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Abstract

The properties (or labels) of nodes in networks can often be predicted based on their proximity and their connections to
other labeled nodes. So-called ‘‘label propagation algorithms’’ predict the labels of unlabeled nodes by propagating
information about local label density iteratively through the network. These algorithms are fast, simple and scale to large
networks but nonetheless regularly perform better than slower and much more complex algorithms on benchmark
problems. We show here, however, that these algorithms have an intrinsic limitation that prevents them from adapting to
some common patterns of network node labeling; we introduce a new algorithm, 3Prop, that retains all their advantages
but is much more adaptive. As we show, 3Prop performs very well on node labeling problems ill-suited to label
propagation, including predicting gene function in protein and genetic interaction networks and gender in friendship
networks, and also performs slightly better on problems already well-suited to label propagation such as labeling blogs and
patents based on their citation networks. 3Prop gains its adaptability by assigning separate weights to label information
from different steps of the propagation. