activity significantly increased when Abl-family

kinases were inhibited (Figure 8A). Cells treated with Gleevec for

one hour have nearly doubled RhoA activity when compared to

control cells (Figure 8B).

Because of the significant increase in active RhoA in Gleevec-

treated cells, we asked whether RhoA and its downstream effector

ROCK were important in the Gleevec-induced phenotype by

introducing the RhoA inhibitor (C3) and the Rho kinase inhibitor

(Y27632) to NBTII cells previously treated with Gleevec

(Figure 9A–C, respectively). We found that adding either C3

(Figure 9B) or Y27632 (Figure 9C) to Gleevec-treated cells

resulted in a significantly increased number of retraction fibers and

more rounded nuclei compared to cells treated with Gleevec only

(Figure 9A). In addition, both of these reagents reduced

migration speed (Figure 9D) and persistence (Figure 9E). The

nuclear aspect ratio and total retraction fiber length were

calculated and compared to cells treated with Gleevec only or

control cells (Figure 9F–G). C3 or Y27632 treated cells in the

presence of Gleevec exhibit similar nuclear aspect ratios and

retraction fiber parameters as the control group, suggesting that

Figure 4. Gleevec-treated cells are more adhesive than control
cells. A) A schematic figure (top panel) showing the measurement of
cell adhesion strength using a laminar flow system. As the laminar flow
rate is increased, more cells detach. Cells were cultured for 4 hours on
10 mg/ml pre-coated collagen Nunc SlideFlask (Thermo) substrates. The
fraction of adherent cells remaining after exposure to shear stress of
200 dynes/cm2 for 1 min (N = 5; n = 11–20 images per N) is shown in the
horizontal bar graph The group of cells treated with 20 mM of Gleevec
has significantly higher number of remaining cells after laminar flow
exposure (* indicates p,0.05 by the students t-test). B) and C) are
representative GFP-Paxillin TIRF images for control NBT-II cells and
Gleevec-treated NBT-II cells, respectively. Scale bars are 20 mm. D) and
E) The average number of adhesions (D) in control and Gleevec-treated
cells and the average total area of the adhesions (E) (* indicates p,0.01
by the students t-test). Error bars indicate standard deviations. Cell
counts (n) are listed in the figure.
doi:10.1371/journal.pone.0052233.g004

Gleevec Produces Changes in Cell Migration
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inhibition of RhoA/ROCK activity in Gleevec treated cells

strongly rescues control cell phenotype. Compared with the

significant change in nuclear aspect ratio and retraction fibers, the

whole cell aspect and area ratios for the Gleevec + C3 treatment

group or for the Gleevec + Y27632 group are partially

rescued.(Figure S4). We also observed that while Gleevec + C3

or Gleevec + Y27632 treated cells produce extended lamellae

these lamellae often fragmented during migration. Because C3 and

Y27632 in effect rescue the control phenotype, these results

indicate that RhoA and its downstream effector ROCK are

required for the Gleevec- induced NBTII cell phenotype.

Discussion

Here, we show that inhibition of Abl family kinase activity with

Gleevec produced a rapid and remarkable change in cell

morphology and migration in which cells spread out a thin,

extended lamella and migrated faster and with more persistence

with some similarities to fish and amphibian keratocyte migration

[25,27]. In addition, this rapidly spreading, very thin lamella is

similar to the rapid and extensive, ‘‘pancake’’ spreading of

fibroblasts derived from Abl null mice [15]. Associated with the

Gleevec phenotype was an increase in RhoA activity, increased

global cell adhesion strength, a pronounced change in adhesion

patterns and an increase in total traction applied to the substrate.

Regulatory mechanisms involved in the Gleevec-induced
change in morphology and migration

