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Abstract

The space-time permutation scan statistic (STPSS) is designed to identify hot (and cool) spots of space-time interaction
within patterns of spatio-temporal events. While the method has been adopted widely in practice, there has been little
consideration of the effect inaccurate and/or incomplete input data may have on its results. Given the pervasiveness of
inaccuracy, uncertainty and incompleteness within spatio-temporal datasets and the popularity of the method, this issue
warrants further investigation. Here, a series of simulation experiments using both synthetic and real-world data are carried
out to better understand how deficiencies in the spatial and temporal accuracy as well as the completeness of the input
data may affect results of the STPSS. The findings, while specific to the parameters employed here, reveal a surprising
robustness of the method’s results in the face of these deficiencies. As expected, the experiments illustrate that greater
degradation of input data quality leads to greater variability in the results. Additionally, they show that weaker signals of
space-time interaction are those most affected by the introduced deficiencies. However, in stark contrast to previous
investigations into the impact of these input data problems on global tests of space-time interaction, this local metric is
revealed to be only minimally affected by the degree of inaccuracy and incompleteness introduced in these experiments.
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Introduction

The space-time permutation scan statistic, introduced by [1], is

used to identify clusters, or hotspots, of space-time interaction

within patterns of spatio-temporal events. In certain contexts (e.g.,

when analyzing cases of disease or incidents of crime), such clusters

are important to identify as they may indicate certain data

generating processes or point to emergent trends [2]. A variety of

metrics have been put forth to identify space-time interaction both

globally (e.g. [3–6]) and locally (e.g. [7,8]). The space-time

permutation scan statistic (henceforth, STPSS) is among the latter

and is most relevant for identifying such patterning when

information pertaining to the distribution and dynamics of the

underlying background population from which events are drawn is

unavailable. The method has been utilized widely in practice,

thanks, in part, to its implementation within the SaTScan software

[9]. It has been employed to investigate spatio-temporal distribu-

tions of disease both prospectively [1,10,11] and retrospectively

[12–20] and has also been used retrospectively to analyze

distributions of wildlife sightings [21,22], wildfires [23] and violent

events [24,25].

In spite of growing use of the STPSS, there has been no

consideration of the impact inaccurate or uncertain input data

may have on its results. This absence is troubling given the

pervasiveness of such data deficiencies, especially in the context of

geographic information [26–28] and a variety of studies which

have demonstrated these deficiencies to have a concerning impact

on the results of spatial [29–34] and spatio-temporal analyses

[35,36]. This study explores the possible consequences of

deficiencies in the spatial and temporal accuracy as well as

completeness of the input data on results of the STPSS.

Specifically, this study endeavors to determine if a commonly

encountered degree of these deficiencies is enough to prevent the

method from successfully identifying hotspots of space-time

interaction. Or, alternatively, from a practical perspective, will

practitioners employing this method be misled by results affected

by less than perfect input data?

A series of simulation experiments are employed in this pursuit,

using both synthetic and real-world data. These experiments

reveal the results of the STPSS to be relatively robust in the

presence of the introduced inaccuracies. While the method is still

affected by the deficiencies, their impact on results is less than

expected based on the findings of previous research into the effect

of such problems on global metrics of space-time interaction (i.e.

[36]). The results of this work suggest the STPSS may be a

versatile tool for investigations concerned with identifying local

space-time interaction, even in the face of common data

deficiencies. While these initial results are encouraging, it is

important to restrain from overstating their worth. The scope of

this work is limited and further investigations are needed before

conclusions can be drawn about the ability of this method to

handle such problems in a broader context.

The paper proceeds as follows. The introduction provides

technical background on the STPSS as well as a brief overview of
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data quality deficiencies commonly encountered in spatio-tempo-

ral datasets. The methods section then describes the simulation

experiments carried out as part of this study. Next the results of

those experiments are reported while the final section discusses the

findings and offers concluding remarks.

Background

Space-time permutation scan statistic
Part of a broader family of spatial and space-time scan statistics

(see [7,8,37,38]), the STPSS identifies the location and size of

likely hotspots (or coolspots) of events in space and time and tests

the significance of those concentrations using a Monte Carlo

permutation approach. To calculate the statistic, the study area

and time period of interest is first subdivided into areas (s) and time

periods (t) within which the observed number of events of interest

is tallied. The total number of observed events (N) can be

calculated as the sum of events observed in each of these areas

across all times as shown in Equation 1.

