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Neuroimaging Group, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 4 Department of Obstetrics and Gynecology, University of Arkansas for Medical

Sciences, Little Rock, Arkansas, United States of America, 5 Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany

Abstract

Electro- and magnetoencephalography allow for non-invasive investigation of human brain activation and corresponding
networks with high temporal resolution. Still, no correct network detection is possible without reliable source localization. In
this paper, we examine four different source localization schemes under a common Variational Bayesian framework. A
Bayesian approach to the Minimum Norm Model (MNM), an Empirical Bayesian Beamformer (EBB) and two iterative Bayesian
schemes (Automatic Relevance Determination (ARD) and Greedy Search (GS)) are quantitatively compared. While EBB and
MNM each use a single empirical prior, ARD and GS employ a library of anatomical priors that define possible source
configurations. The localization performance was investigated as a function of (i) the number of sources (one vs. two vs.
three), (ii) the signal to noise ratio (SNR; 5 levels) and (iii) the temporal correlation of source time courses (for the cases of
two or three sources). We also tested whether the use of additional bilateral priors specifying source covariance for ARD and
GS algorithms improved performance. Our results show that MNM proves effective only with single source configurations.
EBB shows a spatial accuracy of few millimeters with high SNRs and low correlation between sources. In contrast, ARD and
GS are more robust to noise and less affected by temporal correlations between sources. However, the spatial accuracy of
ARD and GS is generally limited to the order of one centimeter. We found that the use of correlated covariance priors made
no difference to ARD/GS performance.
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Introduction

MEG and EEG are non-invasive neuroimaging methods that

provide an exceptionally high temporal resolution. Moreover,

MEG and EEG measurements stem directly from neuronal

activation, whereas fMRI studies proxy epiphenomena, like blood

oxygenation. However, the ideal approach for localization of

neural generators of electrical/magnetic signals is still under

debate [1–4].

Over the past decades, several algorithms have been developed

for M/EEG source localization [4–9]. Since the inverse problem is

ill-posed, prior information must be included to give a unique

solution.

In recent years, Parametric Empirical Bayesian (PEB) ap-

proaches have been applied to MEG/EEG data for source

reconstruction [10–15]. PEB theory imposes flexible constraints on

the inverse solution in the form of source priors: for a given

dataset, the most likely priors are those that maximize the model

evidence.

Specifically, in a hierarchical linear model with two different

levels, the parameters at first (source) level form an empirical prior

for the second (sensor) level. The unknown covariances at each

level are then expressed as a weighted linear combination of

independent covariance components, one for each source prior.

The contribution of each component to the general covariance is

determined through its corresponding weight or hyperparameter.

In the PEB framework, the hyperparameters connected to the

covariance components are iteratively adjusted based on the

model evidence to select a set of brain sources which maximize the

probability of the measured data.

From a Bayesian perspective, the simplest a priori assumption is

the Minimum Norm Model (MNM). MNM estimates a source

distribution that minimizes the error between the simulated field

generated from the modeled sources and the observed neuromag-

netic data, whilst simultaneously minimizing the overall source

power [7]. This is translated in two practical assumptions: all the

potential sources are a priori considered (1) equiprobable and (2)

uncorrelated from each other (i.e. the source covariance is equal to

the identity matrix) [10]. Recently, two algorithms based on a

Variational Bayes (VB) approach with Laplace approximation

[16] have been proposed, both distributed within the SPM

software package (http://www.fil.ion.ucl.ac.uk/spm/): Automatic

Relevance Determination (ARD) [10,15] and Greedy Search (GS)

[17]. ARD and GS covariance priors are based on a library of

user-defined local spatial patterns (or patches), resting on the

assumption that cortical currents exhibit some local coherence

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e51985



within a distance of few millimeters. The prior library is based on

an arbitrary anatomical parcellation and does not depend on

functional data. Additionally, no temporal constraint is imposed

on the possible form of source activity. Both ARD and GS start

their iterative selection process of the active priors with the

assumption that all priors are equally likely to be active. The

hyperparameters connected to the priors are then iteratively

updated using a Restricted Maximum Likelihood (ReML) routine

[18]. The so-called free energy F is the objective function of

ReML, providing an approximation to the model evidence [16].

The iterative optimization procedure is different for the two

approaches: ARD assumes a large number of putative sources and

eliminates those that prove irrelevant for data explanation; GS

starts from the assumption that all priors have identical variance

and it tests putative mixtures of anatomical priors (rather than

individual ones as in ARD).

In this work, we have implemented a new Bayesian scheme

based on a Linear Constrained Minimum Variance (LCMV)

beamformer [19] using a single covariance prior with strong

temporal, but no spatial constraints. A unique solution for the

inverse problem is obtained by imposing prior constraints derived

from the sensor-data covariance [5]. Approaches based on

beamformers [20] have been extensively utilized as tools for

MEG/EEG source localization both in time and frequency

domain [6,19–31].

Beamformers are data-dependent spatial filters originally

developed for radar technology [20]. The goal is to modify the

sensitivity profile of a fixed array of sensors (like in the MEG and

EEG cases) in order to get signals from a location of interest while

signals coming from other locations are attenuated. Moreover,

beamformers assume uncorrelated source time-courses. While

some studies have shown that this assumption produces no evident

bias with certain data sets [32,33], other reported that it may

induce severe biases when the level of correlation between sources

and the signal to noise ratio (SNR) is high [34]. From the Bayesian

perspective, beamforming can be considered an inverse scheme

employing a unique prior: the beamforming estimate of source

covariance. This prior depends on the sensor data covariance and

the leadfields defining the source space. In contrast to the ARD

and GS schemes, no anatomical parcellation is necessary but

rather the prior constraints are temporal in that they minimize the

covariance between sources. In the following, we compare the

performance of different priors under the same ReML optimiza-

tion framework. Each prior set defines a different algorithm:

MNM, ARD, GS and an implementation of beamformer in a

Bayesian framework, which we call Empirical Bayesian Beamfor-

mer, EBB [4,35,36].

Localization results with one, two and three sources and

different levels of correlation between sources are evaluated. A

new approach inspired by the free-response receiver operating

characteristic (FROC) [37] method is employed to evaluate the

spatial accuracy. Temporal accuracy is evaluated in terms of the

amount of variance of the simulated source time courses explained

by the reconstructed source time courses.