Abl family kinases inhibit cell adhesion formation. Abl

family kinases have been reported to be located at cell adhesions

[7,47]. They are correctly positioned to regulate the reorganiza-

tion of the cytoskeleton at sites of membrane protrusion and at

focal adhesions where integrins are engaged. In 10T1/2

fibroblasts, during the initial 20–30 minutes of fibronectin

Figure 5. Punctuate adhesions are present at the leading edge of Gleevec-treated NBT-II cells. Panel A) and E) are representative
interference reflection images of a migrating control (A) and a Gleevec-treated (E) NBT-II cell, respectively. Dense, dynamic, punctuate adhesions are
only observed at the leading edge of the Gleevec-treated cells. Red rectangles on (A) and (E) show the position where thee times magnified images
(B) and (F) were taken. Panel C) and G) are representative TIRF images of GFP-Paxillin expressed in control and Gleevec-treated NBT-II cells,
respectively. D) and H) Images resulting from amplifying the areas indicated by the red boxes in C) and G) by three times, respectively. Gleevec-
treated cells form a band of GFP-Paxillin at the leading edge of the cell. The GFP-Paxillin fluorescent intensity is measured along yellow dotted lines
(shown in Figure 5C and 5G) across the leading edge of the cell (4 lines for each cell). I) Multiple cells were used to calculate the distribution of
normalized GFP-Paxillin intensity at the leading edge: control NBT-II cells (Black line, n = 12), and D-shaped Gleevec-treated NBT-II cells (red line,
n = 12), with the standard deviation shown as gray (for control cells) or pink bars (for Gleevec-treated cells) (detailed calculations are described in
Materials and Methods). Gleevec-treated cells NBT-II cells have peak of GFP-Paxillin signal near the leading edge, while control NBT-II cells do not.
Scale bars in panels A, C, E and G are 20 mm, and in B, D, F, H are 5 mm. Error bars indicate standard deviations.
doi:10.1371/journal.pone.0052233.g005

Gleevec Produces Changes in Cell Migration
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stimulation, when c-Abl activity is the highest, the nuclear pool of

c-Abl re-localizes transiently to focal adhesions [7,47]. This

transient re-localization also occurs in NIH3T3 cells, where a

fraction of the cellular Abl associates with the focal adhesion

proteins, paxillin and Grb2 [48,49]. Abl family kinases have also

been reported to reduce initial cell attachment to the substrate. On

fibronectin, fibroblasts derived from Abl-null mouse embryos

spread faster than their wild-type counterparts, while restoration of

Abl expression in the Abl-null fibroblasts reduced the rate of

spreading [15]. Kain and Klemke provided evidence that Abl

family kinases negatively regulate cell migration by uncoupling

CAS-Crk complexes [13]. Li and Pendergast recently reported

that Arg could disrupt CrkII-C3G complex formation to reduce

b1-integrin related adhesion formation [17]. These reports

indicate that Abl family kinases negatively regulate cell adhesion,

thus supporting our observations that Abl family kinase inhibition

results in a more adhesive and motile phenotype.

RhoA involvement in the Gleevec-induced

phenotype. Concomitant with the adhesion increase induced

by Gleevec treatment, there is an increase RhoA activity. Since

Bradley and Koleske reported that Abl family kinases could

function through the activation of p190RhoGAP to reduce RhoA

activity [50], it is possible that the Gleevec action occurs by

inhibition of the Abl-mediated activation of this RhoGAP. In any

event, the increase in RhoA activity correlates with the increase in

total traction force applied to the substrate; the spatial disposition

of active myosin II indicates contractile activity parallel to the long

axis of the cell and enhanced traction in the wings of the treated

cell. Moreover, ROCK inhibition abrogates the Gleevec pheno-

type suggesting the pathway Abl inhibitionRincrease in RhoA

activityRincrease in ROCK activityRincrease in pMLCRin-

crease in contractility and traction.

It is important to note that Gleevec has been reported to have

inhibitory effects on other signaling pathways involving PDGF-R

and c-kit that also impact the cytoskeleton [51] and therefore,

potentially, cell migration. Cells with inhibited PDGF-R or c-Kit

pathways exhibit reductions in migration or membrane protru-

sions [46,52,53,54] opposite to the effects reported here; this

suggests that Gleevec inhibition of the c-kit and PDGF-R

pathways is probably not the major factor for the profound

NBT-II cell morphology transformation. Nevertheless, while

Gleevec effects on Abl family kinase activity and cell adhesive

behavior as well as on RhoA activity have been established

[17,50], it is well to keep in mind potential ‘off-target’ effects on

other regulatory pathways.

Changes in the adhesive behavior of Gleevec-treated
NBTII cells

The D-shaped NBTII cells have a band of punctate dot-like

adhesions in the vicinity of their leading edge that appear different

from known adhesions in mesenchymal-type migrating cells. The

area of these adhesions is quite small (,0.10 mm2) compared to

normal focal adhesions (,1 mm2), and their turnover as estimated

from observation of TIRFM movies is ,1 min, compared to

.5 min for focal adhesions. These punctate adhesions are similar

in size to nascent focal adhesions [55,56,57]; but they rarely

Figure 6. Blocking of integrin related adhesion dramatically inhibits the migration speed of Gleevec-treated NBT-II cells. A) Migration
speed of Gleevec-treated cells incubated with either beta1-integrin blocking antibody (1 mg/ml) or an RGD-containing peptide (100 mg/ml). Migration
speed was measured 30 minutes after addition of beta1-Integrin blocking antibody or RGD containing peptide (n.10 for each group). Panels B–D)
are DIC images of an NBT-II cell treated with Gleevec (20 mM) migrating on a 10 mg/ml collagen-coated substrate, and then treated with 1 mg/ml RGD
containing peptide. Images before addition of RGD containing, 2 minutes after and 5 minutes after addition of the RGD peptide are shown. Scale
bars are 20 mm. Error bars indicate standard deviations. The statistical significance of difference between control cells with and without RGD, and
difference between Gleevec treated cells with and without integrin blocking antibody or RGD is indicated by an (*. p,0.05) as evaluated by one-way
ANOVA followed by Bonferroni’s post hoc test.
doi:10.1371/journal.pone.0052233.g006
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Figure 7. Changes in distribution of active myosin and traction forces after Gleevec treatment. Control NBT-II cells (A–C) or Gleevec-
treated cells (D–F) that have been fixed, permeabilized and stained for phosphorylated myosin II light chain (p-MLC) to visualize active myosin
localization (A and D) and Rhodamine-phalloidin to visualize the actin cytoskeleton (B and E). (C and F) Overlay images indicate the colocalization of
actin bundles and p-MLC (red). The nucleus of the cell is stained with DAPI [60]. Bar = 20 mm. (G to J) Elastic substrate traction mapping of a control
NBT-II cell (G and I) and Gleevec-treated NBT-II cell (H–J). (G and H) are the bead displacement maps and (I and J) are the traction maps where color
bars indicate relative values (see Methods). The inset images in G and H are the phase image of the control cell and the Gleevec-treated cell. The
white lines in G and H are outline of each cell. The inset images of figure I and J are the tractions magnified from indicated cell wings. Panel K is a
calculation of the total cell traction force generated by cells (Materials and Methods). The value is normalized to total traction forces from control
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(,1%) matured to larger adhesions as many nascent adhesions do

[57].

Often, an abundance of retraction fibers at the trailing edge of a

cell is taken as evidence for strong adhesion in this region.

However, at the rear of Gleevec-treated cells, in spite of greater

global adhesion strength, there are fewer retraction fibers than in

control cells. What might be the reason for this observation? A

potential explanation is found in the fact that the trailing edge

tractions of Gleevec-treated cells were significantly stronger than

in control cells. These tractions may effectively break all adhesions

in the rear of the cell, even those in that normally result in

retraction fiber formation.

Our results taken as a whole indicate Abl family kinases play an

important role in the regulation of cell adhesion and migration in

that their inhibition produces a profound change in adhesions,

morphology and cell migration. A fully integrated, quantitative

view of inhibition of how these ubiquitous kinases produce these

changes remains a challenge for the future.

Materials and Methods

Antibodies and Immunofluorescence
Antibodies: Integrin b-1 (CD29) blocking antibody anti-Mouse/

Rat CD29 (HMb1-1 BD. Biosciences Pharmingen, San Diego,

CA), anti-a-Tubulin Antibody (#2144; Cell Signaling Technolo-

gy, Beverly, MA), anti-phospho-myosin Light Chain II antibody

(against Ser19, #3671, Cell Signaling Technology, Beverly, MA),

anti-Rac1 antibody (#2465; Cell Signaling Technology, Beverly,

MA), anti-Cdc42 antibody (#2462; Cell Signaling Technology,

Beverly, MA), anti-RhoA antibody(sc-418; Santa Cruz Biotech-

nology, Santa Cruz, MA).

For immuno-staining, NBTII cells were fixed by using

paraformaldehyde solution [4% (w/v) in PBS, pH 7.4] for

20 minutes at 25uC. Cells were then permeabilized with PBS

containing 0.05% Triton-X-100 for 5 minutes at 25uC. Fluores-

cence labeling was carried out by treating with primary antibodies,

washing with medium and then treating with fluorescent

secondary antibodies followed by washing. Imaging was done as

described below.

Cell culture and transfection
NBT-II cells were acquired from the ATCC (Manassas, VA)

and maintained in DMEM/F-12 medium (Gibco, Grand Island,

NY) containing 10% FBS, 100 units/ml penicillin and 100 mg/ml

streptomycin. The EGFP-Paxillin-b and EGFP-Vinculin construct

were generated by subcloning DNA fragments expressing wild-

type paxillin and wild type vinculin into a pEGFP-C1 vector

(Clontech, Mountain View, CA). NBT-II cells were transfected

using the Lipofectamine Plus transfection reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s protocol. Cells

stably expressing either EGFP-Paxillin-b or EGFP-Vinculin were

obtained by sorting for EGFP positive cells after G418 selection in

the UNC Flow Cytometry Facility.

Cell migration, surface coating and drug treatment
For the experiments imaging the migration of NBT-II cells,

glass bottom Petri dishes (35 mm) (MatTek) were coated by

incubating with 10 mg/ml type I collagen (BD Biosciences,

Bedford, MA) overnight at 4uC. NBT-II cells were treated with

trypsin and resuspended in DMEM/F12 medium (GIBCO)

containing 10% fetal bovine serum, plated at low density on the

dishes, and cultured for 4-12 h in a CO2 incubator. Cells were

incubated with either no inhibitor, or various concentrations of the

20 mM Abl family inhibitor GleevecH (Novartis, Basel, Switzer-

land) by adding the inhibitor to culture media which was mixed by

gently pipetting up and down. The cells were incubated for

30 minutes prior to imaging and imaging was performed in the

continued presence of the inhibitor.

5 mM ROCK inhibitor(Y-27632, Sigma, MO) or 2 mg/ml of

Rho inhibitor, C3 transferase (Cytoskeleton Inc., Denver, CO),

was used to inhibit ROCK or Rho activity in Gleevec pre-treated

NBTII cells for 30 minutes. 100 mg/ml RGD-containing peptide

(Gly-Arg-Gly-Asp-Thr-Pro) (G5646, SIGMA), or 1 mg/ml anti-

Mouse/Rat CD29 (Biosciences Pharmingen, CA) was used to

block integrin related cell adhesion. Cell migration status was

studied after one hour of incubation with these inhibitors.

Assay for active RhoA GTPases
Active RhoA pulldown experiments were done as described

previously [58]. For active RhoA pulldown cells were lysed in

300 ml 50 mM Tris, pH 7.4, 10 mM MgCl2, 500 mM NaCl, 1%

Triton X-100, 0.1% SDS, 0.5% deozycholate, 1 mM PMSF, and

10 mg/ml each of aprotinin and leupeptin. Lysates were cleared by

centrifugation at 14,000 g for 5 min. Supernatants were rotated

cells. The bar graph indicates NBTII cells treated with Gleevec generate considerably more total traction force than control NBTII cells. Error bars are
standard deviation. Bar = 20 mm. 8 cells were examined for each case. Control and Gleevec-treated cells are significantly different in total cell traction
force (* p,0.01, by student’s t-test).
doi:10.1371/journal.pone.0052233.g007

Figure 8. Abl-family kinase inhibition increases RhoA activity.
A) A RhoGTPase pull-down assay before and after Gleevec treatment
(20 mM). NBT-II cells were cultured on a 10 mg/ml collagen-coated
substrate. B) A bar graph quantifying the results from the pull-down
assay. (n = 4 experiments). Error bars indicate standard deviations.
Control and Gleevec-treated cells are significantly different in RhoA
activity (* p,0.05, by student’s t-test).
doi:10.1371/journal.pone.0052233.g008
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for 20 minutes with 30-50 mg GST-RBD conjugated to glutathi-

one–Sepharose beads (GE Healthcare). Beads were washed with in

ml 50 mM Tris, pH 7.4, 10 mM MgCl2, 150 mM NaCl, 1%

Triton X-100, 1 mM PMSF, and 10 mg/ml each of aprotinin and

leupeptin. Active RhoA and total RhoA levels were analyzed by

SDS-PAGE. Gel intensity results were quantified by analyzing

inverted images using ImageJ. The signal from protein bands was

measured after background subtraction and the intensity of each

image was then normalized according to the average signal of

loading control band.

Cell imaging
Differential Interference Contrast, Total Internal Reflection

Fluorescence (TIRF) and epi-fluoresence imaging were carried out

on a dual-channel Olympus IX81 inverted microscope equipped

with a 606, oil immersion, 1.45 NA objective. Interference

Reflection Microscopy imaging was performed using a 1006, oil

immersion, 1.65 NA objective. Objective (660) style TIRFM was

performed on the Olympus IX81 with the Olympus TIR option.