Figure 1. Intensity of the three simulated event patterns. Each panel shows a different perspective of a space-time cube for the three
patterns. The left most column corresponds to the high intensity cluster pattern (where cluster events are concentrated in a smaller area) and the
right-most column corresponds to the lowest intensity pattern. The top row shows an areal view of the space time cubes (i.e. a conventional map),
the middle row shows a front view of the cubes, while the bottom row shows a side view. Lighter areas indicate a higher intensity of events.
doi:10.1371/journal.pone.0052034.g001
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The expected number of cases in each area and time period (i.e.

mst) is calculated by conditioning on the observed marginals as

shown in Equation 2. The STPSS assumes the function

responsible for the generation of events operates uniformly across

all time periods and areal subdivisions [1]. This is in contrast to

other similar methods such as the cylindrical and flexibly shaped

space-time scan statistics which assume spatial and temporal

heterogeneity in the data generating process.
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Local concentrations of space-time interaction are identified using

a cylindrical search window that moves methodically throughout

the study area and time period of interest. The radius and height

of the cylinder, which correspond to distances in space and time,

respectively, vary as the cylinder moves across the study area and

time period of interest. The number of events observed within the

cylinder for all size/location/time combinations is compared to

the number expected. The space-time permutation scan then

maximizes the Poisson likelihood function described in Equation 3

across all cylinder radii, heights and starting locations to identify a

most likely cluster (MLC) and possible secondary clusters. Pseudo-

significance of the identified clusters is established using Monte

Carlo hypothesis testing.

(
c

E½c� )
c(

C{c
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In the likelihood function, C is the total count of cases, c is the

count of observed cases within the scanning cylinder, and E½c� is

expected number of observed cases within the cylinder based on

the expectation of spatio-temporal randomness. Meanwhile, I is

an indicator function denoting a higher or lower than expected

number of cases within the scanning window. When searching for

areas of high concentration, this assumes a value of 1 when the

cylinder has a greater number of cases than expected and 0

otherwise. The opposite is true when the method is employed to

search for areas and times with a lower than expected number of

cases (i.e. cool spots). Due to its inability to incorporate

information on the dynamics of the background population, users

must be aware that the method may erroneously identify clusters

due to spatial and temporal variation in the underlying population

from which events are drawn [1]. Where this is a potential

problem and the necessary data are available, the more relevant

cylindrical [7,37] and flexible [8] space-time scans should be

employed as they incorporate this knowledge directly.

As implemented in the SaTScan software [9], the results of the

STPSS consist of a set of identified likely clusters and their

associated parameters. For each cluster these parameters include

the spatial coordinates of its center, its radius and temporal

duration, a list of events included in the cluster, as well as the

associated test statistic (generated using Equation 3) and a pseudo

p-value. A most likely cluster (MLC) is identified as the cluster with

the lowest pseudo p-value. In addition, a series of possible

secondary clusters are also identified.

Data quality deficiencies
While the specific nature of any inaccuracies or uncertainties

associated with the input data analyzed by the STPSS depends on

the field of study in which it is applied, generally speaking, such

problems are related to the geographic coordinates (i.e. the x and

y coordinates of events), their associated time stamps (i.e. t) and the

completeness of the dataset. Common problems encountered in

spatio-temporal data include inaccurate or imprecise recording of

the locations and times of events as well as under-reporting of the

events. Additionally, uncertainty may result when the true

locations and/or times of events are unknown and/or the

completeness of the dataset under examination is questionable.

Individually and collectively, such deficiencies in the quality of

input data have been shown to degrade the integrity of results for

spatial and spatio-temporal analyses [29,32–36,39,40]. However,

the impact of such problems have not yet been investigated in the

context of the SPTSS or any of the other space-time scan statistics.

The sections below provide a brief overview of the existing

literature on the problems associated with each of these

characteristics of data quality as they pertain to spatial and

spatio-temporal analyses. Specific attention is paid to problems

pertaining to analyses in the contexts of health and crime. It

should be noted that this review is based on the more extensive

treatment of these topics provided by [36].

Spatial inaccuracies. Common sources of deficiencies in the

location information associated with spatio-temporal event data

include inaccurate geocoding, the application of privacy masks (i.e.

aggregation to coarser scales or shuffling of locations), and

uncertainty pertaining to latency and mobility [36]. The

consequences and extent of these problems on spatial analyses

are well documented and the relevant literature is discussed below.

The effect of these problems on spatio-temporal analyses have been

investigated to a far lesser degree; however, existing studies on this

topic are covered here as well.

