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Abstract

Identifying perturbed or dysregulated pathways is critical to understanding the biological processes that change within an
experiment. Previous methods identified important pathways that are significantly enriched among differentially expressed
genes; however, these methods cannot account for small, coordinated changes in gene expression that amass across a
whole pathway. In order to overcome this limitation, we use microarray gene expression data to identify pathway
perturbation based on pathway correlation profiles. By identifying the distribution of gene-gene pair correlations within a
pathway, we can rank the pathways based on the level of perturbation and dysregulation. We have shown this successfully
for differences between two experimental conditions in Escherichia coli and changes within time series data in
Saccharomyces cerevisiae, as well as two estrogen receptor response classes of breast cancer. Overall, our method made
significant predictions as to the pathway perturbations that are involved in the experimental conditions.

Citation: Tegge AN, Caldwell CW, Xu D (2012) Pathway Correlation Profile of Gene-Gene Co-Expression for Identifying Pathway Perturbation. PLoS ONE 7(12):
e52127. doi:10.1371/journal.pone.0052127

Editor: Ying Xu, University of Georgia, United States of America

Received September 11, 2012; Accepted November 14, 2012; Published December 20, 2012

Copyright: � 2012 Tegge et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Library of Medicine Biomedical and Health Informatics Research Training Program T15-LM07089. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xudong@missouri.edu

Introduction

Identification of perturbed or dysregulated pathways is impor-

tant for understanding changes in biological processes between

two conditions. Microarray technologies are essential for identi-

fying differences in gene expression, but there has been limited in-

depth use of microarray data on a pathway level. When it comes to

pathways, microarray data is typically used to identify pathways

enriched with significantly differentially expressed genes. Ulti-

mately, these studies try to extrapolate activated/repressed

pathways, i.e., those pathways that show global increases and

decreases in gene expression, respectively [1]. Alternatively,

microarray data can also be used via co-expression networks for

pathway reconstruction where little to no prior pathway knowl-

edge is applied in the co-expression networks.

In order to identify pathways of interest, various gene set

enrichment (GSE) methods are utilized [2,3,4,5]. These methods

rank genes by the expression’s signal-to-noise ratios [6] or the

correlation of expression with the phenotype [2], determine an

enrichment score for each gene ontology or pathway, and then

select a set of gene ontologies or pathways based on the

significance of their enrichment scores. Keller et al. extended a

GSE method by utilizing dynamic programming in order to

optimize this selection of significant signaling pathways [7]. GSE

methods, however, require a set of genes in the gene list or

pathway to be differentially expressed with statistical significance;

though this requirement is sufficient in many instances, it is not

necessary in order for a pathway to be dysregulated. Furthermore,

this condition may not accurately reflect globally perturbed

pathways. There are many biological circumstances where a few

differentially expressed genes can be identified; yet large patho-

logical differences are observed, such as diagnosis-relapse events

[8,9]. In order to help reduce this dependency on differentially

expressed genes, Adewale et al. developed a regression analysis to

handle pathway data, where they agglomerate a pathway-level test

statistic for each individual gene in the pathway [10]. Again,

though this returns a pathway level result, it still looks at each gene

individually and not at how the genes coordinate with each other

within the pathway. Moreover, rich information in microarray

data may be underutilized. For example, current computational

methods generally aggregate the biological replicates into a mean

or median, thus losing added information from the available data.

Microarray data has also been used for gene-gene correlation or

the co-expression of genes, which has resulted in novel pathway

identification [11,12,13]. In particular, methods for pathway

identification often rely on strong correlations between two genes.

Inversely, those genes that are not co-regulated are assumed not

correlated, which sometimes may not be the case. Due to these

limitations, Childs et al. developed both a condition dependent

and independent approach for establishing functional annotation

modules to describe regulatory processes [14]. As an extension of

novel pathway identification, Novak and Jain used selective gene

co-expression in order to confirm valid pathways [15]. Allocco

et al. also showed that there is a relationship between regulation

and co-expression [16]. Through these methods, they identified

that there is an increase in gene-gene correlation when a common

mechanism of regulation is involved with both genes, e.g., a

common transcription factor. Though these methods utilize gene-

gene correlation, their goal is to identify pathways or modules that
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are co-regulated, yet may not interrogate general perturbations of

known or unknown gene sets that are not revealed in the form of

co-expression.

