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Abstract

Identification of safe and effective adjuvants remains an urgent need for the development of inactivated influenza vaccines
for mucosal administration. Here, we used a murine challenge model to evaluate the adjuvant activity of GPI-0100,
a saponin-derived adjuvant, on influenza subunit vaccine administered via the intranasal or the intrapulmonary route. Balb/
c mice were immunized with 1 mg A/PR/8 (H1N1) subunit antigen alone or in combination with varying doses of GPI-0100.
The addition of GPI-0100 was required for induction of mucosal and systemic antibody responses to intranasally
administered influenza vaccine and significantly enhanced the immunogenicity of vaccine administered via the
intrapulmonary route. Remarkably, GPI-0100-adjuvanted influenza vaccine given at a low dose of 261 mg either in the
nares or directly into the lungs provided complete protection against homologous influenza virus infection.
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Introduction

As the respiratory tract is the portal of entry for influenza virus,

it has long been an issue to develop mucosal vaccines to elicit

influenza-specific immunity at the site for disease prevention.

Successful mucosal immunization is supposed to elicit high titers of

secretory IgA (SIgA) that can neutralize extracellular viruses at the

luminal site of the respiratory epithelium, or intracellular viruses

during transcytosis. [1] Together with innate immunity, SIgA

provides a first line of host defence against virus infection.[1–3] In

addition, mucosal immunization can imprint activated lymphoc-

tyes with surface markers that will preferentially direct them to

home to mucosal sites. These lymphocytes can be quickly re-

activated upon virus infection and can contribute to efficient viral

clearance. Apart from immunological benefits, mucosal immuni-

zation has several important advantages over parenteral immuni-

zation. [4,5] Mucosal immunization prevents the potential safety

risk caused by contaminated needles, spares time and cost involved

in parenteral vaccine administration by health care workers and

improves vaccination acceptance by the general population.

So far, the only marketed influenza vaccine for mucosal

administration is live attenuated influenza vaccine (LAIV) de-

livered as large droplet aerosol via the intranasal route. [4,6] LAIV

contains recombinant viruses composed of a viral backbone of

a cold-adapted virus strain with two RNA segments encoding

hemagglutinin (HA) and neuraminidase (NA) from circulating

strains. Many studies have shown that LAIV is effective in

inducing both systemic and mucosal immunity with a better cross-

protective efficacy against heterologous virus strains, which persists

for a longer time span compared to immunity by parenterally

administered inactivated virus vaccines.[4,7–9] Nevertheless,

young children and the elderly, the vulnerable populations who

are among the major targets for influenza vaccination programs,

are excluded from the application of LAIV due to their weak

immune systems and the potential risk of disease development.

Moreover, there has been a concern about the emergence of

virulent virus strains from the vaccine virus strain by genetic

mutation or re-association with wild-type virus strains.

Mucosal vaccines containing inactivated virus or isolated viral

proteins are preferable from a safety point of view. However, such

formulations possess relatively weak immunogenicity.[4,10–12]

Accordingly, mucosal adjuvants are required to break down the

immune-tolerant nature of the mucosal environment and to

stimulate vaccine immunogenicity. Bacterial enterotoxins such as

cholera toxin from Vibrio cholera and heat-labile enterotoxin from

Escherichia coli have long been known to possess strong mucosal

adjuvant activity. [5,13] However, the associated toxicity and the

induced side-effects have prohibited their use in human vaccines

and even led to retraction of an already marketed nasal influenza

vaccine. [14,15] Development of safe novel adjuvants with strong

immune-potentiating capacity but with acceptable reactogenicity

therefore remains an urgent need for mucosal vaccine research.

GPI-0100 is a semi-synthetic triterpenoid glycoside. It is derived

from QS-7, one of the purified components of Quil A, a saponin

adjuvant extracted from the bark of the Molina tree Quillaia

saponaria.[16–18] GPI-0100 shows a better safety profile and

increased stability in aqueous solution at physiological pH when

compared with other saponin-derived adjuvants. GPI-0100 has

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e52135



been used in clinical trials for cancer vaccines. Specifically, a study

on a candidate prostate cancer vaccine indicates that there are no

serious side effects at an adjuvant dose of up to 3000 mg. [19] In an

earlier study, we showed that GPI-0100 significantly enhances

both humoral and cellular immune responses elicited by influenza

subunit vaccine when delivered intramuscularly. [20] The

enhancement was observed in both the Th1 (IgG2a and IFN-c)
and the Th2 (IgG1 and IL-4) arm of the immune response.

Remarkably, the adjuvanted vaccine induced significant pro-

tection against influenza virus growth in the lung even at an

extremely low antigen dose (0.04 mg HA). In contrast, in the

absence of adjuvant a 25-fold higher antigen dose (1 mg HA) was

required to achieve the same level of lung protection. Aside from

its systemic adjuvant activity, GPI-0100 also showed mucosal

adjuvant activity in a vaccine for Porphyromonas gingivalis. [21] When

applied via the intranasal route, GPI-0100 strongly potentiated

both systemic and mucosal antibody responses specific for the

antigen hemagglutinin B (HagB) of this bacterium.