To summarize our findings, we found ARD and GS to be

robust to noise, probably because of the iterative fine-tuning on the

hyperparameters related to the source priors [10,15]. On the other

hand, the parcellation of the cortical surface imposes a trade off

between spatial accuracy (improved by having more patches to

give a denser coverage of the cortical surface) and robustness (the

fewer patches, the less likely the algorithm is to get stuck in a local

maxima). The VB algorithms were expected to perform better

with bilateral correlated sources when the corresponding source

priors were considered but we found no evidence for this. In

contrast to ARD and GS, we found the performance of the EBB

and MNM (which both use a source space with possible vertex

precision and a single global prior) to be relatively poor except at

high SNR.

The next sections are organized in the following way: we first

outline the different stages of data analysis for the different

schemes (2.1). Then, the preprocessing approach for the reduction

of the data dimensionality is described (2.2). Forward and inverse

models employed in data analysis are described in sections 2.3 and

2.4. Then, an operative definition of Bayesian prior for the

different schemes is provided in section 2.5. The different priors

used by the four schemes are described in detail in section 2.6. A

special focus on the mutual evaluation of the hyperparameters

performed by ARD and GS is provided in 2.7. The crucial

differences between the two iterative approaches are outlined in

2.8. The structure of the evaluation procedure for the four

schemes (construction of simulations and accuracy estimation

criteria) is described in 2.9 and 2.10. Finally, the results are

illustrated and discussed in the sections 3 and 4.

Methods

1 Stages of Data Analysis
Our description of the different schemes will consist of four

common stages (Fig. 1):

(1) Preprocessing: this step is the same for all schemes. It includes

(a) a spatial preprocessing selecting the dominant spatial modes

based on the leadfields (the leadfield is the MEG/EEG signal

that is generated by a source of unit strength); (b) a temporal

preprocessing selecting the main temporal modes out of the data.

(2) Prior definition: definition of a priori information to be used

for the four inversion schemes.

(3) Prior weighting: this stage implies the evaluation of the

hyperparameters connected to the priors. This is done by

means of a ReML procedure. In ARD and GS the relative

weight given to the different priors will determine the

localization results. In constrast, MNM and EBB rely on

one single global prior over the source space. Therefore, no

relative weighting is necessary.

(4) Source activity extraction on the base of the three previous

steps. A new ReML loop estimates the covariance matrix

using the noise prior and the global source prior synthesized in

the previous step. This step is independent of the scheme that

generated the prior, whether EBB, MNM or MSP. Its output

is used to calculate the maximum a posteriori estimate and

provides a comparable value for the free energy of each

scheme.

2 Data Preprocessing
All our analyses have been performed within the SPM

framework.

Two steps must be performed before the application of an

inversion scheme: (i) reduction of possibly rank-deficient data, (ii)

explicit statement of prior expectations on unknown variables.

Our goal is to estimate activity and spatial location of electrical

sources S from the measured magnetic data B:

B~ LS z z ð1Þ

Where B[Rn|s is the magnetic data matrix with n number of

sensors and s number of time samples. The unknown sources are

represented by S[Rv|s where v is the number of points on the

Bayesian Approaches to MEG/EEG Source Localization
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tessellated surface, which are possible sites for the active dipoles.

L[Rn|v is the leadfield matrix, z represents the sensor error due to

noise and interference.

The dimensions of the above problem can be reduced by

projecting the data into spatial and temporal subspaces. A spatial

projector U and a temporal projector T determine the subspaces

whose dimensions are spanned by the eigenvectors of the leadfields

and the data, respectively [12]. The spatial projector U depends

exclusively on the forward model. It is obtained by means of a

Singular Value Decomposition (SVD) of the LLT matrix. The

eigenvectors are ordered by their eigenvalues and arranged in

columns of U, called spatial modes. The default selection removes all

modes with a LLT eigenvalue inferior to e216 of the mean. Then, a

new matrix ~LL with n spatial modes (typically between 60 and 80) is

considered instead of the original leadfield matrix L containing

275 channels. The temporal dimension of the data is reduced in a

similar way. In this case a projection matrix T follows the

application of the spatial projector U. Firstly, the spatially reduced

data is DCT (Discrete Cosine Transform) transformed into the

frequency domain. Any desired windowing or frequency filtering is

applied at this stage. Then, as with the leadfields, the DCT

coefficients are multiplied by their transpose and an SVD is used

to identify the number of dominant temporal modes. Finally, by

applying the inverse DCT to the reduced eigenvector set, we

obtain a subspace spanned by a set of eigenvectors named temporal

modes.

In summary, each element ~BBij belongs to the spatially (i) and

temporally (j) reduced signals ~BBij ~
P
k

~LLik
~SSkj z~eeij , that are our

modeled signals in the reduced space.

Note that the data projection in temporal and spatial modes has

another function besides the efficient utilization of computer

resources: it also removes noise, allowing the procedure to focus on

the effects we intend to explain. However, as with any data

reduction, there is a risk of data loss, especially under very low

SNRs.

3 Forward Model
For the source space, a tessellated surface of the grey-white

matter interface with 8196 vertices is employed [38]. Each vertex

corresponds to a possible source location. The source orientations

are fixed, perpendicular to the surface. The mean distance

between neighboring vertices is 5 mm. The leadfields are

calculated using a single-sphere volume conductor model. The

head, sensor positions and orientations are based on a real

Figure 1. The four common stages for the algorithm comparison. 1. Data preprocessing (common to all schemes) 2. Prior definition (multiple
(ARD and GS) or single (MNM AND EBB)) 3. Prior weighting through ReML 4. Source localization (again, common to the four schemes).
doi:10.1371/journal.pone.0051985.g001
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recording from a CTF 275 whole head system (VSM Medtech,

Port Coquitlam, Canada).