Inaccuracies in spatial event data due to the geocoding process

(i.e. matching an address or other locational description to

Figure 2. The distribution of temporal ranges within which
burglaries and thefts are known to have occurred in Mesa, AZ
for the period 2004–2009. Random draws from this distribution
were used to offset the temporal coordinates of the original data.
doi:10.1371/journal.pone.0052034.g002
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absolute geographic coordinates) are understood to be widespread

in data created in this manner [41,42]. The severity of the

inaccuracies in geocoded data varies based on the quality of the

underlying spatial data used in the geocoding process [43–48] as

well as the density of addresses in the vicinity of the geocoded

locations [49–52]. The detrimental impact of inaccurate geocod-

ing on subsequent spatial analyses has been demonstrated by a

number of studies. For example, [29] showed that geocoding

errors affecting even a small number of observations (in their

study, only 1% of the original data) impacted the results of

analyses for local metrics of spatial autocorrelation. [32] observed

variation in results of Kulldorff’s spatial scan statistic, kernel

density estimation and bivariate K functions when different

geocoding methods were employed to generate the raw data

analyzed by the metrics. [33] demonstrated a decreased ability to

recover relationships between environmental exposures and health

outcome data as geocoding accuracy declined. [34] illustrated that

moderate amounts of geocoding errors (affecting only 10% of

records) were enough to modify disease distribution maps created

using kernel density estimation. In a spatio-temporal context, [36]

showed that a conservative degree of spatial inaccuracy in the

form of simulated geocoding errors was capable of severely

affecting the results of global tests of space-time interaction.

In addition to those introduced unintentionally via the

geocoding process, spatial inaccuracies may also be introduced

into spatial data intentionally to mask identity and preserve

individual privacy [53–55]. Such inaccuracies are common in the

context of health and crime data where the confidentiality of

patients and victims (or offenders) is required. A common

approach to the masking of locations is to aggregate the data to

larger areal units [53,54]. This approach, however, can yield

different results than would be observed if the data were analyzed

at the original level of spatial support [31,35,56]. Additionally,

errors in the original spatial coordinates may result in the

observations being aggregated to the wrong areal unit, further

exacerbating such problems [52,57,58]. As an alternative to data

aggregation, the privacy of individual events may be protected by

assigning events to a new randomly generated location that falls

within some specified radius of the original location [53,59]. This

perturbation approach has also been demonstrated to negatively

affect the results of subsequent analyses in a manner proportional

to the size of the radius [30].

Temporal inaccuracies. In spite of being equally relevant in

terms of spatio-temporal analyses, inaccuracies in the temporal

dimension of spatio-temporal data have received far less attention

in the literature than their spatial counterparts. Such temporal

Figure 3. Sample of burglary events occurring in Mesa, Arizona during 2008 employed in the analysis. Additional geographic identifiers
have been omitted from the map to preserve privacy.
doi:10.1371/journal.pone.0052034.g003
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inaccuracies encountered in event data commonly stem from the

problems of latency and uncertainty.

The former is especially relevant to studies exploring the

distribution of health and disease [60]. In this context, the period

of time between an initial infection or exposure and the onset of

symptoms or eventual diagnosis can, for certain diseases, be on the

order of years or decades. However, most methods for analyzing

spatio-temporal patterns (including the STPSS) require the

specification of a single time (and place) where the event occurred,

rather than incorporate the information available in a space-time

path [61,62] or employ an aoristic approach [63]. This, of course,

relates to the discussion above on spatial inaccuracies, as during

this time individuals may be mobile and it may be virtually

impossible to assign a single discrete location to the disease case.

This forced discretization in turn introduces errors into the

analysis as the phenomenon cannot be accurately represented

using a single point in space or time.

There is also the more general problem of uncertainty

surrounding when an event that can be represented as a discrete

event actually happened. A classic example, often offered, is that of

a burglary event that occurs while the victim is away [64]. For all

practical purposes, the burglary can be represented as a discrete

Figure 4. Plots of MLCs identified with the STPSS. The spatial footprint of the MLCs for the original datasets are shown in red and the
secondary cluster with the next lowest p-value is shown in green. MLCs from perturbed versions of the same dataset are shown in black. The intensity
of the original clusters decreases from the top down while the intensity of perturbation increases from the left to the right. This layout is followed in
subsequent graphics.
doi:10.1371/journal.pone.0052034.g004
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event in space and time, however, given that the victim was away,

it is often unknown exactly when the crime occurred. The the

question remains: what should be used as the temporal coordinate

of the burglary for analytical purposes? Should it correspond to the

date and time the victim left and their home was untouched?