Here, we evaluated the mucosal adjuvant activity of GPI-0100

in conjunction with A/PR/8 (H1N1) influenza subunit vaccine in

mice. We compared the capacity of non-adjuvanted and GPI-

0100-adjuvanted influenza vaccine delivered via the upper (nose)

or the lower (lung) respiratory tract to induce mucosal and

systemic immune responses and protection from virus challenge.

We show that induction of systemic and mucosal immune

responses by intranasal vaccine requires adjuvantation with GPI-

0100. Intrapulmonary vaccines induced local and systemic

antibody responses even without adjuvantation but these responses

were significantly increased upon GPI-0100 adjuvantation. More-

over, complete inhibition of virus growth in the lungs was achieved

only by the adjuvanted vaccines for both administration routes.

We therefore consider GPI-0100 a potential candidate adjuvant

for mucosal influenza vaccines.

Materials and Methods

GPI-0100
GPI-0100 was purchased from Hawaii Biotech, Inc. (Aiea, HI,

USA) as powder and was stored at 4uC. A stock solution of GPI-

0100 (10 mg/ml) was prepared in HBS buffer (5 mM Hepes,

150 mM NaCl and 0.1 mM EDTA, pH 7.4). After centrifugation

through a Spin-X centrifuge tube filter (Corning, MA, USA), the

sterile stock solution was stored at 4uC for use within one month.

Virus and Subunit Vaccine
A stock of A/PR/8 (H1N1) influenza virus propagated on

Madin–Darby canine kidney (MDCK) cells was kindly provided

by Solvay Biologicals (Weesp, Netherlands). The virus was further

propagated on embryonated chicken eggs by us and the virus titer

was determined by measuring the tissue culture infectious dose 50

(TCID50). To this end, serial 2-fold dilutions of virus suspension

were inoculated on MDCK cells grown in serum-free medium.

1 hr later TPCK trypsin (Sigma, Zwijndrecht, Netherlands) was

added to a final concentration of 5 ng/ml. After 72 hr, super-

natants were collected and transferred to a V-bottom 96-well plate

followed by the addition of 50 ml 1% guinea pig erythrocytes

(Harlan, Horst, Netherlands) to each well. The plate was

incubated for 2 hr at room temperature before reading. The titer

was determined as the highest virus dilution at which hemagglu-

tination was visible and the TCID50 was calculated by the method

of Reed & Muench. [20].

For virus inactivation, the virus was incubated with freshly

diluted b-propiolactone in citrate buffer (125 mM sodium citrate,

150 mM sodium chloride, pH 8.2) at a final concentration of

0.1% b-propiolactone. The inactivation procedure was carried out

for 24 hr at 4uC under continuous stirring. After inactivation, the

virus was dialyzed against HBS buffer overnight at 4uC. Subunit
vaccine was prepared by solubilizing the inactivated virus (0.8 mg

virus protein/ml) in HBS buffer containing Tween 80 (0.6 mg/ml)

and hexadecyltrimethylammonium bromide (CTAB, 3.0 mg/ml)

for 3 hr at 4uC under continuous stirring, followed by the removal

of viral nucleocapsid from the preparation by ultracentrifugation

for 30 min at 50,000 rpm in a TLA100.3 rotor at 4uC. Detergents

were then removed by overnight absorption onto Biobeads SM2

(634 mg/ml, Bio-Rad, Hercules, Canada) washed with methanol

prior to use.

Protein content of the inactivated virus and subunit material

was determined by a modified Lowry assay. [22] Hemagglutinin

(HA) content was assumed to be equal to the total protein for

subunit material based on sodium dodecyl sulfate polyacrylamide

gel electrophoresis (SDS-PAGE) results. [23] Vaccines were mixed

at the indicated amounts of subunit and GPI-0100 just before

immunization.

Animal Handling
The protocol for the animal experiments described here was

approved by the Ethics Committee on Animal Research of the

University of Groningen (Permit number: DEC 5896D).

For immunization experiments, female Balb/c mice (Harlan)

aged 8–10 weeks were grouped (n = 6 per group) and immunized

via the intramuscular, intranasal or intrapulmonary route with

1 mg A/PR/8 subunit vaccine with or without GPI-0100 adjuvant

in a two-dose immunization regimen (day 0 and day 20). For

intramuscular immunization, vaccines in 50 ml were divided over

both hind legs. For intranasal immunization, vaccines in 5 ml were
given by pipet to both nasal nares slowly. For intrapulmonary

immunization, mice were brought to an upright position after

isoflurane anesthesia and the trachea was intubated with

a modified Autogard catheter (Becton Dickinson BV, Breda,

Netherlands). Vaccines in 50 ml were then administered using a IA-

1C Microsprayer Aerosolizer for mice attached to a FMJ-250

High Pressure Syringe (both from Penn-Century Inc., PA, USA).

Control mice were intramuscularly injected with HBS buffer. Pre-

boost serum samples were collected on day 20 by orbital puncture

prior to immunizations. On day 27, mice were sacrificed and nose

wash, lung wash, serum and spleen samples were collected for ex

vivo immuno-assays. Mucosal wash samples were collected in 1 ml

phosphate buffer saline (PBS) containing protease inhibitor

(Complete Protease Inhibitor Cocktail, Roche, IN, USA).

For challenge experiments, mice received the immunization

regimen as described above. Pre-boost and pre-challenge serum

samples were collected on day 20 and 34 by orbital puncture prior

to immunizations or virus infections respectively. On day 34, mice

were infected intranasally with 200 TCID50 A/PR/8 influenza

virus in 50 ml of HBS buffer. The virus infection was carried out

under isoflurane anesthesia to ensure deposition of the virus into

the lungs. Mice were monitored, twice a day at fixed time points,

for clinical signs of illness including weight loss and changes in

behavior or appearance. Mice were bled and sacrificed on day 37.

Nasal wash, serum and spleen samples were collected for immuno-

assays. The lung lobes were collected in 1 ml PBS for homoge-

nization and the processed samples were stored at 280uC for later

determination of lung virus titers.

To evaluate the safety of mucosal administration of GPI-0100,

mice were grouped (n = 3 per group) and received two doses of

GPI-0100 alone via the intranasal or the intrapulmonary route.

For intranasal delivery, GPI-0100 in 10 ml was given by pipet to

both nasal nares slowly. For intrapulmonary immunization, GPI-

GPI-0100-Adjuvanted Mucosal Influenza Vaccine
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0100 in 50 ml was given as described above. The control mice for

both routes received HBS buffer. Lung samples were collected

72 hr after the second administration for histopathological

analysis.

IgA, IgG, IgG1 and IgG2a ELISAs
Influenza HA-specific antibody responses were determined by

ELISA. [23] Briefly, ELISA plates (Greiner, Alphen a/d Rijn,

Netherlands) were coated with 0.2 mg of PR8 influenza subunit

antigen per well. 2-fold serial dilutions of serum samples in PBST

(0.05% Tween 20 in PBS) were applied to the wells in duplicate

and incubated for 1.5 hr. Horseradish peroxidase-conjugated goat

anti-mouse IgA or IgG (SouthernBiotech, AL, USA) was added

and incubated for 1 hr for the detection of H1N1-specific IgA,

IgG, IgG1 or IgG2a antibodies. All incubations were carried out at

37uC. The staining was performed with substrate buffer (50 mM

citrate-phosphate buffer, pH 5.5, containing 0.04% o-phenylene-

diamine and 0.012% H2O2). Absorbance at 492 nm (O.D.492)

was measured using an ELISA reader (Bio-tek Instruments Inc.,

VT, USA). For IgA response, the average OD at 492 nm (OD492,

with the standard error of the means (S.E.M.)) for each group at

each dilution was calculated. For IgG response, the averaged titer

for each group (with the S.E.M.) was calculated as the (10log of

the) reciprocal of the sample dilution corresponding to an OD492

of 0.2. For calculation purposes, sera with titers below the

detection limit were assigned an arbitrary titer corresponding to

half of the detection limit.

Calibration plates for IgG1 and IgG2a assay were coated with

0.1 mg goat anti-mouse IgG (SouthernBiotech). Increasing con-

centrations of purified mouse IgG1 or IgG2a (SouthernBiotech)

were added to the plates. Average IgG1 and IgG2a responses for

each group are given as concentrations (mg/ml) of influenza HA-

specific IgG1 and IgG2a.

Hemagglutination Inhibition (HAI) Assay
Serum samples were pre-heated at 56uC for 30 min to

inactivate serum proteins. [23] After cooling down, 75 ml of the
processed serum samples were treated with 225 ml of Kaolin for

30 min at room temperature followed by centrifugation at

1500 rpm for 10 min. The supernatant was collected and applied

to a V-bottom 96-well plate for 2-fold serial dilutions. The same

volume of PR8 influenza virus dilution containing 4 HAU virus

was added to each well and allowed an incubation for 40 min at

room temperature. 50 ml of 1% guinea pig erythrocytes were then

added to each well and the plate was incubated for another 2 hr

before reading. The titer was determined as the highest serum

dilution at which hemagglutination inhibition was visible. 2log

HAI titer for individual mouse is presented.

Elispot
ELISA plates were coated with purified rat IgG1 against mouse

IFN-c or IL-4 (BD Pharmingen, CA, USA). [23] Freshly isolated

splenocytes (500,000 cells per well) were added to the plates in

triplicate in medium containing 5% fetal calf serum with or

without PR8 subunit (1 mg per well). After an overnight incubation

at 37uC, cells were lysed in ice-cold water and plates were washed.

IFN-c or IL-4 detection was carried out by 1 hr incubation with

biotinylated anti-mouse IFN-c or IL-4 antibody followed by

subsequent incubation with streptavidin-alkaline phosphatase

(Pharmingen) for 1 hr. Spots were developed by adding 100 ml
of substrate solution to each well. The substrate solution included

5-bromo-4-chloro-3-indolylphosphate in water containing 6 mg/

ml agarose (Sigma), 9.2 mg/ml 2-amino-2-methyl-1-propanol

(Sigma) and 0.08 ml/ml Triton X-405 at 1 mg/ml. The plates

were further incubated for 3 hr at 37uC. Images of the plates were

taken by an automated ELI-spot assay video analysis system (A EL

VIS, Hannover, Germany). Spots were counted manually. Spots

observed in the wells without PR8 subunit (backgrounds) were

subtracted from the spots observed in the stimulated wells.