Images were captured using an air-cooled SensiCam QE CCD

camera (Cooke Corp., Romulus, MI) driven by Metamorph

(Molecular Devices/Meta Imaging, Downingtown, PA). Confocal

imaging was performed with an inverted Olympus FV1000

equipped with a live cell chamber and a 6061.42 N.A. oil

immersion objective. Migration of single cells was tracked for

durations between 5 minutes to 2 hours; time-lapse images were

taken with the intervals of 1 second (for morphology changes),

Figure 9. RhoA/ROCK activity is important for the Gleevec phenotype. A), B) and C) are DIC images of NBT-II cell migration status in the
presence of 20 uM Gleevec only, both 20 uM Gleevec and ROCK inhibitor(5 uM Y-27632), or both 20 uM Gleevec and RhoA inhibitor (C3, 1 ug/ml),
respectively. These panels show that RhoA inhibition after Gleevec treatment increases the number of retraction fibers and produces more rounded
nuclei. Scale bars are 20 mm. Panels D) to G) are cell migration speed, cell migration persistence, nuclear aspect ratio and cell retraction fiber ratio,
respectively. In each figure, the four bars represent the control group, the 20 uM Gleevec-treated group, the 5 mM Y-27632 +20 mM Gleevec-treated
group, and the 1 mg/ml C3 +20 mM Gleevec-treated group, respectively. Error bars indicate standard deviations. At least 15 cells were measured for
each group. The significance of the difference between control and other treated groups was evaluated by one-way ANOVA followed by Bonferroni’s
post hoc test, and marked by (*), p,0.05;.
doi:10.1371/journal.pone.0052233.g009
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5 seconds (for rapid adhesion turnover) or 60 seconds (for cell

migration and long lifetime adhesion turnover), as indicated.

Measurement of cell adhesion strength
A flow system designed to produce laminar shear stress on

attached NBTII cells consisted of a flow cell, a dual syringe pump

(Harvard Apparatus, Holliston, MA), 5% CO2 percolated media

reservoir, and a pulse dampener (Cole Parmer Instrument

Company, Chicago, IL) as previously described in detail [28,29].

Briefly, a two-piece, top and bottom plate, anodized aluminum

flow cell (1267.5 cm) was constructed with plastic inlet and outlet

tubes. The Nunc SlideFlask (Thermo) on which NBT-II cells were

plated was placed in the middle of the flow cell bottom plate with a

0.27-mm thick silicone gasket placed underneath it. This brought

the coverslip to the same height as the top of the bottom plate.

Shear stress was calculated using the following equation:

tw~
6mQ

wh2

where m is the viscosity of 0.0086 g.cm/s, Q is the flow rate in

mL/s, w is the width of the flow channel (1.7 cm), and h is the

height of the flow channel (0.027 cm). The applied shear stress

ranged from 100 to 253 dynes/cm2.

Cells were cultured for 4 hours on 10 mg/ml pre-coated

collagen Nunc SlideFlask (Thermo) substrates; and labeled with

1:1000 Cell tracker orange (Invitrogen, Carlsbad, CA) for

10 minutes 30 minutes before flow experiments. All flow exper-

iments were performed at 37uC for 1 minute with PBS containing

calcium and magnesium. In each experiment, multiple (10–20)

images were taken showing cells in different regions of the flow

chamber, before and after shear stress was applied. The cell

attached to substrate before and after shear stress were counted,

expressed as the percent of adherent cells remaining, and averaged

over multiple experiments. Data were reported as mean 6 SEM.

Traction force microscopy
Preparation of polyacrylamide substrates and experimental

imaging has been described previously [42]. Briefly, the fabrica-

tion of polyacrylamide substrate involves following three steps: 1)

Silanization the glass substrate with 0.5% silane for 20 minutes, 2)

Use 0.5% glutaraldehyde treat previous substrate for 40 minutes,

3) polymerization with 6% polyacrylamide and 1% bis-acrylamide

in 10 mM HEPES buffer with rhodamine-dextran beads and

NHS-acrylate. Polymerization is initiated with the addition of

0.05 g/ml APS. The elastic modulus of our substrate was

measured to be approximately 48 kPa [42]. Elastic substrates

after polymerization were stored at 4uC in PBS.