To aid in identifying perturbed pathways, differential gene-gene

co-expression has been implemented for studying changes between

different diseases and biological conditions. Lai et al. use gene-

gene co-expression to identify genes with similar co-expression

patterns to those that are already known to be involved in the

biological process of interest [17]. This method does not rely on

differential expression of genes, but relies on coordinated gene

expression instead; however, it still interrogates the expression data

on a gene level and does not look at the global differential gene-

gene co-expression of the pathway. Cho et al. used differential co-

expression to identify gene sets (e.g., pathways) that have

differences in gene expression [18], but again does not look into

the changing dynamics within a pathway or gene set. More

applicably, however, Freudenberg et al. used differential co-

expression coupled with unsupervised learning in order to identify

gene sets that are significant under various conditions [19]. While

their method does not utilize previously defined gene sets, it does

show that given significant gene sets, there is an increase in gene-

gene pair correlations. There are several disadvantages to these

methods. They assess the behavior of individual genes to

summarize the activity of a pathway and/or do not look at the

trends of pair-wise interactions between genes within an entire

predefined pathway.

To overcome these challenges, we developed a systematic

method of using microarray gene expression data to identify

pathway perturbation based on changes in pathway correlation

profiles derived from the gene-gene pairs. Given gene sets

extracted from known pathways, we identify significant path-

ways based on changes in gene co-expression. We can identify

those pathways that are significantly perturbed in an experi-

ment, as well as isolate groups of genes that are known to be

strongly involved in a pathway’s regulation. In addition, we can

identify potential significant genes that may be involved in the

perturbation of a pathway but are not differentially expressed as

defined by statistical confidence. Our method no longer relies

on single gene involvement as well as effectively utilizes the

added information gained from biological replicates within an

experiment to successfully identify and rank significantly

perturbed pathways.

Results

Pathway Ranking
Pathways were ranked based on their Benjamini corrected p-

values that test if there is a significant change in the gene-gene pair

correlations between two samples. Those pathways with a positive

mean difference in correlations show that the gene-gene pair

correlations from the treatment samples are on average higher

than those gene-gene pair correlations derived from the normal

samples. Conversely, those pathways with a negative mean

difference show that there is a decrease in the pathway’s

correlation profile under the treatment conditions. Table 1 and

Table 2 show the top ranking pathways from the E. coli data set

when comparing pH 8.7 to an ideal pH 7, and the breast cancer

data set when comparing ER-positive to ER-negative, respectively

(full tables in Tables S1, S2, and S3).

There are 24 significantly perturbed pathways in the E. coli data

set when looking at both pH 8.7 and pH 5 compared to the ideal

pH 7 (Benjamini corrected p-value ,0.01). The S. cerevisiae

pathway mean difference and adjusted p-values were also

calculated for the five time points compared to the control group

(full results in Table S2). There are 16, 23, 21, 23, and 19

significantly perturbed pathways when comparing the desiccation,

at 0 (dry), 15, 45, 90 and 360 minutes, to the control group,

respectively (Benjamini corrected p-value ,0.01). In the breast

cancer data set, the pathway correlation profile method identified

33 pathways as statistically perturbed when comparing ER-

positive to ER-negative patient samples (Benjamini corrected p-

value ,0.01).

As a comparison, a Gene Set Enrichment (GSE) analysis using

DAVID was also performed [20] and the most significant KEGG

pathways [21] are reported in Table 1 and Table 2 for the E. coli

and breast cancer data sets. Of the top 15 pathways reported from

DAVID for the E. coli data, 20% overlapped with those deemed

significantly perturbed from the pathway correlation profile

analysis. This resulted in the pathway correlation profile method

making numerous novel predictions for perturbed pathways that

were not previously discovered using GSE methods such as

DAVID. For the breast cancer data set, no pathways were found

in common between the two methods.

Pathways Perturbed in E. coli
After our pathway correlation profile analysis, the E. coli

metabolic pathways were ranked by p-values (the top 15 significant

pathways shown in Table 1; full pathway results provided in Table

S1). Those pathways with a mean difference greater than zero

show an increase in gene-gene pair correlations under the stressed

pH 8.7 when compared to an ideal pH 7.

When comparing E. coli at pH 8.7 against the ideal pH 7, a

majority of the significant pathways (19 out of 24) show an

increase in gene-gene correlations during the basic environment

(p-value ,0.01). Similarly, when comparing pH 5 to the ideal

pH 7, only 18 pathways out of the 24 significantly perturbed

pathways show this increase in gene-gene correlations under

these conditions. In fact, only 14 pathways in common are

significant under both stressed conditions, when compared to the

ideal pH.

The Biotin Metabolism pathway (ecj00780) was the top ranked

pathway based on perturbation when comparing the samples at

pH 8.7 with those at pH 7. The kernel smoothed density graphs of

the pathway correlation profiles at pH 5, pH 7, and pH 8.7 from

the Biotin Metabolism pathway are shown in Figure 1A. The

pathway correlation profile at pH 8.7 (in blue) shows an overall

increase in untransformed gene-gene pair correlations within the

pathway, suggesting a convergence towards a more consistent

profile of the pathway during this stress. There is minimal

difference between the pathway correlation profiles for this

pathway at pH 5 and pH 7, also supported by the non-significant

p-value. In the analysis, the Fisher transformed pathway correla-

tion profiles for the Biotin Metabolism pathway under each

condition were directly compared (Figure 1B).