4 Inverse Problem
The inverse problem can be treated with a hierarchical linear

model on the reduced data. In this way (1) reduces to:

~BB~ ~LL~SS z~zz ð2Þ

~SS~~ee ð3Þ

Where ~BB~ TT BU, ~LL~ UT L, ~SS ~ ST

z*N (0, ~VV ,Sz)

e*N (0, ~VV ,Se)
ð4Þ

~VV denotes the temporal correlations in the reduced space which

are assumed fixed and stable. As in [10], the three-parameter

notation for a multivariate normal distribution is defined as

N (m, ~VV ,S)uN (m, ~VV6S), where 6 is the Kronecker tensor

product. This preprocessing procedure is common to all the

inversion schemes considered here.

5 An Operative Definition of Prior
From a Bayesian perspective, a prior is a probability distribution

that expresses the uncertainty about an unknown variable before

the data is taken into account [10]. ARD and GS are defined as

Multiple Sparse Priors (MSP) schemes. In this case, the priors are

source covariance components. At the simplest level, the single

component is local with an extent of a few millimeters across the

cortex (sparse local prior).

The source level covariance components can be compactly

expressed in terms of sensor covariance components. Priors

employed to estimate the sensor covariance matrix generated by

the active sources, are defined as covariance priors. In this way, a

covariance prior at sensor level is obtained for each local prior at

source level. Since the estimated covariance is calculated as a

combination of these priors, we refer to them as covariance

components.

In contrast to the MSP schemes, MNM and EBB use a single,

global functional-anatomical prior (functional because it is based on

assumptions about source covariance and anatomical because it is

constrained to the cortical manifold) provides just one estimated

covariance component at sensor level.

6 Choice of the Prior Set
6.1 Minimum Norm (MNM). All the sources are assumed

equiprobable and uncorrelated. Therefore, the source covariance

matrix is defined as Q = I. Only one hyperparameter is estimated

by ReML on inversion step #3 (See Fig. 1).

6.2 Empirical Bayesian Beamformer (EBB). EBB assumes

one global prior for the source covariance main diagonal (the off-

diagonal elements are zeros, i.e. no correlations assumed). The

Empirical Bayes differs from the traditional Bayes in that the

priors are estimated from the data. Indeed both GS and ARD

algorithms are empirical Bayes formulations, as well [39]. For

every site h the source variance is calculated in the following way

[21,40]:

s2
h~(~LLT

h C{1
~BB

~LLh){1 ð5Þ

Where C~BB
is the reduced data covariance and ~LLh denotes the

reduced leadfield. If we define the vector s2~½s2
1, . . . ,s2

v � as the

ordered set of source variances, we can then write the EBB

covariance prior as:

Qe
EBB~ diag(s2) ð6Þ

As in the case of MNM, ReML estimates only one

hyperparameter in the EBB scheme.

6.3 Multiple sparse priors (ARD and GS). ARD and GS

employ multiple empirical priors that are data independent but

locally determined on the basis of brain anatomy. The generic

source prior qi[Rv is a distributed pattern with compact spatial

support. The spatial extent of a source prior is determined by a

smoothing operator that employs the Green function:

G(s) ~
X8

i~0

si

i!
Ai ð7Þ

where the generic element Aij[½0,1� of A denotes the neighbor-

hood properties of the vertices. Depending on the smoothness

parameter s, the G function connects the patch points from a

central vertex up to its 8th-order neighbor. Fig. 2 shows how

different smoothness values affect the form and extent of G. In

SPM, a trade-off value between spatial accuracy and local

coherence is assumed by choosing s = 0.6. This choice provides

an effective local coherence of approximately 10 mm.

The covariance component related to the single patch can be

formulated in the following way: Qe
i ~qiq

T
i : The minimum

number of covariance components considered in this paper is 2p

under the assumption of uncorrelated patch activities, where p is

the number of patches per hemisphere (in this work p = 256). As a

consequence, the estimated covariance can be expressed as the

sum of the single patch covariance components weighted by their

respective hyperparameters li through the scale parameters

exp (li) :.

ŜSe ~
X2p

i~1

exp (li)Q
e
i ð8Þ

Theoretically, an infinite number of source priors could be

generated to accommodate any linear combination of compo-

nents. In our simulations, in addition to the minimal set of 2p

components, we consider p elements of the following kind:

Qe
i
~ (qi z q

sym
i )(qi z q

sym
i )T , where q

sym
i is the contralateral

replication of qi. The inclusion of this prior set accommodates

correlations between symmetrical areas of the two hemispheres.

To test whether the addition of symmetrical correlated priors is

beneficial, we performed every simulation set either with or

without this set of components (i.e. with 3p or 2p priors,

respectively).

7 Hyperparameter Tuning
The four schemes employ ReML (see Appendix S1 for a

description) to estimate the hyperparameter set that determines

Bayesian Approaches to MEG/EEG Source Localization

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e51985



the weight of each covariance component. Since in the case of

MNM and EBB only one prior is considered, the ReML output is

a single hyperparameter (i.e., a rescaling factor for the unique

covariance component). In contrast, in ARD and GS, the NC

hyperparameters are iteratively evaluated at each ReML cycle.

The estimated log-evidence of the reduced data ln(p̂p(~BB)) is the

objective function. In fact, rather than maximizing the estimated

evidence p̂p(~BB), it is more convenient to consider the log of the

same quantity in the following form:

ln(p̂p(~BB)) ~

ð
ln(p̂p(~BB))q(l)dl ð9Þ

Where q(l) is the approximation of the conditional distribution

p(lD~BB) for the set of hyperparameters l~½l1,:::,lNC
� and NC is the

number of covariance components. Under the Laplace approxi-

mation, the estimated conditional density of the hyperparameters

is a Gaussian distribution q(l)~N (ml,Sl): Mean and variance of

the hyperparameter distribution q(l) are estimated with a second-

order Fisher scoring procedure [16] by means of the M-step of

ReML (see Appendix S1).

Since the measure of the discrepancy between the conditional

density and its approximation q(l) (also called Kullback-Leibler

(KL) divergence).