Should it correspond to the date they discovered and reported the

burglary? Or should it be some average of the two? This question

is addressed by Ratcliffe’s work on aoristic analysis [64,65] who

advocates that the entire time span should be used. This of course,

is often not the approach employed in practical analyses. The only

study (that this author is aware of) which explicitly investigates the

consequences of this forced discretization in the context of spatio-

temporal analysis is the aforementioned study by [36] which

examined the effect of temporal uncertainty on tests of global

space-time interaction. The study demonstrated that uncertainty

in the temporal dimension of the input data can greatly distort the

results of analyses, in some cases completely obscuring patterns of

space-time interaction where they existed and in others creating

them where they did not exist.

Incompleteness. In addition to the problems mentioned

above concerning accuracy in the coordinates of recorded events,

problems can also arise when the pattern of events recorded in the

database is an incomplete representation of the pattern of interest

in the real world. This mismatch is often a product of under-

reporting of events or, in the case of geocoded data, incomplete

geocoding.

Figure 5. Plots of the duration of MLCs identified with the STPSS. The duration of the MLCs for the original datasets are denoted using
horizontal red lines, secondary clusters are shown using green lines. MLCs from perturbed versions of the same dataset are shown as black vertical
lines.
doi:10.1371/journal.pone.0052034.g005

Table 1. Pseudo p-values as calculated by the STPSS
associated with Clusters 1 and 2 for the hotspots of varying
intensity.

Intensity (s) Cluster 1 Cluster 2

500 m 0.000037 0.00011

1000 m 0.00032 0.0025

1500 m 0.0036 0.063

doi:10.1371/journal.pone.0052034.t001

Inaccuracy, Uncertainty and the STPSS
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Aside from the aforementioned positional error associated with

geocoded data, the geocoding process may also fail to provide a set

of spatial coordinates for an address. Such instances of ‘‘missed’’

geocodes are often the result of misspellings in addresses, an

antiquated spatial reference file, the use of post office boxes rather

than street addresses, or too stringent requirements on what

constitutes an address match [66]. [44] examined the extent of

missed geocodes for a variety of commercial geocoding vendors

and reported match rates (i.e. successful geocodes) between 98%

and 30%. Work by [39] suggests 85% as the minimum acceptable

match rate, noting that below this rate maps created by

aggregating individual events to census blocks are significantly

different according to a Mann-Whitney U test. Researchers should

exercise caution when working to increase the match rate

however, as there is often a tradeoff between match rate and the

positional accuracy of the geocoded points [41,67].

Another source of missing data, often beyond the control of

analysts, is under-reporting of events. This is a problem in a

variety of applied contexts, especially epidemiology and criminol-

ogy. In the former, the problem is mainly a result of under or

misdiagnosing disease cases [60] while in the latter it results from

under-reporting by both victims [68,69] as well as police

departments [70–72]. Certain types of crimes have higher rates

of under-reporting. Sexual assaults, for example, have been noted

to be among the least reported [68,73].

Figure 6. Pie charts showing the proportion of MLCs in the set of perturbed patterns located in the vicinity of Clusters 1 and 2.
doi:10.1371/journal.pone.0052034.g006

Figure 7. Percentage of patterns where Cluster 1 was reported
as the MLC across the different intensity/perturbation combi-
nations.
doi:10.1371/journal.pone.0052034.g007

Inaccuracy, Uncertainty and the STPSS
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Methods

To explore the effect of these commonly encountered data

deficiencies on the results of the STPSS, the experimental design

employs two approaches. First, an experiment is undertaken in

which a series of synthetic event patterns, exhibiting space-time

interaction, are generated on a hypothetical landscape. These

patterns are then perturbed to varying degrees by introducing

spatial and temporal inaccuracies to the data and removing a

percentage of events. The parameters associated with these

perturbations are in line with what practitioners may encounter

using real-world data and are based on estimates found in the

existing literature or empirical observations. The effect of these

perturbations on STPSS analyses are then assessed. The second

approach, rather than relying on synthetic data, employs an

observed pattern of criminal events for the analysis. The pattern of

criminal events is perturbed in a manner similar to the simulated

patterns above and the effect on the results of the STPSS is then

assessed. The specifics of these different approaches are described

in greater depth below.

Synthetic data
For the first experiment, three synthetic patterns are generated

on a hypothetical landscape. The study area measures 10 km

square and the duration of the study period of interest is 100 days.