Pathways Perturbed in S. cerevisiae
Our pathway correlation profile method compared the S.

cerevisiae treatments (desiccated and four rehydration time points)

to the control samples. Both the metabolic and non-metabolic

pathways were ranked based on Benjamini corrected p-values.

Complete final pathway results are in Table S2. When looking

at the time series data, a few trends can be identified. Three

pathways show a statistically significant increase in correlation

while desiccated, and no significant changes in gene-gene

correlation throughout rehydration. Six pathways show the

most significant decreases in gene-gene correlation after 360

minutes of rehydration, and less significant decreases in pathway

correlation at all other time points. These pathways, including

Pathway Co-Expression Correlation Profile
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Table 1. Comparison between DAVID Gene Set Enrichment Analysis and Pathway Correlation Profile analysis of E. coli pH data set
at pH 8.7 compared to ideal pH 7.

Pathway Correlation Profile DAVID Gene Set Enrichment

KEGG ID Pathway Name
Mean
Difference p-value* KEGG ID Pathway Name p-value*

ecj00780 Biotin metabolism 0.549 6.46E-20 ecj00230 Purine metabolism 1.27E-07

ecj00523 Polyketide sugar unit biosynthesis 0.688 3.09E-16 ecj00190 Oxidative phosphorylation 2.05E-07

ecj01040 Biosynthesis of unsaturated fatty acids 0.590 2.02E-14 ecj00240 Pyrimidine metabolism 1.03E-06

ecj00230 Purine metabolism 0.186 1.71E-13 ecj00340 Histidine metabolism 3.53E-05

ecj00790 Folate biosynthesis 0.445 6.28E-07 ecj00020 Citrate cycle (TCA cycle) 1.96E-04

ecj00632 Benzoate degradation via CoA ligation 20.516 6.89E-06 ecj00620 Pyruvate metabolism 1.99E-04

ecj00053 Ascorbate and aldar 0.452 5.23E-05 ecj00500 Starch and sucrose metabolism 4.36E-04

ecj00380 Tryptophan metabolism 20.547 7.69E-05 ecj00670 One carbon pool by folate 2.81E-03

ecj00900 Terpenoid backbone biosynthesis 0.462 4.54E-04 ecj00650 Butanoate metabolism 4.10E-03

ecj00471 D-Glutamine and D-glutamate
metabolism

0.413 5.35E-04 ecj00040 Pentose and glucuronate interconversions 4.20E-03

ecj00020 Citrate cycle (TCA cycle) 20.246 5.85E-04 ecj00010 Glycolysis/Gluconeogenesis 6.74E-03

ecj01053 Biosynthesis of siderophore group
nonribosomal peptides

0.460 5.85E-04 ecj00030 Pentose phosphate pathway 7.65E-03

ecj01110 Biosynthesis of secondary metabolites 0.039 6.64E-04 ecj00052 Galactose metabolism 1.10E-02

ecj00740 Riboflavin metabolism 0.526 1.05E-03 ecj00632 Benzoate degradation via CoA ligation 2.27E-02

ecj00450 Selenoamino acid metabolism 0.433 1.12E-03 ecj00250 Alanine, aspartate and glutamate
metabolism

3.03E-02

Pathway rankings based on adjusted p-values. Those pathways with positive mean differences show that the gene-gene pairs on average have a higher correlation at a
stressed pH, and a lower correlation at an ideal pH. (Full pathway ranking in Supplemental Data). *: Benjamini correction.
doi:10.1371/journal.pone.0052127.t001

Table 2. Comparison between DAVID Gene Set Enrichment analysis and Pathway Correlation Profile analysis of the human breast
cancer data set.

Pathway Correlation Profile DAVID Gene Set Enrichment

KEGG ID Pathway Name
Mean
Difference p-value* KEGG ID Pathway Name p-value*

hsa03040 Spliceosome 20.0412 5.83E-30 hsa05219 Bladder cancer 0.004

hsa04080 Neuroactive ligand-receptor interaction 20.0367 6.48E-22 hsa05200 Pathways in cancer 0.024

hsa03010 Ribosome 0.0382 2.74E-17 hsa04110 Cell cycle 0.069

hsa04514 Cell adhesion molecules (CAMs) 0.0298 1.63E-12 hsa04062 Chemokine signaling pathway 0.076

hsa00061 Fatty acid biosynthesis 20.1712 3.32E-12 hsa04115 p53 signaling pathway 0.075

hsa00982 Drug metabolism - cytochrome P450 20.058 4.79E-09 hsa00380 Tryptophan metabolism 0.063