Number of influenza-specific IL4-secreting cells per 500,000

splenocytes for each mouse is given.

Determination of Virus Titer in Lungs of the Challenged
Mice
Lungs collected from the immunized and challenged mice were

homogenized and stored at280uC until use. [23] Virus titers were

determined by inoculating serial dilutions of the clarified

homogenates on MDCK cells and culturing the cells in the

presence of TPCK-trypsin as described earlier. The highest

dilution that still resulted in hemagglutination was taken as the

virus titer in the lungs. Result from individual mouse is presented

as 10log virus titer per gram of lung tissue.

Lung Histology
Lung samples from the safety evaluation experiment were

harvested for histopathological analysis. Briefly, lungs were inflated

by injection of 1 ml Tissue-Tek OCT compound (Sakura, Alphen

aan den Rijn, Netherlands) through the trachea and snap frozen in

liquid nitrogen. The lung samples were then stored at 280uC until

use. Frozen sections of lungs (5 mm thick) were prepared using

a Leica CM 1950 micotome (LEICA, Rijswijkn, Netherlands) and

stored at 280uC until use. Just prior to staining, the sections were

fixed in 100% acetone for 10 minutes and air-dried at room

temperature for 30 minutes. Tissues were rehydrated with PBS

and blocked for endogenous peroxidase with H2O2. Sections were

washed three times with PBS and stained for neutrophils and

macrophages using rat anti mouse Ly-6G and Ly-6C (BD

pharmingen) and rat anti mouse CD68 (BD pharmingen) re-

spectively for 60 minutes. Sections were washed as mentioned

previously and subsequently incubated with horseradish peroxi-

dase-conjugated goat anti-rat antibody for 30 minutes. After

washing, color was developed using an AEC staining kit (Sigma).

Sections were washed again and stained with Mayer’s Haematox-

ylin for 10 minutes. Slides were washed with tap water for 5–10

minutes and mounted with ImmunoHistomount. The processed

slides were then scanned with a NanoZoomer 2.0-HT (Hama-

matsu, Tohoku, Japan) and the scanned images were analyzed by

HistoQuest software (TissueGnostics, Vienna, Austria). The results

are presented as % neutrophils or % macrophages per stained

sample.

Statistical Analysis
The unpaired Student’s t-test was used to determine if the

differences in influenza-specific responses observed between

groups of mice were significant. A p value of p,0.05 was

considered significant. Spearman (nonparametric) correlation

analysis was performed to show the inverse relationship observed

between influenza-specific IgG responses and lung virus titers.

Results

Effect of GPI-0100 on Lung Protection Induced by
Mucosally Administered Influenza Vaccine
To evaluate the protective efficacy of non-adjuvanted and GPI-

0100-adjuvanted influenza vaccine administered in the nose or in

the lungs, mice were immunized twice with a 20-day interval and

were infected with live A/PR/8 virus 2 weeks after the second

GPI-0100-Adjuvanted Mucosal Influenza Vaccine
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immunization. No significant weight loss was observed after the

virus challenge in any of the experimental groups for three days till

sacrifice. On day 3, generally the day at which lung virus titers are

at maximum, we sacrificed the mice, collected lung samples, and

determined virus titers in the lung homogenates. Absence of

detectable virus in the lung or significant reduction as compared to

control mice at this time point is generally regarded as indication

for protection.[24–26] The HBS buffer group showed an average

lung virus titer of 3.6-logs (Figure 1). Lungs of mice that received

plain influenza vaccine via the intramuscular route were

significantly protected against virus growth; 5 out of 6 lung

samples collected from these mice had virus titers below the

detection limit. On the other hand, mice that received plain

influenza vaccine via the intranasal and or the intrapulmonary

route developed average lung virus titers not statistically different

from those in the buffer control group. In contrast, mice

immunized with GPI-0100-adjuvanted influenza vaccine via either

of the mucosal routes showed complete protection against lung

virus growth, none of the lung samples collected from these mice

had detectable lung virus titers. These data indicate that GPI-0100

is a strong mucosal adjuvant for influenza vaccine.

Effect of GPI-0100 on Serum Antibody Responses Elicited
by Mucosal Influenza Vaccine
Systemic humoral immune responses elicited by mucosal

influenza subunit vaccine were evaluated by performing in-

fluenza-specific IgG ELISAs on serum samples collected on day

20 and day 34 from mice immunized in Figure 1. Serum samples

collected 20 days after a single immunization showed that plain

influenza vaccine could effectively induce IgG responses when

administered via the intramuscular route (Figure 2A). None of the

mice that received plain influenza vaccine via the intranasal route

and only 2 out of the 6 pulmonarily vaccinated mice developed

detectable IgG responses after one immunization. The responses

were significantly enhanced upon GPI-0100 adjuvantation; 11 out

of 12 mice that received the adjuvanted intranasal vaccine

developed detectable IgG titers after a single immunization and

all mice receiving the adjuvanted intrapulmonary vaccine de-

veloped IgG titers 3-logs after a single immunization.