KL(q(l)DDp(lD~BB))~

ð
N (lDml,Sl)ln

p(~BB,l)

N (lDml,Sl)
dl: ð10Þ

is a positive quantity, the free energy F denotes a lower-bound for

the log-evidence:

F ~ ln p̂p(~BB) { KL(q(l)DDp(lD~BB)) ð11Þ

The goal of ARD and GS is to get an approximation of the data

log-evidence. By approximating q(l) to p(lD~BB), the KL divergence

is minimized and F becomes a satisfactory approximation:

F&lnp̂p(~BB):
Unfortunately, the free energy F in (11) cannot be computed in

closed form. Therefore, an approximation is used, giving a

Gaussian prior density on the hyperparameters p(l)~N (g,P{1):

F ~ {
n

2
tr(S(ml){1C~BB) {

n

2
lnDS(m

l
)D{

un

2
ln2p z

1

2
lnDSlPD {

1

2
(ml{g)T P(ml{g)

ð12Þ

u and n are the numbers of the reduced spatial and temporal

dimensions. g is a vector of NC elements with the same mean value

g. The covariance of the prior distribution p(l) is a diagonal

matrix: P~P:I. A Gaussian distribution assumption on l is

equivalent to assuming a log-normal distribution on the scale

parameters exp lð Þ: In the SPM framework, the values for g and

P are user-defined. We used the default values g= 232 and

P= 1/256 in this work. These values implement weakly informa-

tive (flat) priors providing a small expectation and a very large

variance [41]. A variance of 256 for each hyperparameter li

means that the scale parameters exp(li) is allowed to vary by

several orders of magnitude. Assuming g= 232 implies that the

expected mean value for all the scale parameters is around zero at

the beginning of the ReML process.

The first term in (12) denotes the estimation accuracy (similarity

between the estimated covariance and the reduced signal

covariance). The second term is a measure of the estimated signal

amplitudes which needs to be minimized. The third term is

constant and depending on spatial and temporal dimensions of the

reduced signal space. The last two terms quantify the complexity.

They represent the similarity between the prior and posterior

statistical moments of the hyperparameter distributions.

The MSP schemes focus on the estimation of source covariance

ŜSe defined in (8) as a linear combination of several independent

components Qe
i weighted by their respective scale parameters. The

sensor noise covariance can be regarded as a single component

that is linearly added to the signal components:

ŜSz ~ exp (lz)Qz ð13Þ

where lz is the noise hyperparameter. The independence

assumption over channels implies Qz~I : If we project the

estimated source covariance ŜSe into the sensor level, the signal

covariance can be expressed as a linear combination of signal and

noise components:

Figure 2. Profile intensities G(s) of the same spatial pattern for different values of the smoothness parameter s. LEFT: the location and
maximum extent of the spatial pattern is shown (blue region). RIGHT: the spatial pattern is shown for different s values ranging from 0.2 to 0.8,
projected on the cortical surface (left) and on a flattened surface upon a wireframe height map (right). The number of points featuring more than
60% of the G peak value (central point of the spatial pattern) can range from 20 (s = 0.2) to 55 (s = 0.8).
doi:10.1371/journal.pone.0051985.g002
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ŜS~ ŜSzz ~LLŜSe ~LLT ð14Þ

In this way, the component estimation of ŜSe takes place at sensor

level. Second and first level hierarchies of our model are collapsed

into a single level. Basically, each scheme for source reconstruction

can be considered as a tool for estimating the set of covariance

components Qe [4,42].

8 Iterative Learning in ARD and GS
8.1 ARD. ARD is a relevance determination scheme which

operates solely on data covariance C~BB: The estimated source

covariance projected into sensor space is Q~(~LLQe ~LLT ). The

ReML-step iteratively estimates first and second moment of the

hyperparameters (ml and Sl) until convergence. As the conditional

mode of the scale parameter connected to the i-th patch exp (ml
i )

approaches zero (i.e. ml
i ?g~{32, the hyperparameter reaches

its prior expectation) at some point of the iterative process, so does

the connected variance component Sl
ii (gaussian assumption on

p(l)). In this way, the i-th patch is discarded from the active set of

patches. Upon convergence on the optimal hyperparameter set,

the maximum a posteriori M matrix is calculated by means of an

E-step only once. Convergence is reached when F stops increasing

or only one active patch is left (Fig. 3).

8.2 GS. In contrast to ARD, GS evaluates sets of patches

rather than single elements. However, in the patch selection for

each set, the relative weight of every patch within the set needs to

be evaluated. Thus, at each ReML step, patch activity estimates

are performed employing the quantites Qi~(~LLQe
i
~LLT ) and ~BB in

one E-step in the reduced sensor space. That is, GS makes use of

both the original data and the covariance components (Fig. 3).

GS works iteratively in two steps:

Step one:

Each set of patches has one covariance component with an

associated hyperparameter. The hyperparameter evaluation pro-

cess is implemented by ReML through an iterated M-step. The

starting prior set for the first M-step uses all the components with

the same variance. At each subsequent cycle, a new set is created

which is a subset of the last one.

Step two:

The source level activity due to all prior covariance components

is evaluated through an E-step (see Appendix S1). The individual

source priors are then ordered according to their magnitude and

the top half of the set is used to form a new, prior set. In this sense,

the new set is a sort of genetic crossover which is likely to discard

some of the parent sets in the next ReML iteration. This pruning

keeps the number of current sets small (usually between 3 and 8).

The search terminates when the free-energy stops increasing or

when the number of prior components reduces to one. Since each

new set is smaller (by a factor of two) than the previous one, the

search is extremely fast.

9 Construction of Simulations
Source localizations were performed on simulated datasets with

one, two and three dipoles. In EBB and MMN it is possible to use

all mesh vertices as possible source locations (as they are based on

single dipole models). In contrast, ARD and GS are based on

cortical patch models consisting of many dipoles, and these

patches are relatively few in number (256 per hemisphere). In

order to perform an appropriate comparison between the two

Figure 3. Overview of the four schemes pipeline. In the MNM and EBB case the M-step just provides a scaling factor on its single prior, while
ARD uses it to weight and select source priors which give a relevant contribution. GS handles proposed sets of priors, discarding the irrelevant ones
(applying the M-step), and introducing a new set with the most active priors (as estimated by the internal E-step). Finally, the common E-step at the
end is the only stage where individual sources are evaluated.
doi:10.1371/journal.pone.0051985.g003
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solution spaces, all simulated dipole locations in the study were at

patch centers.