hsa00140 Steroid hormone biosynthesis 20.088 4.49E-08 hsa05215 Prostate cancer 0.058

hsa04060 Cytokine-cytokine receptor interaction 0.0152 5.41E-07 hsa05222 Small cell lung cancer 0.087

hsa05330 Allograft rejection 20.0452 7.69E-07 hsa00010 Glycolysis/Gluconeogenesis 0.400

hsa00980 Metabolism of xenobiotics by cytochrome
P450

20.059 8.55E-07 hsa04144 Endocytosis 0.387

hsa03050 Proteasome 20.0451 9.40E-07 hsa04512 ECM-receptor interaction 0.365

hsa00232 Caffeine metabolism 20.1427 1.32E-06 hsa04114 Oocyte meiosis 0.375

hsa04740 Olfactory transduction 0.0395 1.50E-06 hsa04510 Focal adhesion 0.362

hsa05322 Systemic lupus erythematosus 0.0171 3.46E-06 hsa04960 Aldosterone-regulated sodium
reabsorption

0.349

hsa04142 Lysosome 20.0174 2.86E-05 hsa00330 Arginine and proline metabolism 0.360

Pathway rankings based on adjusted p-values. Those pathways with positive mean differences show that the gene-gene pairs on average have a higher correlation in
ER-positive patient samples and a lower correlation in ER-negative patient samples for that pathway. (Full pathway ranking in Supplemental Data). *: Benjamini
correction.
doi:10.1371/journal.pone.0052127.t002
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the DNA replication and mRNA Surveillance pathway, show a

trend towards an uncorrelated state as the rehydration process

progresses (i.e. more negative mean difference). Seven pathways

show significant perturbation at all time points when compared

to the control sample. Of these, only the Ribosome pathway

shows a convergence towards a more correlated state during all

the time points. The untransformed pathway correlation profiles

for the Ribosome pathway (sce03010) are shown in Figure 2B.

The profile for the control sample shows a more random

distribution of correlations; whereas the profiles for all the time

points of rehydration and the desiccated sample show a strong

skew towards a highly correlated state. Figure 2C demonstrates

the pathway correlation profile distributions approaching normal

after the Fisher transformation.

Pathways Perturbed in Breast Cancer
Our pathway correlation profile analysis was performed on the

ER-positive/ER-negative breast cancer data set and both the

metabolic and non-metabolic pathways were ranked by adjusted

p-values (top 15 significant pathways shown in Table 2; full

pathway results provided in Table S3). In total, 33 out of 188

pathways were ranked as significantly perturbed (Benjamini

corrected p-value ,0.01) and 70% of these pathways show

increases in gene-gene correlation in the ER-negative patient

samples when compared to those from ER-positive patient

samples.

The Spliceosome pathway (hsa03040) and the Neuroactive

Ligand-Receptor Interaction pathway (hsa04080) were ranked as

most perturbed when comparing the receptor status groups. Both

of these pathways show an average decrease in gene-gene pair

correlations when comparing ER-positive to ER-negative patient

samples. Due to the larger variations among patients in cancer

data sets than those in single-cell microbes (E. coli and S. cerevisiae),

the gene-gene pair correlations are smaller in magnitude. Thus,

the mean difference of the pathway is smaller, when compared to

more controlled data sets of E. coli and S. cerevisiae.

Discussion

Our pathway correlation profile method relies on the assump-

tion that non-significant genes/pathways have a random correla-

tion as their background ‘‘noise.’’ To show that a pathway is

perturbed (i.e. activated or repressed), we need to show that the

pathway no longer maintains a random gene-gene correlation

profile but rather takes on a more convergent profile. This

convergence could be either towards a coherently regulated state,

as indicated by positive changes in correlations, or a dysregulated

state, as indicated by negative changes in correlations. Final

interpretations of the correlation profiles are likely to depend on

the gene expression trends within the pathway.

A majority of the top 15 most significant E. coli pathways under

basic conditions, when ranked by p-value, show an increase in

correlation under the extreme conditions. This increase in

correlation suggests that those pathways have a more consistently

regulated system under these conditions when compared to

normal; hence these pathways are likely to be universally activated

or repressed in a highly coordinated manner. As for the acidic

conditions, a majority of the 24 significant pathways show an

increase in pathway correlation profiles, suggesting many path-

ways require activation/coordination of their expression under

stressful conditions.