Influenza-specific systemic antibody responses were further

enhanced after the second immunization, as shown by antibody

determination in serum samples collected prior to the virus

challenge (Figure 2B). Again, strong GPI-0100 adjuvant effects

were observed for both intranasal and intrapulmonary influenza

vaccine (p,0.0001 for the comparison between adjuvanted and

plain intranasal vaccine; p= 0.0006 for the comparison between

adjuvanted and plain intrapulmonary vaccine). Moreover, booster

immunizations with adjuvanted vaccine were very effective

(increase of serum IgG titers by a factor of 130–220), while

booster immunization with plain vaccine increased IgG titers only

moderately (factor 50). Mice that received the adjuvanted

influenza vaccine via the intranasal route all developed serum

IgG titers similar to those found in mice immunized by standard

intramuscular injection. Notably, the group that received the

adjuvanted vaccine via the intrapulmonary route developed the

highest serum IgG titers among all the treatment groups

(p = 0.0023 for the comparison between plain intramuscular and

adjuvanted intrapulmonary vaccine; p= 0.0032 for the compar-

ison between adjuvanted intranasal and intrapulmonary vaccine).

We further evaluated the hemagglutination inhibition (HAI)

capacity of the pre-challenge serum samples mentioned above.

HAI titers to PR8 virus are generally low or undetectable, possibly

due to the intrinsically low immunogenicity of this virus strain. 3

out of the 6 mice receiving plain influenza vaccine intramuscularly

developed detectable HAI titers with an average titer of 7

(Figure 2C). However, only 1 out of the 10 mice receiving plain

vaccine via any of the mucosal routes developed detectable HAI

titers. Upon GPI-0100 adjuvantation, a higher number of

mucosally immunized mice developed positive HAI titers with

the highest responses observed in mice immunized via the

intrapulmonary route. Interestingly, to induce a positive HAI

titer, intranasal influenza vaccine required a higher GPI-0100 dose

than intrapulmonary influenza vaccine. Together, these data

demonstrate that use of GPI-0100 as adjuvant in mucosal

influenza vaccines significantly stimulates systemic humoral

immune responses. The observed systemic antibody responses

correlated strongly with protection from virus growth in the lungs.

Effect of GPI-0100 on the Serum IgG Subtype and Th Cell
Profile Induced by Mucosal Influenza Vaccine
To characterize the phenotype of the systemic antibody

responses, we performed influenza-specific IgG1 and IgG2a

ELISAs on the post-challenge serum samples collected on day

37 upon sacrifice. Mice that received plain influenza vaccine via

the intramuscular route developed a Th2-skewed antibody

response with mainly IgG1 production (Figure 3). Mice receiving

the same vaccine via either one of the mucosal routes, on the other

hand, failed to develop detectable IgG1 or IgG2a responses. The

induction of both antibody subtypes elicited by mucosal influenza

vaccine was substantially enhanced upon GPI-0100 adjuvantation.

Yet, the humoral immune responses elicited by the adjuvanted

mucosal influenza vaccine remained Th2 skewed.

To evaluate the cellular immune response elicited by mucosal

influenza vaccine, mice were immunized twice with a 20 day

interval and were sacrificed one week after the second immuni-

zation. Elispot assays performed on the collected splenocytes

showed that all of the tested vaccines failed to induce detectable

Figure 1. Effects of unadjuvanted and GPI-0100-adjuvanted
mucosal influenza vaccine on lung virus titers. Mice were
immunized on day 0 and on day 20 with 1 mg A/PR/8 subunit vaccine
alone or adjuvanted with the indicated doses of GPI-0100. The control
mice received HBS buffer. The immunizations were given via in-
tramuscular (i.m.), intranasal (i.n.) or intrapulmonary (pul.) route. 2
weeks after the second immunization, mice were infected with live A/
PR/8 virus. Lung samples were collected 3 days later upon termination.
Virus titer is expressed as the 10log virus titer per gram of lung tissue
for individual mice. The black line represents the geometric mean virus
titer per group. One mouse from the HBS control group was sacrificed
before the challenge due to abnormal tissue growth with unknown
reason. Levels of significance are depicted as follows: *p,0.05,
**p,0.01 and ***p,0.005.
doi:10.1371/journal.pone.0052135.g001

GPI-0100-Adjuvanted Mucosal Influenza Vaccine
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numbers of IFNc-producing T cells (data not shown). IL-4 Elispot

assay revealed that plain influenza vaccine administered via the

intramuscular route elicited Th2 cellular immune responses

(Figure 4). Intranasal immunization, however, was inefficient in

eliciting IL-4-secreting T cells in the immunized mice unless GPI-

0100-adjuvanted vaccine was used. Intrapulmonary influenza

vaccine was capable of inducing IL-4-secreting T cells in the

absence and presence of GPI-100 but the number of cells was

significantly enhanced upon adjuvantation (p= 0.0033). The

cellular immune responses observed here showed a strong relation

to serum IgG antibody titers. Moreover, the Th2 type cellular

immune response elicited by the tested vaccines was consistent

with the phenotype of the serum antibody responses.