Tractions were calculated using the method of Butler et al

(2002) in which particle imaging velocimetry is employed to

measure the displacement of small windows that contain a number

of beads.

Data quantification and calculation
The movement of individual cells was analyzed with Meta-

morph software and ImageJ. Statistical analysis was performed

using unpaired student’s t-tests. Statistical significance was

indicated by * in the figure, and the p value was defined in each

figure legend. One-way ANOVA with the Bonferroni post hoc test

was used (as indicated in the figures) to compare the differences in

NBT-II cell migration speed, persistence or other cellular

morphology parameters, with values of P,0.05 sufficient to reject

the null hypothesis for all analyses.

Speed and persistence of migration. To get the position of

the cell, we manually tracked the geometric center of the cell

nucleus. Although cell boundary morphology changed consider-

ably during migration because of protrusion, the nucleus was

usually centrosymmetric and could be employed as a marker for

cell location. The cell position and cell migration speed was

tracked and calculated using the ImageJ plugins: ‘‘Manual

Tracking Plug-in’’ (http://rsbweb.nih.gov/ij/plugins/track/

track.html). For cell migration persistence, we employed a

conventional definition: the ratio of the net distanced traveled to

the total distance traveled. The net distance traveled is the

magnitude of the vector between the starting point and end point

of the cell trajectory over an hour and the total distance traveled

taken as the sum of net distances traveled over twelve 5 minutes

intervals in that hour in order to capture the changes in direction

that occur. Thus, the highest persistence would have a value of

one, representing unidirectional migration.

Aspect ratio measurement and retraction fiber

counting. The outline of the cell was manually obtained using

Photoshop to trace the edge of each cell, based on DIC images.

The dimension of the cell along the cell migration direction or

perpendicular to cell migration direction was then measured from

the cell outline with a Matlab program (The direction of cell

migration was determined using ImageJ and manual tracking

plugins as described above.). The aspect ratio was then calculated

using cell dimension perpendicular to its migration direction

divided by cell dimension along its migration direction. Retraction

fibers could be counted manually because they were generally

well-defined in the images.

Segmentation of adhesions in TIRF

images. Segmentation of adhesions in TIRF images: Time-

lapse TIRF images of EGFP-Paxillin were analyzed using

previously published methods [59] [30]. First, the distribution of

high-pass filtered pixel intensities was determined for each cell.

Adhesions were segmented by selecting pixels at least two standard

deviations away from the mean. Next, connected components

labeling was used to identify the adhesions and any object less than

two pixels in size was discarded. The average number of adhesions

and the total area of the adhesions per image were calculated for

each cell. T-tests were used to test for statistical differences

between these measurements.

Lifetime of adhesions. ImageJ was used to measure changes

in fluorescent intensity of individual adhesions over time in cells

expressing fluorescent-tagged adhesion proteins. A perimeter was

drawn around the punctate or wing adhesions at the point where

intensity was a maximum; average pixel intensity was calculated

from the pixel intensities within that perimeter as function of time.

Background and photobleaching corrections were applied to

obtain true intensities of the adhesions. Assembly and disassembly

rates were plotted and calculated using Microsoft Excel (Microsoft

Corporation) or Origin 6.1(OriginLab) using a previously

published method (Huang et al., 2009) (Choi et al., 2008 [32].

Quantification of collective adhesion profile. Multiple

lines (n = 4 for each cell, 12 cells in each group) were drawn along

the cell migration direction from outside to the interior of the cell

(line length = 200 pixels) with the center of the line is positioned

manually at leading edge. The fluorescent signal along each line

was measured using PlotProfile function in ImageJ. The EGFP-

Paxillin fluorescence intensity in different cells was not uniform. In

order to better compare the profile of collective adhesion

intensities between control and Gleevec-treated cells, background

(Sbgd) was subtracted from the raw fluorescence intensity profile

(for each pixel S(n))and then these profiles were normalized. We

used following formulae to get the normalized relative signal
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intensity (Srsi-Line(n)) for the nth pixel (n = 1 to 200) along the line:

Savg~

P200
n~1 S(n)

200
{Sbgd

Srsi{Line(n)~
S nð Þ{Sbgd

Savg

,

where Savg represents average pixel intensity averaged along the

entire line.

Supporting Information

Figure S1 Increase in NBTII cell area after addition of
Gleevec. Addition of Gleevec at time = 0. Cell size is normalized

to its size before Gleevec treatment.