The increase in gene-gene pair correlations of the Biotin

Metabolism pathway in E. coli at a pH of 8.7 (Figure 1), when

compared to the ideal pH 7, suggests this pathway is activated at

pH 8.7 and converges to a more correlated state. Biotin is a

relatively unstable molecule in alkaline conditions [22], and in E.

coli the majority of the genes in the Biotin Metabolism pathway are

part of the bio-operon [23]. With a decrease in the stability, and

presumably therefore the abundance of biotin under alkaline

conditions, there is increased expression of the bio-operon. Since

these genes are organized as an operon, increase in expression of

one gene results in a coordinated increase in expression of the

other genes, which can be quantified through increases in gene-

gene correlations. This is confirmed by the results from the

pathway correlation profile method which show an increase in

Figure 1. Pathway correlation profiles for Biotin Metabolism Pathway (ecj00780) in E. coli. (a) Pathway correlation profile kernel density
smoothed graphs before fisher transformation of the Biotin Metabolism Pathway. (b) Pathway correlation profile kernel density smoothed graphs
after fisher transformation of the Biotin Metabolism Pathway. (pH 8.7: blue, pH 7: black, and pH 5: red).
doi:10.1371/journal.pone.0052127.g001
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gene-gene pair correlations at pH 8.7 compared to pH 7

(Figure 1A, 1B).

In the S. cerevisiae data set, there were varying changes in

pathway correlation profiles throughout the time points within the

experiment. At the time of desiccation, 16 pathways had

significantly different pathway correlation profiles from those in

the control (corrected p-value ,0.01). Of these, eight pathways

have a decrease in gene-gene correlations, and eight show an

increase in gene-gene correlations, including the Ribosome

pathway (sce03010) and Cell Cycle in Yeast (sce04111). Of these

eight pathways, only two show this significant increase in pathway

correlation profiles at the time of desiccation and no significant

changes during rehydration (Cell Cycle in Yeast and Nucleotide

Excision Repair). These two pathways, in essence, show increases

in consistency of regulation at the time of desiccation with

subsequent non-regulation during rehydration. This suggests that

these pathways were necessary for cell survival at the time of

desiccation but were not necessary throughout the rehydration

process.

A significant increase in pathway correlation suggests:

1. the cells in the sample taken are a more homogeneous set of

cells than those in the control sample; and/or

2. the pathway shows a more stable and consistent expression

profile among the genes involved in this pathway, such as a

regulated pathway.

These hypotheses can be shown through the Yeast Cell Cycle

and the Ribosome pathways, respectively.

A more homogenous population of cells will reduce the

biological variation in gene expression from positive signals, i.e.,

there is a stronger relationship between gene expression and

phenotype [24]. According to Singh et al. the cells remained in the

G0/G1 phase, or in a ‘‘holding pattern’’ at the time of desiccation

and throughout the rehydration process [25]. The increase shown

in the Cell Cycle pathway correlation at the time of desiccation

suggests that there is an increase in pathway regulation stemming

from a decrease in gene expression variation within this pathway.

These results, together with the coincidence in cell cycle timing,

suggest a more homogeneous population of cells.

Genes that are working together show increases in gene co-

expression and coalesce into a more synchronous pathway [26].

The Cell Cycle pathway shows this more stable and consistent

pathway correlation profile among the genes involved in this

pathway. Besides showing a significant increase in correlation

while desiccated, this pathway shows no significant changes at the

onset of rehydration; however, it then shows a progressive move

towards convergence to a more correlated state as the rehydration

processes progressed, though still not significant. During this

‘‘holding pattern’’ time from desiccation through rehydration, the

Cell Cycle pathway may not need to be orchestrated since the cells

do not progress through the cell cycle. Instead, these genes show a

Figure 2. Pathway correlation profiles for Ribosome Pathway (sce03010) in S. cerevisiae. (a) Gene expression level plots of the Ribosome
Pathway (b) Pathway correlation profile kernel density smoothed graphs before fisher transformation of the Ribosome Pathway. (c) Pathway
correlation profile kernel density smoothed graphs after fisher transformation of the Ribosome Pathway. (Control: black, 0 minutes: red, 15 minutes:
blue, 45 minutes: green, 90 minutes: yellow, and 360 minutes: magenta).
doi:10.1371/journal.pone.0052127.g002

Pathway Co-Expression Correlation Profile
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more random background profile as would be expected from an

unregulated pathway.

In contrast to the increase in pathway correlation of the Cell

Cycle pathway, the DNA Replication pathway (sce03030) shows a

significant decrease in gene-gene correlations at desiccation and at

subsequent rehydration time points. Given that the cell population

at these time points is held in the G0/G1 phase and not the S

phase, there is no DNA replication occurring. All of this taken

together suggests that the DNA Replication pathway is not

essential for cell survival during the desiccation and rehydration,

and is therefore dysregulated.