Effect of GPI-0100 on Mucosal Antibody Responses
Elicited by Mucosal Influenza Vaccine
To evaluate SIgA antibody responses elicited by mucosal

influenza vaccine, nasal and lung wash samples were collected

from the mice described above for the evaluation of cellular

immune response. Influenza-specific IgA ELISA performed on the

nasal wash samples showed that plain influenza vaccine did not

induce detectable SIgA responses in mice when administered via

the intramuscular or the intranasal route (Figure 5A). Upon high

dose GPI-0100 adjuvantation, intranasal influenza vaccine in-

duced detectable nasal SIgA responses in 3 out of the 6 immunized

mice. Interestingly, when administered via the intrapulmonary

route even plain influenza vaccine induced a substantial nasal

SIgA response. This response was further enhanced by adjuvanta-

tion with a low dose of GPI-0100. Influenza-specific IgA ELISA

performed on the lung wash samples showed that only mice

receiving intrapulmonary immunization developed detectable lung

Figure 2. Influenza-specific IgG and hemagluttination inhibi-
tion (HAI) titers elicited by unadjuvanted and GPI-0100-
adjuvanted mucosal influenza vaccine. Serum samples from the
mice described in the legend to Fig. 1 were collected on day 20 and day
34. (A) Total IgG responses after a single immunization. Average 10log
IgG titers 6 standard error of the mean (S.E.M.), n = 6 mice per group.
The detection limit of the assay is represented by the dotted line. (B)
Total IgG responses after two immunizations. (C) HAI titers after two
immunizations. The results are expressed as 2log HAI titers of individual
mice. The black line represents the geometric mean virus titer per
group. Due to technical reasons only 5 and 4 samples from mice
receiving 30 mg GPI-0100 adjuvanted intranasal immunization and
unadjuvanted intrapulmonary immunization were available for the HAI
assay.
doi:10.1371/journal.pone.0052135.g002

Figure 3. Phenotype of the influenza-specific antibody re-
sponses. Serum samples from the mice described in the legend to Fig.
1 were collected on day 37. (A) Average quantities (mg/ml) of influenza-
specific IgG16 S.E.M., n =6 mice per group. (B) Average quantities (mg/
ml) of influenza-specific IgG2a 6 S.E.M.
doi:10.1371/journal.pone.0052135.g003

GPI-0100-Adjuvanted Mucosal Influenza Vaccine
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IgA responses (Figure 5B). Moreover, the responses were

significantly enhanced upon GPI-0100 adjuvantation (p = 0.0001).

Since the presence of mucosal IgG antibody has also been

suggested to play a role in lung protection, we evaluated influenza-

specific IgG in the collected mucosal wash samples described

above. [3,27,28] IgG titers were barely detectable in nasal wash

samples collected from mice receiving plain influenza vaccine via

the intramuscular or the intranasal route (Figure 5C). GPI-0100-

adjuvanted intranasal influenza vaccine, however, did induce

detectable nasal IgG titers in most of the immunized mice.

Intrapulmonary delivery of non-adjuvanted vaccine resulted in

detectable nasal IgG titers in 3 out of 5 mice. When receiving GPI-

0100 adjuvanted intrapulmonary vaccine all mice responded and

the nasal IgG titers were generally higher than those for the non-

adjuvanted vaccine. IgG ELISA performed on lung wash samples

revealed that all mice immunized with plain influenza vaccine via

the intramuscular route developed detectable IgG titers in the

lungs (Figure 5D). The IgG antibody we observed here probably

was derived from systemic IgG that transudated to the lungs rather

than from locally produced IgG. As observed earlier in nasal wash

samples, substantial IgG titers could only be detected in lung wash

samples collected from intranasally immunized mice that received

GPI-0100 adjuvanted vaccine. Notably, mice receiving plain

influenza vaccine via the intrapulmonary route developed quite

high lung IgG titers. The titers were further enhanced by GPI-

0100 (p,0.0001). Thus, GPI-0100 significantly stimulates mucosal

antibody responses elicited by mucosal influenza vaccine.

Effect of GPI-0100 on Lung Inflammation
In order to evaluate the safety of mucosal delivery of GPI-0100,

mice received HBS or GPI-0100 alone via the intranasal or the

intrapulmonary route on day 0 and 20. Mice were sacrificed 72 hr

after the second administration. Lungs were collected for

histopathological analysis of inflammatory cells. Histology images

show that the lung structure was intact without severe cell

infiltration in all experimental mice (Figure 6). HistoQuest

counting of the images revealed that mice receiving GPI-0100

via the intranasal route had a higher number of neutrophils and

macrophages in the lungs than the HBS-treated control mice, but

Figure 4. Effect of GPI-0100 on influenza-specific IL-4-pro-
ducing T cells. Mice were immunized on day 0 and on day 20 with
1 mg A/PR/8 subunit vaccine alone or adjuvanted with the indicated
doses of GPI-0100. The immunizations were given via intramuscular
(i.m.), intranasal (i.n.) or intrapulmonary (pul.) route. Spleen samples
were collected one week later upon termination. Splenocytes were
isolated and stimulated overnight with PR8 subunit. The result is
expressed as cytokine producing splenocytes per 56105 cells of
individual mice.
doi:10.1371/journal.pone.0052135.g004