Each of the original patterns generated within this space-time

window include a background population of 200 events randomly

distributed in space and time and two spatio-temporal hotspots:

Cluster 1, in the northeast quadrant, late in the study period

(seeded with 30 events) and Cluster 2, a smaller concentration in

the southeast quadrant, early in the study period (seeded with 20

events).

The hotspots in the patterns are simulated independently of the

background population by generating events surrounding two seed

locations in space and time. The seed point for Cluster 1 is located

at coordinates (7:5,7:5) in space and at day 55 of the study period

while the seed point for Cluster 2 is located at (2:5,2:5) in space

and day 10 of the study period. The events composing the clusters

are generated by drawing coordinates randomly from normal

distributions with a mean corresponding to the coordinates of the

seed point in the respective dimension. The spatial intensity of the

simulated space-time hotspots is varied in each of the three

Figure 8. Number of perturbed patterns where Clusters 1 (in red) and 2 (in green) were identified as ‘‘likely clusters’’ by the STPSS.
doi:10.1371/journal.pone.0052034.g008
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original patterns by adjusting the standard deviation associated

with the distributions. The standard deviations used to generate

the spatial coordinates for the events in hotspots of the three

patterns are 500 m, 1,000 m, and 1,500 m, respectively. The

standard deviation associated with the temporal dimension is held

constant across all three patterns at 10 days. The intensities of

events in space and time for the three patterns is shown in Figure 1.

These different perspectives of the pattern illustrate the locations

in space and time of the two simulated spatio-temporal hotspots.

Based on these images, the change in the size, shape and intensity

of the hotspots is apparent when the different values are employed

for the spatial standard deviation. As this value (s) increases, the

radius of the clusters increases. However, the associated height is

maintained (because the temporal standard deviation remains the

same) so they become more disc-like rather than spherical in

shape. The simulated event patterns were then analyzed using the

STPSS as implemented in SaTScan. For all the generated

patterns, the scan identified Cluster 1 as the MLC and Cluster 2

as a secondary cluster with a highly significant p-value. The

specifics of these findings are discussed below in the results section.

With the original patterns simulated and analyzed, the accuracy

of the datasets was then degraded based on quality estimates found

in the literature (see [36,50]). Three degrees of spatial inaccuracies

were introduced into each of the datasets. These inaccuracies were

introduced by randomly drawing an offset distance from

exponential distributions with means of 50, 100, and 200 m (i.e

[50]), corresponding to low, medium, and high levels of spatial

perturbation designed to mimic empirically observed positional

accuracy rates for geocoded data. The direction associated with

the spatial offset was established using a random draw. Temporal

inaccuracies were introduced by offsetting the temporal coordi-

nates based on a random draw from an empirical distribution of

suspected temporal inaccuracies for burglaries and thefts occurring

in Mesa, Arizona. This distribution, composed of over 70,000

entries, was acquired from the Mesa Police Department. A kernel

density estimation of the suspected ranges of inaccuracy is shown

in Figure 2. To offset the temporal coordinates, a range is

randomly selected from this empirical distribution. The range is

then multiplied by a random value drawn from a uniform random

distribution on the interval [21,1] and the product is added to the

original timestamp. The last step is taken to ensure that the

Figure 9. Pseudo p-values determined by the STPSS for likely clusters identified in the vicinity of the original Cluster 1
(red solid line) and 2 (green dashed line) in each perturbed version of the original datasets.
doi:10.1371/journal.pone.0052034.g009

Inaccuracy, Uncertainty and the STPSS
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resulting offset for the temporal coordinate occurs at a random point

within the possible range, rather than consistently at the beginning

or end of the possible period. Note also, with the abundance of

zeroes in the distribution that not all of the temporal coordinates

will be perturbed. Finally, the completeness of the pattern was

then degraded by randomly removing 15% of the observations.

Additionally, any events moved out of the study area or period

during the perturbation process were omitted from subsequent

analyses.

This methodology was used to create 1,000 degraded alternative

versions for each of the original three patterns. The perturbed

patterns were then individually analyzed using the STPSS in

SaTScan. The results reported for the original patterns and the

patterns of degraded quality are compared in the results section.

Mesa, AZ burglary data
Rather than rely solely on the synthetic data to explore the

effect of data quality deficiencies on the STPSS, a second

experiment was also carried out employing real-world data.

Following a form similar to the one described above, this second

experiment differs only in that it employs a pattern of burglary

events observed in Mesa, Arizona during 2008 as the original

event dataset for the experiment. The pattern is a sample of 200

burglaries drawn from the database kept by the Mesa Police

Department. The raw data are shown in Figure 3. Spatial

reference information has been omitted to preserve privacy.