The Ribosome pathway (sce03010), on the other hand, shows

an increase in pathway correlation profile at all time points

compared to the control. These positive correlation changes

suggest that the pathway is regulated at all time points. This

regulation (deactivation) can be shown through the strong, and

nearly universal, decreases in gene expression within this pathway

(Figure 2A). For all time points, including desiccation and

throughout rehydration, the 132 genes in this pathway show a

decrease in expression, averaging greater than 4-fold change when

compared to the control sample’s expression profile. Given this

pathway is regulated at all time points, identifying modules/

clusters of genes that are coordinately regulated at each time point

is important in understanding the pathway dynamics. Using a

heatmap of the gene-gene pair correlations (Figure 3; Figures S1,

S2, S3, S4, and S5), we can cluster the genes at each time point.

Through these heatmaps, we can show that there are strong and

dynamic clusters of genes that co-express together at each

particular time point suggesting varying modules of regulation

that are differentially activated at each time point.

Just over half of the S. cerevisiae pathways, however, showed no

significant changes in pathway correlation profiles throughout the

desiccation and rehydration process (based on corrected p-values).

These pathways, including many metabolic pathways, are likely to

have not changed in functional regulation or are not essential for

the cell’s survival during these times. It follows that the metabolic

pathways are necessary to function while the cell is still alive, and

drastic changes in these pathways could result in cellular death.

In contrast, 7 out of 88 pathways (8%) show a significant change

in gene-gene correlation during all time points of the experiment

when compared to the control sample. All of these pathways,

except the Ribosome pathway, show a decrease in gene-gene

correlation throughout the desiccation and rehydration process.

This decrease in gene-gene pair correlations could infer that these

pathways are necessary for cell survival and/or proliferation under

normal conditions, but once stresses are induced, these pathways

are no longer required to be regulated during duress.

In comparing our method to the well accepted DAVID gene

set enrichment method [20], there was some concordance

between results on the E. coli pH 8.7 data. With 20% of the top

15 pathways in common, our method identifies not only

significant pathways that would have been previously discovered

given these experimental conditions, but also uncovers 12

additional pathways that would not previously have been

investigated. The gene-gene pair correlations allow for an

alternative perspective on pathway perturbation and the

utilization of biological replicates independently, therefore

identify significant pathways through different assumptions.

The folate biosynthesis pathway (ecj00790), one of these 12

novel predictions, shows an increase in gene-gene pair

correlations when comparing pH 8.7 to the control pH for E.

coli. Within this pathway, a majority of the genes show small

increases in gene expression under the basic conditions. Due to

none of these increases in gene expression being statistically

significant, this pathway was not reported in DAVID, a

standard GSE method. It has been shown in selected species

of lactic acid bacteria that higher pHs allow for increases in

folate levels, suggesting more efficient folate biosynthesis under

these conditions [27]. Similar explanations about folate biosyn-

thesis could be inferred for E. coli under basic conditions. By

exploring the data through a different perspective, i.e., our

pathway correlation profiles, we can identify new pathways that

have the potential to be involved in the condition and further

add insight into explaining the biological mechanisms that occur

within the cell when stressed at pH 8.7.

The pathway correlation profile method was used to analyze a

breast cancer estrogen receptor data set. When comparing the

results from our method with those from the DAVID gene set

enrichment method, no pathways were found in common. In fact,

only two pathways were deemed significant when using DAVID

(Benjamini adjusted p-value ,0.01). The discordance in predic-

tions between our method and the DAVID method is due to the

different assumptions regarding pathway perturbation as well as

the DAVID method having a bias towards larger pathways,

whereas our method tries to reduce pathway size biases. As a

result, we can make predictions of perturbation that are

independent of size.

Wang et al. reported that their gene signature for differentiating

ER-positive from ER-negative patients included pathways in-

volved in cell death, cell cycle and proliferation, DNA replication

and repair, and immune response [28]. The pathway correlation

profile did in fact find perturbation in the DNA Replication

pathway and the Cell Cycle pathway (p-value ,0.05; Table S3),

and so did DAVID. The pathway correlation profile method

found the Neuroactive Ligand-Receptor Interaction pathway

(hsa04080) perturbed in breast cancer, but DAVID found this

pathway non-significant. Within this pathway, PTGER3 is

involved in many of the largest changes in gene-gene correlations.

Though PTGER3 has minimal change in gene expression, the

average change in Fisher transformed gene-gene correlations

between this gene and all other genes in the pathway is 0.34, with

increases in gene-gene pair correlations in ER-negative patient

samples. Further validation is needed to show the relation between

PTGER3 and estrogen receptor status in breast cancer.