A set of 50 single dipoles was selected out of 10000 random sets

by selecting those with minimally correlated leadfields. While this

does not necessarily guarantee a minimum mutual distance

between the 50 locations, it achieves a satisfactory distribution

across the source space. The final set is shown in Fig. 4. For the

two-dipole simulations, we added either a dipole at the contralat-

eral location (symmetrical configuration), or at a random one

(asymmetrical) to evaluate the effect of bilateral correlated priors

on ARD and GS performance. For the three-dipole simulations,

the locations were also selected randomly.

Each simulation comprised 100 epochs of 0.8 seconds and a

sampling rate of 200 Hz. One time course per dipole was

generated for each simulation. For each time sample, an

instantaneous frequency was drawn from the Gaussian distribution

N (10 Hz, 3 Hz): The time course was obtained taking the sine of

the cumulative sum of the instantaneous frequencies, plus a

random starting phase (Fig. 5). For the multiple-dipole simulations,

the dipole time courses were controlled either for high (.0.8) or

low (,0.3) correlation. Finally, these time courses were replicated

over all trials. Each time-course had time-varying noise added to

reach an SNR in the range of 230 to 10 dB, with steps of 10 dB.

The SNR levels were set up by adding Gaussian noise to the

sensor level data. The signal was defined as the average root-

mean-square value of the noiseless sensor readings. Therefore,

each simulation consisted of a dataset with 100 trials based on the

same source locations and time-courses with the addition of

random noise (varying from trial to trial). The four inversion

methods were applied to give four image volumes for each trial.

These volumetric current estimates were quantified in terms of

spatial and temporal accuracy. In Fig. 6 an example of source

localization is shown with noise levels at 0 and 220 dB for

asymmetrical uncorrelated sources. For ARD and GS, symmet-

rical correlated sources were included in the set of source priors.

At 0 dB, ARD, GS and EBB demonstrate a satisfactory

localization performance. MNM detects the lower source slightly

misplaced towards the brain surface. At 220 dB, EBB does not

localize the sources distinctly whereas both ARD and GS can

localize one source in the right hemisphere and find a local

maximum at the location of the left hemisphere source. In this

case, MNM does not perform as well as the other algorithms.

10 Accuracy Parameters
10.1 Spatial Accuracy Index (SAI). To evaluate spatial

accuracy, we used an approach inspired by the FROC method-

ology [37,43]. FROC is an evaluation method that measures the

overlap between simulated extended sources and detected ones. In

contrast, our method evaluates the performance by measuring the

distance between the local maxima of the estimated activity and

the actual simulated dipole positions. As a first step, the brain

volume is scanned to get a list of local image maxima. Peaks with

values below 5% of the maximum peak have been removed to

avoid noisy local maxima biasing the results (i.e. only the top 95%

of peaks were considered). We count True Positives (TP) as the

number of local maxima that fall within a distance r (our search-size)

of one of the simulated dipole sites. We considered search-sizes

ranging from 3 to 30 mm on a logarithmic scale. The local

maxima detected more distant than r from a dipole are labeled as

False Positives (FP). Then, the peaks are ordered by descending

magnitude. Accumulated magnitudes TPacc for TP and FPacc for

FP are calculated. Finally, a curve of the magnitude ratios

Y = TPacc/(TPacc+FPacc) is computed. The area under the curve

(AUC) can be taken as a performance index for the chosen search-

size. We define this as as the Spatial Accuracy Index (SAI) ranging

from 0 (no TP) to 1 (no FP, ideal case). In contrast to typical ROC

curves our function is not necessarily monotonic (false positive

detection, mostly when true positives have already been detected,

lowers the ordinate value Y (Fig. 7)).

In table 1 the SAI values of the localization example in Fig. 4

are reported as example.

Figure 4. Possible simulated source locations. External and internal views of the brain hemispheres are shown in the upper and lower part of
the image respectively. The algorithm for the source site choice aims to minimize the spatial pattern overlap.
doi:10.1371/journal.pone.0051985.g004
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Figure 5. Synthetic time courses for one simulation. For each source, a frequency per time sample is drawn from a Gaussian distribution
(N (10 Hz, 3Hz)), top row). The instantaneous source amplitude is obtained by integrating the frequencies and taking the sine of the resulting angle.
If the generated time course satisfies the desired correlation threshold (either high or low: middle and lower rows, respectively), it is accepted;
otherwise the procedure is repeated. The corresponding frequency histogram and correlation matrices are shown in the right column.
doi:10.1371/journal.pone.0051985.g005

Figure 6. Example of localization performances at 0 and 20 dB. Two asymmetrical, weakly correlated sources are simulated in the forward
problem. Symmetrical correlated priors are considered for ARD and GS. The actual simulated dipoles are centered at the dashed circles. EBB performs
almost flawlessly at high SNR at high SNR. GS and ARD still show some local maxima in the actual source location at extremely low SNR.
doi:10.1371/journal.pone.0051985.g006
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10.2 Temporal Accuracy Index (TAI). In order to evaluate

the Temporal Accuracy Index (TAI) of the reconstructed source time

series we calculated the percentage of data variance explained by

those sources labeled (in the previous step and depending on

search size) as true positives. The explained data variance was

quantified by means of the coefficient of determination

R2~1{
SSerr

SStot

where SSerr ~
P
i,j

(~BBij{ ~̂BB~BBij)
2is the residual sum of squares. ~̂BB~BBij is

the estimated field component generated by the reconstructed

sources.

SStot ~
X

i,j

(~BBij{
�~BB~BBi)

2

is the total sum of squares (proportional to the sample variance).

The plotted curves of R2 are monotonic with respect to the search

size because this quantity is bound to increase as the number of

sources used to explain the variance is increased. We define

Temporal Accuracy Index (TAI) as the area under the curve

(Fig. 8). In the single dipole case we found that the dimension

reduction in the preprocessing stage effectively removes all noise,

with the exception of the lowest SNRs. As a general consequence,

this implies that only one reduced time sample is present in such

circumstance. Hence, R2 (and therefore TAI) is not defined for the

single-sample case.