Again, the data were analyzed using SaTScan and the STPSS.

The data were then perturbed in a manner similar to the synthetic

data so that the spatial and temporal coordinates and the

completeness of the data were affected. Given that these data

are empirical, variability in the spatial intensity of the clusters was

not used as a parameter in this experiment; however, the degree of

perturbation was still varied as in the synthetic datasets. The

results of analyses for the original and perturbed data are explored

and compared in the following section.

Results

The results from these experiments demonstrate the STPSS to

be surprisingly robust to the moderate amount of perturbations

introduced into the data. However, weak positive trends were

observed indicating that more perturbation led to greater

Figure 10. Plots of MLCs identified within the Mesa crime data using the STPSS. The spatial footprint of the MLC for the original dataset is
shown in red. MLCs from perturbed versions of the same dataset are shown in black.
doi:10.1371/journal.pone.0052034.g010
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variability in results and greater likelihood of misidentifying the

true MLC in the patterns. The experiments based on synthetic

data also revealed a negative relationship between the effect of

perturbation and the spatial intensity of clusters (i.e. less intense

clusters were more affected by perturbations than their more

intense counterparts). The results for both the synthetic and

empirical data are explored in greater detail in the sections below.

Synthetic data
Figure 4 shows the locations of MLCs identified in the

perturbed datasets and compares them to the locations of MLCs

identified within their respective original patterns. Rows in the

figure correspond to a different initial spatial intensity for the

simulated hotspots. The top row shows the results for the patterns

constructed using a standard deviation (s) of 500 m, for the middle

row s~1,000 m and for the bottom s~1,500 m. The columns,

meanwhile, correspond to the different levels of spatial perturba-

tion these original patterns were subjected to. The results in the

left-most column are based on data whose spatial coordinates were

perturbed based on a draw from an exponential distribution with a

mean (m) of 50 m, for the middle m~100 m and for the right

m~200 m. Note that the MLC (denoted as a red circle in the

Figure 11. Plots of the duration of MLCs identified within the Mesa crime data using the STPSS. The duration of the MLC for the original
dataset is denoted using horizontal red lines. MLCs from perturbed versions of the same dataset are shown as black vertical lines.
doi:10.1371/journal.pone.0052034.g011

Figure 12. Percentage of patterns where the original MLC was
reported as the MLC across the different perturbation levels.
doi:10.1371/journal.pone.0052034.g012
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figures) identified for all three original patterns was in the vicinity

of Cluster 1 in the northeast of the study area. A secondary cluster

was also identified in all patterns by the STPSS (shown in green) in

the vicinity of Cluster 2 in the southwest of the study area. These

results are viewed from a temporal perspective in Figure 5. Here

the duration of the MLC for each of the perturbed datasets are

plotted as a vertical line. Horizontal red lines show the start and

end times of the MLC identified for each observed dataset while

horizontal green lines note the duration of secondary clusters.

Again, the row and column structure mimics that of Figure 4

where the different rows and columns correspond to the various

spatial intensity and perturbation parameters.

Together, the spatial and temporal perspectives of these results

show that for the majority of the perturbed patterns, the STPSS

identified Cluster 1 as the MLC in spite of the perturbations;

although, Cluster 2 was also frequently identified as the MLC even

though it was seeded with less events, thus having a larger initial p-

value (as can be seen in Table 1) and therefore a smaller likelihood

of being identified as the MLC in the original data. Generally

speaking, for the patterns where the clusters were more spatially

concentrated (i.e. those where s~500 m or 1,000 m) the STPSS

identified either Cluster 1 or 2 as the MLC. At these intensities,

there were only a limited number of instances where MLCs

unrelated to Clusters 1 and 2 were identified. Where the synthetic

clusters were less spatially concentrated (i.e. where s~1,500 m)

hotspots unrelated to Clusters 1 & 2 were identified as the MLC

more frequently.

This is shown more clearly in Figure 6. The location of the

MLCs identified in the perturbed data in relation to the location of

Clusters 1 and 2 from the corresponding original datasets (i.e.

those identified in red and green, respectively, in Figures 4 and 5)

is explored further here. The collection of pie charts shows

whether MLCs identified by the STPSS in the perturbed data are

in the vicinity of Cluster 1, 2 or neither for the various

combinations of original intensity and perturbation parameters.