(TIF)

Figure S2 Optimizing the laminar shear stress flow
system for cell adhesion strength measurements. Panel A

to F shows the adherent NBTII cells under laminar shear stress

flow system with a 253 dynes/cm2 laminar force applied for

30 seconds. Cells are labeled with Cell Tracker Orange (Invitro-

gen). Images are same cells at different time points (before, 2 s, 5 s,

10 s, 20 s, 30 s) which are indicated at bottom right of each

images. Arrows in each image point out the cells detached by the

shear stress as a function of time of shear stress application. G) Left

panel: Bar graph showing fraction of adherent cells retained after

exposure to different laminar shear stresses for 1 min (N = 5

experiments; n = 11–20 images per N for 200 dynes/cm2; N = 1

experiment, n = 3 images per N for 100 dynes/cm2 and

253 dynes/cm2 groups). At 200 dynes/cm2, the difference be-

tween control and Gleevec-treated cells was significant (* p,0.01,

by student’s t-test). Error bars indicate standard deviations. Right

panel: Determination of an approximate critical sheer stress for

control and Gleevec-treated NBT-II cells. The critical shear stress

at which 50% of the cells detached increased from 214 to

236 dynes/cm2 when cells were treated with Gleevec. NBT-II Cell

detachment occurred predominantly at the level of integrin and

other adhesion bonds to the matrix coated substratum as opposed

to membrane rupture around the adhesion sites. Panel H) and I)

show the fluorescent images of EGFP-Paxillin (H) and the actin

cytoskeleton (I) visualized by Rhodamine-Phalloidin in the cell that

remained attached after flow was applied. Cells that expressed

EGFP-Paxillin were fixed after the flow experiment, stained with

Rhodamine-Phalloidin and then imaged with 606 objective

upright confocal microscope (Olympus FV1000) such that the

optical section was close to substrate. J) A low power view (620)

showing cells after flow experiment with EGFP-Paxillin (green)

and Phalloidin staining (Red). The image shows that almost all of

the cells remained intact (marked with arrows); in fact, no

fragments with adhesion proteins were observed in this and other

views, suggesting that membrane failure was not the dominant

mode of cell detachment. The average cell density before flow was

about 10 cells/image. Bars in H and I are 20 mm and the bar in J

is 100 mm.

(TIF)

Figure S3 Cell adhesions in Gleevec-treated NBTII
cells. Panel A) and B) are interference reflection images and

TIRF images for the same region in a fixed NBT-II cells. The dark

dots (marked by arrows) and dark regions (marked by circles) in

the interference reflection image were usually colocalized with the

bright EGFP-Paxillin signal in TRIFM image, indicating these

were cell-substrate adhesions. Panel C are the time-lapse images

showing adhesion turnover at the leading edge of a Gleevec-

treated NBTII cells. To better illustrate adhesion turnover,

punctate adhesions at cell leading edge (at time 0) were marked

with black line and then labeled with colored dots correspond-

ingly. Adhesions at time 0, and after 30, 60, 90, 120, 150 and

180 seconds were shown. Colored dots indicate the previous

adhesion is still remaining at this time. Most of the adhesions

disassembled after 120 seconds. Panel D to G are representative

TIRF images of EGFP-paxillin in Gleevec- treated NBTII cells,

showing a rim of dense, punctate adhesions (adhesions in-between

dotted lines) at the leading edge of the cells. Panel H is a temporal

fluorescence intensity profile (see Materials and Methods) of

EGFP-paxillin in a representative punctate adhesion at cell leading

edge (a) or an adhesion at the side wings (b). Dotted lines I, II, III

indicate the whole image fluorescent background, the cell leading

edge fluorescent background, and the cell body fluorescent

background respectively. The initial peak in the fluorescence

intensity profile (marked by arrow) results from the formation of

punctate adhesions. The lifetime is taken as time between liftoff

from leading edge background (62) to when the intensity drops

back to the cell body background (III). For the punctate adhesions

at the leading edge the assembly and disassembly occurs quickly,

with an average lifetime of ,70 s (Panel I). By contrast, adhesions

at the wings often gradually mature into strong and more stable

adhesions with an average lifetime above 5 mins (Panel I). Scale

bars in panels B and C are 5 mm, and in D, E, F, G are 20 mm.

Data are mean 6 standard deviations measured from 6–10

individual adhesions in 5–7 cells from independent experiments.