Results

Fig. 9 shows the summary of results as a color map for spatial

and temporal accuracy indices. Each color matrix shows the AUC

(SAI or TAI) results for one method at a given source

configuration. Each configuration is defined by (1) number of

dipoles (one, two, three), (2) dipole locations (asymmetric,

symmetric), (3) correlation between dipole time-courses (low, high)

and (4) priors included in the source localization (bi = bilaterally

correlated, symmetrical priors added to the single source priors;

uni = only unilateral source priors included). In each matrix, the

row and column indicate the search-size and SNR, respectively.

The search-size ranges from 3 to 30 mm in a log scale, and the

signal to noise ratio (SNR = 20 log10 Asignal=Anoise

� �
) grows

linearly from 230 dB to +10 dB. In general, GS and ARD have

similar performances, across all conditions. When the acceptable

localization error (or search-size) decreases, so do the accuracy

measures. In contrast, EBB has close to perfect performance at

higher SNRs but degrades relatively quickly for lower SNRs.

Figure 7. Example of a Positive Predictive Value (PPV) curve for one simulation’s source localization, calculated by means of the
localization image volume. The PPV is the proportion of the images peaks that are localized within a given search-size around the simulated
dipole (True Positives, TP). Peaks localized outside of the search-size are considered False Positives (FP). Thus, PPV is TP/(TP+FP). The peaks are
ordered by intensity, and PPV is calculated for each fraction of the total peak count. In this way, a curve is obtained that indicates whether the
stronger peaks fall near the dipole (decreasing slope) or far from it (increasing slope). The area under the curve was used as a performance indicator,
the Spatial Accuracy Index (SAI). The curves in the figure depict 10 search-sizes from 3 to 30 mm, on a logarithmic scale.
doi:10.1371/journal.pone.0051985.g007

Table 1. SAI results for the four inversion schemes in the
simulation trial presented in Fig. 4.

GS ARD MNM EBB

SAI at 0 dB 0.09 0.76 0.20 1.00

SAI at 220 dB 0.05 0.66 0.01 0.00

doi:10.1371/journal.pone.0051985.t001
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Figure 8. Example of curves of temporal variance explained by the source reconstruction (R2). The R2 value reported by SPM includes all
vertices in the cortical mesh. Only the vertices located within the given search-size (x axis; 3 to 30 mm) were considered to generate time-courses.
One line plot is calculated for each SNR (230 to +10 dB, in 10 dB steps). The Temporal Accuracy Index (TAI) for a given search-size is considered as
the R2 value at that distance.
doi:10.1371/journal.pone.0051985.g008

Figure 9. Summary of spatial (SAI) and temporal (TAI) accuracies of the four algorithms. A: Magnified example of a scale value grid
for explanatory purposes. The color coded values represent the areas under the curve (AUC) pertaining to the spatial and temporal accuracy
curves. AUC values are plotted as functions of SNR (x axis, 230 dB to 10 dB) and search-size (y axis, 3 mm to 30 mm, downward direction, logarithmic
scale). B, C: Spatial (B) and temporal (C) accuracies were evaluated for 1, 2 and 3 dipoles. Different conditions were manipulated: (1) Symmetry of 2
sources (symmetric vs. asymmetric in the two hemispheres); (2) Correlation level between sources (high or low, for 2 and 3 sources); (3) Bilateral
correlated source priors vs absence of them (only ARD and GS). ‘bi’ stands for correlated priors included. ‘uni’ stands for correlated priors omitted.
doi:10.1371/journal.pone.0051985.g009
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MNM has a good performance when applied to one dipole

configurations. However performance degrades rapidly as the

source configuration becomes more complex. Note that there is no

discernible difference when bilateral priors were used in ARD/GS

rather than just unilateral ones. These findings are presented in

more detail in the next section.

1 SAI Results
In the following, spatial accuracy results for one, two and three

sources are separately reported. Fig. 9 provides a descriptive

summary of overall performances across search-sizes and SNRs.

Fig. 10 and 11 quantify these differences for a fixed search-size of

14 mm. This choice is based on the fact that the G function with

s = 0.6 has a full width half maximum of two to three mesh

vertices. Since the mean distance between vertices is around

5 mm, we considered a search-size of 14 mm as a reasonable

trade-off between spatial accuracy and computational constraints.

50 simulations were performed in each condition with different

source locations; for each simulation a SAI/TAI test was

computed over 100 trials. Fig. 10 and 11 show mean and standard

error bars based on the average of these 50 simulation runs. The

squares represent significant differences between performances

(p,0.05, Bonferroni corrected for number of conditions and

SNRs).

1.1 One Source. GS reaches 80% accuracy for SNRs of

210 dB or above when considering the 14 mm search-size (Fig. 9).

The spatial accuracy for GS decreases markedly at lower SNRs,

but not as abruptly as that of EBB. For the same search-size ARD

shows a remarkably robust performance (70–80% of accuracy)

even at SNRs as low as 230 dB. At SNR = 220 dB, EBB still

shows a localization accuracy of 86% that exceeds not only the

localization performance of GS and ARD, but also matches the

spatial resolution of the cortical mesh. However, at very low SNRs

(230 dB), EBB accuracy drops to 2%. Fig. 10A (top left panel)

quantifies the relative performance of the algorithms Under this

condition, ARD performance is significantly better than EBB at

230 dB, whereas the EBB performs significantly better than GS at

higher SNRs. We found no significant difference between the

performance of the ARD and GS algorithms.

Impressively, MNM maintains a robust performance (70–80%

accuracy) for a search-size down to 10 millimeters and a SNR

down to 230 dB.

1.2 Two sources. In our simulations for two dipoles, we

specifically addressed the question whether correlations between

the sources affect the algorithms’ performance. Furthermore, we

investigated whether GS and ARD benefit from including

symmetric patches to model correlated source priors.

Not surprisingly, when two sources are present instead of one,

the localization performance of all algorithms declines. EBB

performance deteriorates more rapidly than ARD/GS with

decreasing SNR. The plots in the second row of Fig. 10A, show

the algorithm’s performance with symmetrically and asymmetri-

cally positioned sources with high (r.0.8) or low (r,0.3)

correlation. The curves across all conditions are remarkably

similar and show an interaction between algorithm type and SNR

with ARD/GS performing more robustly at low SNR (,210 dB)

and EBB showing improved performance at higher SNR (.0 dB).