MLCs for the perturbed data were considered to be ‘in the

vicinity’ of either Cluster 1 or 2 if their extent included the spatial

and temporal center of the respective original cluster. The graphic

shows that across all perturbation and intensity parameters, the

majority of MLCs are identified in the vicinity of Clusters 1 and 2.

However, a steady growth in the number of MLCs identified

outside of these clusters is observed when the intensity of the

Figure 13. Pseudo p-values determined by the STPSS for likely clusters identified in the vicinity of the original cluster 1
(red solid line) in each perturbed version of the original datasets.
doi:10.1371/journal.pone.0052034.g013
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original clusters is reduced. This appears unrelated to the level of

perturbation introduced into the patterns. That being said, greater

levels of spatial perturbation appeared to negatively affect the

percentage of MLCs observed within the vicinity of Cluster 1 (the

true MLC). With greater perturbation (i.e. an increase in the value

of m, serving as a proxy for more spatial uncertainty) a smaller

proportion of the MLCs for the perturbed datasets were identified

in the vicinity of Cluster 1. This negative relationship is further

illustrated in Figure 7. These results suggest that with decreased

spatial accuracy, the STPSS may be less likely to pick out the true

MLC amongst other possible clusters.

The results were further explored to determine how often likely

clusters (not necessarily MLCs) were identified by the STPSS in

the vicinity of the original Cluster 1 and 2. Again, a likely cluster is

defined as being ‘in the vicinity’ of one of the original seeded

clusters if it contains the spatial and temporal center of that

original cluster. Figure 8 shows the count of perturbed patterns

where the two clusters are identified as a likely cluster. For the

perturbed patterns with original clusters of low to middling spatial

intensity (i.e. s = 500 m or 1000 m) likely clusters are identified in

the vicinity of Cluster 1 across almost all levels of spatial

perturbation; however, this frequency drops off considerably when

s = 1500 m. Meanwhile, although likely clusters were consistently

found in the vicinity of Cluster 2 across all levels of spatial

perturbation when s = 500 m, when the value for s increased,

likely clusters identified by the STPSS only identified Cluster 2 in

70–80% of the perturbed patterns. These results reiterate the

findings from above that it appears less spatially intense patterns

are more likely to be affected by the perturbations in the context of

STPSS analyses.

This finding is corroborated when the p-values associated with

likely hotspots in the perturbed patterns identified in vicinity of the

original Clusters 1 and 2 are examined. The p-values for these

likely clusters are shown in Figure 9 ranked from lowest to highest.

Note that not all of the lines extend to the right-hand side of the

figure, indicating that likely hotspots were not always identified in

the vicinity of these clusters, mimicking the height of the bar in

Figure 8. Of primary interest here though is the path of the lines,

tracking the p-values for the identified clusters in each of the

perturbed patterns. Where s = 500 m, both lines (solid red and

dashed green corresponding to the p-values for likely clusters

identified in the vicinity of Clusters 1 and 2, respectively) follow the

x axis until the far right of the figure across all levels of

perturbation. This indicates that across almost all of the perturbed

patterns the clusters identified by the STPSS would be determined

to be significant (if, for example, the a associated with the

significance test were set at 0.05). Where s = 1000 m however,

only Cluster 1 would be identified as being significant across most

of the patterns. Cluster 2, aside from being identified by the

STPSS as a likely cluster less often than Cluster 1 (i.e. the

associated line does not extend entirely across the figure), also has

larger p-values associated with it. This trend is exacerbated where

s = 1500 m. Here, in only a small percentage of patterns is the p-

value for the hotspot identified in the vicinity of Cluster 2

significant. Cluster 1 is also affected, with less than half of the

patterns reporting the presence of a significant hotspot. In contrast

to the effect observed above on the identification of the MLC,

there does not appear to be a relationship between level of spatial

perturbation and the p-values for these identified clusters.

Collectively, these results indicate that the STPSS results seem

to be more vulnerable to perturbations when the initial spatial

intensity of the examined pattern is weak to begin with. The level

of perturbation, however, seems less important.

Empirical data
The results for the simulation experiments based on the Mesa

crime data are now explored. Analysis of the original data using

the STPSS revealed a single space-time hotspot within the dataset.

As such, the impact of perturbations on clusters of different spatial

intensities were not explored in this experiment. However, the

effect of varying degrees of spatial perturbation and the effect of

temporal inaccuracy and incompleteness on the detection of this

hotspot were explored. First, the spatial and temporal distributions

of the MLCs within the original and perturbed data are examined

in Figure 10 and 11, respectively.