(TIF)

Figure S4 RhoA/ROCK activity affects cell morphology.
Panel A) and B) are whole cell aspect ratio and cell area ratio. In

each figure, four groups are control group, 20 uM Gleevec-treated

group, 5 mM Y-27632+20 uM Gleevec-treated group, and 1 mg/

ml C3+20 uM Gleevec-treated group, respectively. Error bars

indicate standard deviations. At least 15 cells were measured for

each group. The significance of the difference between control and

other treated groups was evaluated by one-way ANOVA followed

by Bonferroni’s post hoc test, and marked by (*), p,0.05.

(TIF)

Movie S1 Control NBT-II cell migration. Time-lapse DIC

microscopy recording of a control NBT-II cell migrating on

collagen substrate (10 mg/ml). Movie demonstrates that NBT-II

cells on collagen have medium-sized lamellae and lamellipodia,

the multiple dynamic filopodia at the leading edge, and multiple

retraction fibers at the rear end of the cell. Movie was recorded

with 606objective at 10 s intervals and plays back at 6 frames per

second (fps).

(AVI)

Movie S2 NBT-II cells in response to Gleevec treat-
ment. Time-lapse DIC microscopy recording of a NBT-II cell

migrating on collagen substrate (10 mg/ml) and its response to

Gleevec treatment (20 mM). Gleevec (20 mM) was added at time

00:00. Movie shows a quick transformation of cell morphology,

including fast lamellipodia formation and changes of cell nucleus

shape. Movie was recorded with 606 objective at 10 s intervals

and plays back at 6 fps.

(AVI)

Movie S3 Gleevec-treated NBT-II cell migration. Time-

lapse DIC microscopy recording of two Gleevec-treated (20 mM)

NBT-II cells migrating on collagen substrate (10 mg/ml). Note that

after Gleevec treatment NBT-II cells had an intact lamella facing
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the migration direction and markedly reduced numbers of both

filopodia and retraction fibers. Movie was recorded with 606
objective at 10 s intervals and plays back at 6 fps.

(AVI)

Movie S4 Special migration status and persistence in
multiple Gleevec-treated NBT-II cell migration. Time-

lapse DIC microscopy recording of multiple Gleevec-treated

(20 mM) NBT-II cells migrating on collagen substrate (10 mg/ml).

NBT-II Cells were imaged immediate after Gleevec treatment.

Note that NBT-II cells after Gleevec treatment have a big lamella

facing the migration direction. The migration speed and

persistence were significantly increased after Gleevec treatment.

Movie was recorded with 206 objective at 5 min intervals and

plays back at 3 fps.

(AVI)

Movie S5 Adhesion in Control NBT-II cell imaged with
interference reflection microscopy. On the interference

reflection images the areas of a cell that are closely apposed to the

substrate appear dark indicating cell substrate adhesions. Time-

lapse TIRFM of control NBT-II cells migrating on collagen

substrate was recorded in interference reflection mode with 1006
objective at 5 s intervals and plays back at 6 fps.

(AVI)

Movie S6 Adhesion in Gleevec-treated NBT-II cell
imaged with interference reflection microscopy. Dark

areas in interference reflection images are the regions where cell

membrane is closely apposed to the substrate, indicating cell

substrate adhesions. Movie demonstrates that Gleevec-treated cells

formed a rim of punctate adhesions at their leading margin. Movie

was recorded in interference reflection mode with 1006objective

at 5 s intervals and plays back at 6 fps.

(AVI)

Movie S7 Adhesion in Control NBT-II cell imaged with
Total Internal Reflection Fluorescence Microscopy
(TIRFM). Time-lapse TIRF microscopy recording of control

NBT-II cells migrating on collagen substrate; cells were transfected

with EGFP-Paxillin. Movie was recorded in TIRFM mode with

606 objective at 15 s intervals and plays back at 4 fps.

(AVI)

Movie S8 Adhesion in Gleevec treated NBT-II cell
imaged with Total Internal Reflection Fluorescence
Microscopy (TIRF). Time-lapse TIRF microscopy recording

of Gleevec-treated (20 mM) NBT-II cells migrating on collagen

substrate; cells were transfected with EGFP-Paxillin. Note that

Gleevec-treated cells have a rim of punctate adhesions at their

leading margin. Movie was recorded in TIRFM mode with 606
objective at 15 s intervals and plays back at 4 fps.

(AVI)
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