To our surprise, GS and ARD did not benefit from the inclusion

of symmetric priors: highly correlated sources placed on bilateral

patches were localized by GS and ARD with comparable accuracy

irrespective of the inclusion of bilateral sources priors (see Fig. 11A

for a direct comparison). This would also explain the similar

performance of the ARD/GS algorithms whether the sources were

placed symmetrically or not: in fact, no significant difference

between the performance of the ARD and GS algorithms were

found in this case either. As expected, in contrast to ARD/GS, the

higher correlation between sources does significantly affect the

accuracy of the beamformer reconstructions (Fig. 11B). For EBB,

pooling across SNRs and taking a search-size of 14 mm, a high vs.

low correlation performance two sample t-test yields a significant

difference (t = 24.5, N = 1000, p,1026).

In this case MNM performs significantly worse than all other

schemes and has reasonable performance only for very large

search-sizes and high SNRs.

1.3 Three sources. Performances are similar to the two

source case with the EBB performing worse at lower SNR but

better at high SNR when compared to ARD/GS. Again, we found

no significant difference between the performance of the ARD and

GS algorithms. In line with the findings for two sources, the

beamformer performance was degraded by correlations between

the sources (high vs. low correlation performance: two sample t-

test, search-size 14 mm: t = 22.32, N = 250, p,0.05). As in the

case of two sources, MNM has the poorest performance, though

no further deterioration from 2 sources is detected.

For all algorithms there was no significant decrease in accuracy

compared to the two source performance with the exception of

EBB at 0 dB and 210 dB (2 vs. 3 sources, asymmetrical

configuration: t = 2, N = 100, p,0.05).

2 TAI Results
2.1 Two sources. GS shows a good performance across all

the simulations for two and three sources (Fig. 9). Generally, the

temporal accuracy is good (70% accuracy) for a search-size

between 10 and 15 mm and for SNR levels between +10 and

210 dB. Accuracy decreases at 220 dB and the temporal

reconstruction becomes unreliable at 230 dB. ARD maintains

at least 70% accuracy at 10 mm for SNRs between 10 and

210 dB.

Fig. 10B quantifies the above for a search-size of 14 mm. The

overall picture remains similar to the spatial accuracy results.

Nevertheless, some subtle differences are detectable. Firstly, ARD

performs consistently better than GS in terms of temporal

accuracy. Secondly, the inflection point at which all algorithms

have similar performance has increased up to around 0 dB. This

highlights the relatively poorer performance of EBB in terms of

temporal reconstruction.

2.2 Three sources. The temporal accuracy for three sources

mirrors the performance of two. Still, there are significant

differences between the algorithms when looking at the relative

deterioration due to the increase of sources. While the highest

SNRs (10 and 0 dB) do not show any meaningful deterioration in

the performance for any algorithm, ARD and EBB, in contrast to

GS and MNM, show a decreased performance at 210 dB (2 vs. 3

sources: t = 2.6, N = 250, p,0.05 for ARD, t = 3.2, N = 250,

p,0.05 for EBB).

3 Free Energy Results
To address the question whether the Bayesian model evidence

based on the individual source reconstructions co-varied with our

estimates of spatial and temporal accuracy, we used a random

effects Bayesian model selection [44] to compare the free energy of

solutions for each pair of algorithms over simulations. This results

in an exceedance probability or the probability that a particular

model is more likely than the other (or any other for more than

two models). Generally these results are consistent with the SAI/

TAI findings, with high exceedance probability in favour of ARD

over GS at low SNR; the difference decreasing with increasing

SNR (with SNR.0 dB this approached chance level, 0.5).
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Figure 10. Statistical comparison of the inversion schemes for a search-size of 14 mm. ARD (green), GS (red), EBB (blue) and MNM results
are plotted in Panel A (SAI results) and B (TAI results). For each simulation the mean accuracy index is plotted versus the different SNR levels. The error
bars show the standard error. Black squares in the lower panels indicate significant difference between the schemes’ performances.
doi:10.1371/journal.pone.0051985.g010
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Similarly, we find that ARD over EBB models are favoured at

230, 220 and 210 dB (p = 0.9999), with model probabilities

becoming comparable at around 0 dB. For simulations with high

correlation this difference remains marginal at high SNR (10dB),

whereas for simulated sources with intrinsically low correlation the

exceedance probability in favour of ARD is negligible (i.e. the EBB

solution is favoured) We find MNM to be less likely (p,1026) than

all the other models for all conditions and SNRs except when

compared to the EBB model for low SNR data where the

probability of the two models became comparable when source

correlation is high.

Moreover, we used Bayesian model selection [44] to pool the

evidence over realisations (and conditions) and test whether there

was more support for a model using bilateral correlated priors over

unilateral ones. The numbers reported here correspond to the

expectation of the posterior for the bilateral model. Over all

conditions simulated there was no evidence in support of either

model (GS: p = 0.47; ARD: p = 0.52). This was true for both the

low correlation conditions, where as expected, the addition of

bilateral priors had little effect (GS: p = 0.46; ARD: p = 0.51); and

also at high correlation, when the underlying distribution was

asymmetrical (GS: p = 0.39; ARD: p = 0.44). Even in the case

where the sources were symmetrical, the bilateral model was only

marginally more likely (GS: p = 0.58; ARD: p = 0.61).

Overall, there was no evidence that the bilateral priors were

advantageous. These results confirm that the free energy values

provide a useful quantification of the best empirical priors without

knowledge of true source locations or time-courses.

Discussion

By comparing traditional techniques with a Bayesian approach

(MNM; EBB) and two Multiple Sparse Priors schemes (ARD and

GS), this study complements the existing MEG Bayesian literature

focused on classical priors like Equivalent Current Dipole

[42,45,46] and Minimum Norm [10,45]. All of these schemes

are examples of parametric empirical Bayes. While not Bayesian in

the strictest sense [35], Empirical Bayes has been employed in

several fields [47] and applied to M/EEG data [12,45]. Its core

difference to traditional Bayes is the concept that the parameters

Figure 11. Statistical validation of performances under conditions of high correlation. Upper panel: Plots of ARD and GS performances
with highly correlated symmetrical sources in case of inclusion (green) or exclusion of symmetric source priors (black). Lower panel: Differences
between EBB performances with high (black) and low (green) correlated sources. The black squares represent significant differences in
correspondence of the different SNRs.
doi:10.1371/journal.pone.0051985.g011
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can be estimated from the data. The beamformer prior itself is

calculated according to [5] and [36]. This is empirical formulation

is exemplified in the EBB scheme in which the data covariance

directly determines the prior.