Here, we have used a pathway correlation profile method to

identify perturbed pathways in E. coli, S. cerevisiae, and a human

breast cancer data set. Our method takes a global approach to

analyzing gene expression data for identifying pathway perturba-

tion. First, we take advantage of the prior knowledge of pathway

members and use this to efficiently and effectively analyze the

data. Second, we no longer rely on single gene involvement to

identify significant pathways; rather, we look at the overall

relationship between genes within a pathway and determine the

level of perturbation based on changes in gene-gene relations,

regardless of a specific gene’s expression profile. Third, our

method exploits the biological repeats of gene expression data,

while existing methods often take an average of the repeats without

using the data explicitly. Lastly, our method is more robust and

less influenced by the inherent noise that comes from microarrays.

This method can also be adapted for additional pathway

databases, such as Reactome [29], TRANSPATH [30], and pre-

defined gene ontologies, as well as alternate data platforms, such as

RNA-seq [31].

Our pathway correlation profile method also has some

limitations. Like other computational approaches based on gene

expression analysis only, our method does not include regulatory

mechanisms that may not be reflected in gene expression data,

such as protein translational control, post-translational modifica-
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tions and kinetic control of biochemical reactions. These issues

may be addressed by incorporating other types of data in the

analysis. We also plan to develop a general software tool or plugin

for users to apply our method easily.

Materials and Methods

A general schematic for our pathway correlation profile method

is shown in Figure 4. Initially, gene expression data is processed

and normalized. Expression profiles are then created for the set of

genes involved in each pathway. Using these expression profiles,

pathway correlation profiles are created for each pathway and

pathway perturbation is estimated via bootstrapping. These results

Figure 3. Heatmap of pathway correlation profiles for Ribosome Pathway (sce03010) in S. cerevisiae under control conditions.
Heatmap and clustering of genes are based on their gene-gene pair correlations. Rows and columns represent genes. (Yellow: positive correlation;
red: negative correlation).
doi:10.1371/journal.pone.0052127.g003
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are then combined to rank the pathways based on their

perturbation. The details for each step are further explained

below.

Expression Data
E. coli microarray gene expression data were downloaded from

the GEO website (GSE4511) [32]. The platform for this data set is

the Affymetrix E. coli Antisense Genome Array. This data set

investigated changes in gene expression when E. coli was treated

with different pH environments: pH 5.0, pH 7.0, and pH 8.7. In

total, there were five separate samples for each pH. In addition, a

S. cerevisiae time series data set was also downloaded from the GEO

website (GSE1311-4) [33]. This data set utilized the Affymetrix

Yeast S98 arrays. Singh et al. performed a desiccation in

combination with rehydration of S. cerevisiae in order to identify

transcriptional changes over time. To determine changes over the

rehydration process, they performed a time series experiment with

nine samples at each of the following time points: 0 (dry), 15, 45,

90 and 360 minutes after rehydration. Samples from a control

group were also included. To show the robustness of this method,

a breast cancer data set comparing gene expression between

positive and negative estrogen receptor (ER-positive and ER-

negative) status patients was analyzed [28]. Breast cancer gene

expression data set was downloaded from the GEO website

(GSE2034) and is from Affymetrix Human U133a GeneChips

with 77 ER-negative and 209 ER-positive patient samples.

Pathway Data
Pathway data were collected from the KEGG database [21],

including the metabolic pathway files for E. coli, and both the

metabolic and non-metabolic pathway files for S. cerevisiae and

breast cancer data sets. Each xml file was parsed using custom

scripts, and the genes involved in the pathway were identified and

used as the pathway genes. Those pathways with fewer than five

genes were removed from the analysis to avoid statistical

insignificance. A total of 64, 88, and 188 E. coli, S. cerevisiae, and

H. sapiens pathways met this criterion, respectively, and were used

in this analysis.

Expression Profiles
The microarray gene expression data were normalized using the

Robust Multi-Array average expression measure (RMA) function

from the affy package in R [34]. The expression profile, Ei, for

gene i is represented as:

Ei~fei,1, . . . ,eimg,

where eim is the mean expression value of all probe sets for gene i

on chip m. Gene expression profiles were created for each gene in

a pathway, and each expression value was the log2 value for the

normalized array intensity values.

In the breast cancer data set, noisy probes were removed. To

accomplish this, those probes that were above the median of the

Figure 4. Flowchart describing pathway correlation perturbation method for analyzing gene expression data on a pathway level.
Initially, gene expression data is processed and normalized. Expression profiles are then created for the set of genes involved in each pathway. Using
these expression profiles, pathway correlation profiles are created in each condition for each pathway. These results are then combined to determine
the pathway’s mean difference in gene-gene pair correlations, and then ranked based on their significance of perturbation.
doi:10.1371/journal.pone.0052127.g004
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chip in at least a quarter of the arrays were retained for the

analysis. RMA was subsequently used to normalize the remaining

probes.