Figure 5. Influenza-specific mucosal IgA and IgG responses
elicited by unadjuvanted and GPI-0100-adjuvanted mucosal
influenza vaccine. Nose and lung wash samples from the mice
described in the legend to Fig. 4 were collected on day 27 upon
termination. (A) Nasal IgA responses after two immunizations. Average
OD492 at each dilution6 S.E.M., n = 6 mice per group. The starting and
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the differences were not statistically significant (Figure 7). Pulmo-

nary administration of HBS alone resulted in higher numbers of

neutrophils and macrophages in the lungs when compared to

intranasal HBS. However, GPI-0100 did not enhance the mild

irritation caused by the delivery method itself. Thus, for the

amounts investigated, mucosal delivery of GPI-0100 had only

minor effects on lung histology and appeared to be safe.

Discussion

In the present study we evaluated the immunogenicity and

protective efficacy of a GPI-0100-adjuvanted A/PR/8 influenza

subunit vaccine delivered via the intranasal or intrapulmonary

route in a murine model system. The challenge experiment

showed that GPI-0100-adjuvanted mucosal influenza vaccine

could provide complete lung protection against influenza virus

infection in contrast to non-adjuvanted mucosal vaccine. The

strong lung protection was associated with strong serum IgG titers.

Remarkably, GPI-0100 enhanced the serum IgG titers elicited by

the intranasal and the intrapulmonary influenza vaccine up to 410

and 2700 times, respectively. In addition, GPI-0100 significantly

boosted influenza-specific mucosal antibody responses elicited by

the mucosal vaccines. The enhanced systemic and mucosal

antibody responses were associated with enhanced influenza-

specific IL-4 secreting T cell responses. These results were

reproducibly observed for the immunization and the immuniza-

tion/challenge study described in this paper and could be repeated

in subsequent independent follow-up studies.

Our current study demonstrates that mucosal delivery of GPI-

0100-adjuvanted vaccine resulted in strong Th2 type immune

responses (IgG1 and IL-4) but relatively poor induction of Th1-

related IgG2a or IFN-c. Earlier studies on mucosal immunity

indicate that the microenvironment of the respiratory tract tends

to induce a Th2-oriented local immune response.[29–32] Obvi-

ously, GPI-0100 is not capable of overcoming this default immune

response phenotype of the respiratory tract. In contrast, with

parenteral administration we observed earlier that GPI-0100

significantly enhanced both IgG1 and IgG2a antibody responses

elicited by influenza subunit vaccine and led to a more balanced

Th1/Th2 antibody response. [20] Similar to our studies, research

on a Porphyromonas gingivalis vaccine has also pointed out an

effect of the administration route on GPI-0100 adjuvant activity.

[21] Upon subcutaneous administration, GPI-0100-adjuvanted

HagB antigen elicited a more Th1-skewed antibody response than

the antigen alone. Intranasal administration of GPI-0100

adjuvanted HagB antigen, however, stimulated a robust IgG1

but a poor IgG2a response and resulted in a Th2-skewed antibody

phenotype.

We furthermore observed a different immune-inducing poten-

tial of the two mucosal immunization routes investigated. Plain

influenza vaccine was effective in inducing mucosal antibody

responses when delivered via the intrapulmonary but not the

intranasal route. In addition, with the same dose of GPI-0100

adjuvant, intrapulmonary vaccine elicited significantly higher

mucosal and systemic antibody responses than intranasal vaccine.

The difference in immunogenicity of mucosal vaccines delivered to

different sites of the respiratory tract was also observed in several

other vaccination studies, all pointing out that a good mucosal

immunogenicity and induction of protective response were

achieved by antigen delivery to the total respiratory tract (TRT),

or the lower respiratory tract (LRT), but not the upper respiratory

tract (UTR).[33–35] Studies on antigen deposition have shown

that intranasal delivery of a large antigen volume results in antigen

deposition in deeper locations along the respiratory tract while

small volumes retain the antigen in the nose. [33,36] Since we

were interested in elucidating in how far the site of delivery is

important for the adjuvant function of GPI-0100 we took care to

ensure delivery to the nasal mucosa by using a small inoculum of

5 ml and to circumvent the nasal mucosa and deliver the vaccine

exclusively to the lower respiratory tract by administering an

aerosol to intubated mice. This allowed us to detect the

particularly strong adjuvant function of GPI-0100 in the lungs.

With strict URT and LRT targeting, our data show that 15 mg
GPI-0100 was sufficient for both intranasal and intrapulmonary

influenza vaccine containing 1 mg HA to elicit substantial serum

antibody responses after a single immunization. Another saponin-

derived adjuvant that can easily be mixed with protein antigens

and has been studied in the context of mucosal immunization

against influenza is ISCOMATRIXTM (IMX). [35,37–39] In

a study of Coulter et al, IMX-adjuvanted split influenza vaccine

delivered in a small volume of 12 ml induced comparable antibody

titers as in our study. Yet, the amount of IMX used was with

100 mg much higher than the amount of GPI-0100 (15 mg) used
here. Another study on IMX adjuvanted influenza vaccine (6.8 mg
HA with 10 mg IMX) showed that a single dose immunization via

the UTR failed to induce detectable serum antibody responses and

lung protection in the immunized mice. [35] According to that

study, an adjuvant effect of this low dose of IMX was only

observed when the vaccine was delivered to the TRT while GPI-

0100 clearly showed adjuvant activity in the UTR at a comparable

dose. Thus, GPI-0100 is at least as potent as or even more potent

than IMX as adjuvant for mucosal immunization via the

respiratory tract.