Although, GS and ARD never reach a spatial accuracy

comparable to the spatial resolution of the cortical mesh, this

can be explained in part by the spatial pattern profile of the

covariance components (see MAP equations in Appendix S1).

From the results shown in Fig. 3, a cohort of 20 vertices around

the center of the patch have comparable (60% or greater) intensity

to the central vertex where the dipole is located (s = 0.6). A smaller

value of the s parameter together with an increased number of

patches would have probably improved this bound, at the expense

of a larger search space for the non-linear optimization. One

should also note that we did not simulate patch-like sources but

used single dipolar elements as sources. The disparity between the

leadfields of single dipoles and the ones of these elements will be

greatest when the patches are curved [21,48]. This could explain

the improved performance of EBB over the MSP schemes at high

SNR.

Another major finding is that symmetrical correlated priors are

not particularly advantageous for GS or ARD from the point of

view of spatial and temporal accuracy (SAI and TAI results, uni vs

bi, Fig. 9).One reason why bilateral patches might have less

flexibility is that these priors also imply that the sources in each

hemisphere must have approximately the same variance. The use

of unilateral priors allows this disparity in variance to be

addressed. In practice also it may be that unless the symmetric

sources are perfectly correlated the use of a bilateral prior is too

restrictive as compared to two unilateral ones.

The evidence that functional networks of neural assemblies can

show different correlated hubs within the same hemisphere is

constantly growing [49–55]. For this reason, it becomes increas-

ingly difficult to construct a priori hypotheses which can cover the

whole range of possible functional results. Our results show that

such a priori knowledge is not necessary for ARD or GS and

indeed one would expect that the removal of these extra

(redundant) priors would make the inversion more robust (by

decreasing the parameter space of the non-linear search and

avoiding possible false positives as in Fig. 6, lower panel). Our

results for ARD and GS are consistent with the theoretical proof

provided in [4,36] where an analogous ARD approach was used.

It should be noted that the simulated conditions in this paper

were close to ideal: accurate knowledge of the cortical mesh

location; the assumed noise model (Gaussian, white) matches

exactly the simulated one; sources at patch centers. The robustness

of these algorithms under different conditions remains to be

investigated.

On that note, our analysis is based on the assumption of

stationarity of the sinusoidal basis sets over the time window of

interest. Future work might however consider alternative temporal

basis functions and so maximize the sensitivity to transient phasic

phenomena. We would expect the choice of the temporal basis

functions to improve or degrade all algorithms by a similar

amount.

In contrast to our initial expectations that the EBB algorithm

would be more robust to noise, it showed relatively poor

performance at low SNR [56]. At first we thought this could be

due to a large number of local maxima produced by the EBB

inversion (in which every source has some non-zero value) being

penalized by the SAI metric (where maxima outside the search

region are punished); increasing stringency of our criteria for a

local maximum and taking the top 10%, rather than the top 95%

actually degraded the performance even further. Critically, it

would seem that the single EBB prior does not give the algorithm

the necessary degrees of freedom to explain low SNR data. That

is, the global maximum at the source level is determined directly

from the sensor level covariance matrix. ReML, employing the

single EBB prior, can do nothing but scale this source distribution.

If the dominant eigenvalue does not correspond to the true

maximum, then the peak current estimate will be at the wrong

location. This would explain the performance step in EBB for

SNRs higher than 0 dB (see Fig. 10A). In this work we constructed

the data dependent priors based on the raw data covariance

matrix. Future work might examine the use of priors based on a

more compact representation of this matrix prior [57]. Indeed, a

number of derivatives of the pure LCMV beamformer exist. For

instance, the pseudo-Z beamformer could be implemented under

the present framework basically by normalizing the LCMV prior

with the noise covariance matrix. However, this would introduce a

pseudo-contrast not available in the current implementation of the

algorithms based around anatomical priors. Therefore, we settled

for keeping focus and consistency, albeit at the expense of

suboptimal performance of EBB. MNM outperforms GS and

ARD only in the single source case. Under more complex source

conditions it performs worse, by our metrics, than the other three

schemes. Rather than discounting the MNM algorithm (shown to

be rather robust in a number of studies), it should be noted that we

have chosen an evaluation scheme (SAI) that focuses on spatial

precision, which might be non-optimal for methodologies assum-

ing smooth distributed sources.

ARD and GS employ different approaches to the recursive

tuning on hyperparameters: ARD associates one hyperparameter

to each source prior, while GS assigns the hyperparameters to

source prior sets. A second important difference between ARD

and GS is that ARD progressively discards the irrelevant

covariance components. In contrast, GS, not only eliminates

irrelevant sets of patches, but also generates a new set at each

ReML iteration. This process, which alternates pruning and

generation of components, is the most versatile of the schemes we

have considered. However, ARD and GS did not generally differ

in spatial accuracy and ARD, in addition to being simpler,

outperformed GS on temporal accuracy. In the future it might be

interesting to look at source prior sets provided from different

schemes that can be inserted in the GS process, as a sort of

metascheme which evaluates results generated by different algo-

rithms (e.g. the EBB prior could be part of the library). Moreover,

it could be beneficial not to discard the covariance component sets

after just one unfavorable ReML choice.

We were encouraged that, having evaluated the performance of

the algorithms purely in terms of localization performance,

inspection of the Free energy values (which do not depend on

explicit knowledge of the solution) would have lead us to the same

conclusion. This means that a Bayesian Model Averaging scheme

(BMA) [58] can be directly applied to our results to produce a

weighted average of the posterior current distributions from the

four algorithms. Based on our free energy values this scheme

would give larger weight to ARD at low SNR and favor the EBB

solution at high SNR (i.e. produce high resolution images when

there was sufficient SNR to merit it). Alternatively, by setting the

priors in a compatible form, it would be also be possible to

produce all possible covariance models in parallel, and weight

them using same final ReML scheme (Fig. 1, step 4).
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