Pathway Correlation Profiles
Pathway correlation profiles (e.g., correlation matrix) were

created for each pathway in the data set. The profiles are

calculated for all gene pairs among different chips at a given

condition using Pearson correlations and are represented as:

r1,2

�
,r1,3, . . . ,ri,j , . . . ,rk{1,kg,

ri,j~

P
m (eim{mi)(ejm{mj)

(n{1)sisj

,

where k is the number of genes in the pathway, m is the chip index,

n is the total number of chips in a sample, mi and mj are the mean

expression values for gene i and j, respectively, and si and sj are

the standard deviations, respectively. The pathway correlation

profiles were calculated individually for each pH in E. coli, each

time point in S. cerevisiae, and the ER-positive and ER-negative

samples, respectively. Due to sample size biases in the breast

cancer data set, the gene-gene pair correlations in the ER-positive

class were estimated by repeatedly sampling 77 chips randomly

and taking the final average of gene-gene pair correlations. Lastly,

to ensure that the gene-gene pair correlations have a normal

distribution and stable variance, the pathway correlation profiles

were transformed using the Fisher transformation.

Pathway Ranking
The derived pathway correlation profiles were used to rank the

pathways based on most significant perturbation for each

condition. In order to quantify the differences in correlation of

specific gene-gene pairs between two conditions, the pathway

perturbation was considered the average of these changes in

correlation. Initially, a paired t-test was performed where each

gene-gene pair correlation at one condition was directly compared

to the corresponding correlation under the other condition. The

paired t-test between condition (1) and condition (2) follows:

d~ F(r(1)
1,2){

�
F (r

(2)
1,2), . . . ,F (r

(1)
i,j )

{F (r
(2)
i,j ), . . . ,F (r

(1)
k{1,k){F (r

(2)
k{1,k)g

where

F (r)~
1

2
ln

1zr

1{r

� �

and

t~
d

s
d

� ffiffiffi
n
p

where d is the paired differences in Fisher transformed gene-gene

pair correlations, d is the sample mean of the differences in

transformed gene-gene pair correlations, s
d

is the standard

deviation of d, and n is the number of gene-gene pairs in the

pathway. Due to a bias towards pathways of larger size,

bootstrapping was then implemented separately in order to

estimate the average change in gene-gene pair correlation for

each pathway. For this, 100 gene-gene pairs were randomly

sampled from each pathway and the average change in gene-gene

pair correlations was calculated. From these samplings, the mean

change in gene-gene pair correlations can be estimated using a z-

score. We then combined the p-values from the Student’s t-test

analysis and bootstrapping, correct for multiple testing by using a

Benjamini correction, and rank the pathways by corrected p-

values. In particular, the p-values from the bootstrapping process

remove the biases due to sizes of pathways. This method differs

from the standard gene expression analysis in two ways: (1) we

utilize all biological replicates as opposed to assessing the mean

expression of individual genes, and (2) we calculate the changes in

gene-gene correlation between conditions rather than calculating a

change in expression between conditions.

Supporting Information

Figure S1 Heatmap of pathway correlation profiles for
Ribosome Pathway (sce03010) in S. cerevisiae at 0
minutes (dry). Heatmap and clustering of genes are based on

their gene-gene pair correlations. Rows and columns represent

genes. (Yellow: positive correlation; red: negative correlation).

(TIFF)

Figure S2 Heatmap of pathway correlation profiles for
Ribosome Pathway (sce03010) in S. cerevisiae at 15
minutes. Heatmap and clustering of genes are based on their

gene-gene pair correlations. Rows and columns represent genes.

(Yellow: positive correlation; red: negative correlation).

(TIFF)

Figure S3 Heatmap of pathway correlation profiles for
Ribosome Pathway (sce03010) in S. cerevisiae at 45
minutes. Heatmap and clustering of genes are based on their

gene-gene pair correlations. Rows and columns represent genes.

(Yellow: positive correlation; red: negative correlation).

(TIFF)

Figure S4 Heatmap of pathway correlation profiles for
Ribosome Pathway (sce03010) in S. cerevisiae at 90
minutes. Heatmap and clustering of genes are based on their

gene-gene pair correlations. Rows and columns represent genes.

(Yellow: positive correlation; red: negative correlation).

(TIFF)

Figure S5 Heatmap of pathway correlation profiles for
Ribosome Pathway (sce03010) in S. cerevisiae at 360
minutes. Heatmap and clustering of genes are based on their

gene-gene pair correlations. Rows and columns represent genes.

(Yellow: positive correlation; red: negative correlation).

(TIFF)

Table S1 Full Pathway Correlation Profile analysis of E.
coli pH data set at all pH comparisons.

(XLSX)

Table S2 Full Pathway Correlation Profile analysis of S.
cerevisiae data set at all time point comparisons with
the control conditions.

(XLS)

Table S3 Full Pathway Correlation Profile analysis of
breast cancer data set comparing ER positive with ER
negative patient samples.

(XLS)
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