Cholera toxin subunit B (CTB) is one of the most potent

mucosal adjuvants and is the only mucosal adjuvant that has been

incorporated into currently licensed mucosal vaccines. [40] Studies

on CTB-adjuvanted mucosal influenza vaccine have shown that

nasal IgA responses elicited by intranasal influenza vaccine

containing 1 mg HA were boosted upon CTB adjuvantation up

to 4- and 6-fold, with a 2- and 3-dose regimen respectively.[41–42]

In addition, CTB enhanced systemic IgG responses elicited by the

intranasal influenza vaccine for more than 4- and 250-fold, for the

two regimens respectively. Here we observed that GPI-0100

mucosal adjuvantation enhanced nasal IgA by a factor of .2.5

and systemic IgG responses by a factor of 410 with a 2-dose

regiment. For pulmonary immunization GPI-0100 enhanced nasal

and pulmonary IgA by a factor of 7 and 110, respectively.

Systemic IgG titers after two immunizations were enhanced by

more than 2700-folds. Thus, GPI-0100 showed similar or even

better mucosal adjuvant activity than the most potent adjuvant

known to date.

Respiratory tract immunization has been shown to induce

a heterogenous population of lymphocytes expressing different

surface adhesion molecules. [2,43] Depending on the expression

profile of the surface markers, the activated lymphocytes can home

to the mucosal priming site or to systemic lymphoid organs and

blood later on. The capacity of respiratory tract immunization to

integrate mucosal and systemic immunity is also shown in the

present study with the induction of mucosal and systemic antibody

responses. Upon influenza infection most probably both mucosal

ending dilution is 2 and 4096 respectively. (B) Lung IgA responses after
two immunizations. (C) Nasal IgG responses after two immunizations.
Average IgG titers 6 S.E.M. Due to technical reasons only 5 samples
from mice receiving unadjuvanted intrapulmonary immunization were
available. (D) Lung IgG responses after two immunizations. Due to
technical reasons only 5 samples from mice receiving HBS and
intrapulmonary immunization were available.
doi:10.1371/journal.pone.0052135.g005
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Figure 6. Effect of GPI-0100 on lung histology. On day 0 and on day 20 mice received either HBS buffer (A, C, E, G) or GPI-0100 at the indicated
doses (B, D, F, H) via the intranasal (A, B, E, F) or the intrapulmonary (C, D, G, H) route. Lung samples were collected 3 days after the second treatment
upon termination. Lung sections were prepared and stained for Ly-6G and Ly-6C (A-D) or CD68 (E-H) to identify neutrophils and macrophages,
respectively. Representative pictures of histological analyses of each treatment group are shown. The brown colored cells indicated by an arrow is
a neutrophil (N) or a macrophage (M).
doi:10.1371/journal.pone.0052135.g006
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antibodies as well as systemic antibodies contribute to protection.

[27,28,44,45] In our study in which we used TRT virus challenge

we observed a particularly high inverse correlation between serum

IgG titers and virus titers detected in the lung supernatant of the

immunized and challenged mice (Spearman r (coefficient) =

20.69, p,0.0001). However, in natural infection IgA in the

URT might be of high importance to prevent initial infection. In

this sense, GPI-0100 adjuvanted subunit vaccine which can elicit

both mucosal immune responses at the port of entry of influenza

virus and systemic immune responses with proven significance for

preventing LRT complications is ideal.

The safety of GPI-0100 mucosal administration was evaluated

in the current study by lung histology analysis. Neutrophil and

macrophage staining in the lung sections showed that GPI-0100

did not induce more severe inflammation than the mechanical

irritation caused by intrapulmonary delivery itself. The latter was

also observed in an earlier study. [46] To our knowledge, we are

the first to show that mucosal delivery of a saponin-derived

adjuvant to the nose or directly into the lungs is well tolerated.

In conclusion, our data show that GPI-0100 is a potent and

well-tolerated mucosal adjuvant for influenza subunit vaccines. In

the murine model system, GPI-0100 enhanced mucosal antibody

responses in the respiratory tract elicited by both intranasal and

intrapulmonary vaccines. Such mucosal antibodies can provide

early neutralization before the attachment of influenza virus to the

host cells. In addition, GPI-0100 adjuvanted mucosal vaccine

induced strong systemic antibody responses, known to offer

effective lung protection upon virus challenge. [27,28] Further-

more, we showed that GPI-0100-adjuvanted influenza vaccine

delivered via the intrapulmonary route was very potent and

a much lower antigen dose could possibly be applied. Since aerosol

inhalation devices for deep lung targeting in humans are available,

intrapulmonary immunization offers an easy and promising

strategy for future mucosal influenza vaccination.
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