The MLC for the original Mesa dataset are shown in red in

Figures 10 and 11, no other statistically significant (at a~0:05)

secondary clusters were identified. The MLCs identified within the

perturbed versions of these datasets are shown on the same figures

in black. As in the prior experiment based on the synthetic data,

these initial explorations into the spatial and temporal distribution

of the identified MLCs show stability in both dimensions across the

various levels of spatial perturbation. Generally speaking, the

MLCs identified within the perturbed datasets appear to be close

to the MLC identified in the original dataset. This observation,

however, is explored more formally in Figure 12. Here the

percentage of MLCs in the perturbed data which are ‘in the

vicinity’ of the MLC from the original dataset (in the formal sense

defined above, i.e. include the spatial and temporal center of the

original cluster) is tallied.

The figure shows that as spatial perturbation increases, there is a

decreasing percentage of results for the perturbed patterns where

the identified MLC includes the spatial and temporal center of the

MLC identified within the original data. This trend was also

observed within the results for synthetic data experiments as

shown in Figure 7. These results indicate that as the level of

perturbation increases, the STPSS is less likely to identify an MLC

in its true location. While this may be the result of an overly

stringent definition of ‘in the vicinity’, it does indicate greater

variability in results with greater spatial perturbation.

Finally, the pseudo p-values associated with likely clusters

identified in the perturbed datasets are explored in Figure 13.

Specifically, the figure examines p-values associated with clusters

located in the vicinity of the MLC from the original dataset. The

p-value associated with the MLC in the original pattern was

observed to be 0.000063. Across the perturbed patterns, again, the

likely clusters identified in the vicinity of the original MLC are also

observed to be highly significant. Additionally, stability is observed

across the various levels of perturbation: there appears to be no

relationship between level of perturbation and p-values.

Discussion and Conclusion

While prior studies (i.e. [35,36]) have shown global tests of

space-time interaction to be highly volatile in the face of similar

data deficiencies, collectively these findings demonstrate a marked

departure from this precedent for this local method. Based on the

experiments conducted here, the results of the STPSS appear to be

quite robust to the moderate degree of the common data problems

introduced. While there is an observed negative trend between

degree of perturbation and ability to locate the correct MLC,

especially within patterns with multiple significant hotspots, the

relationship is weak at best, and not unexpected. What is

surprising however, is how well the STPSS performs in the face

of these common perturbations as compared to the global methods

for detecting space-time interaction. [36] employed identical

parameters to perturb data in his exploration of the effect of data

inaccuracy on global tests of space-time interaction and found the
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results of those tests essentially devolved to randomness after

perturbation. Similar findings were reported by [35] as well,

although they only investigated problems associated with aggre-

gating the original data in space. While this initial study offers a

favorable view of the robustness of the STPSS, subsequent work

will need to further explore this topic and these results in greater

depth.

It should be noted that while all facets of uncertainty and

inaccuracy discussed in the literature review were incorporated

into the experiments here (i.e. the data were spatially and

temporally perturbed and its completeness degraded) only in the

case of the spatial perturbation was any sensitivity really explored.

This is a consequence of two factors. First, it had already been

shown that reducing the completeness beyond 85% of the original

pattern can result in different results [39]. Given that 85% is the

standard with which most geocoding is carried out, it provided a

good baseline for the investigation carried out here. Second, in the

case of the temporal dimension, changing the perturbation

systematically (as in the case of the spatial perturbations) was not

an option given the lack of research in this area on which to

ground the sensitivity analysis. Further work is needed in this area

to assess the accuracy of temporal coordinates in a variety of

applied contexts.

While the results presented here cast a favorable light on the

STPSS, care should be taken not to overstate their significance or

overestimate the ability of this method to handle inaccuracies and

uncertainty. The perturbations imposed on the data employed

here were of a conservative nature. It is likely that far less favorable

results would be observed if stronger degrees of inaccuracy,

uncertainty and incompleteness were employed. Of particular

concern may be the use of this method to identify patterns in cases

of diseases with long latencies [60]. Additionally, the author

cautions against the extension of these findings to other local tests

of space-time interaction such as the cylindrical and flexible space-

time scans as these have the added parameter of background

population to account for. In the case of those methods, potential

inaccuracy in accounting for spatially and temporally heteroge-

neous background populations offers an additional dimension of

concern that may warrant further investigation.

In spite of these caveats, this research has shown that in contexts

where researchers have reasonable confidence in the spatial and

temporal accuracy and precision of their data they should also

have confidence in the integrity of the reported results of the

STPSS.
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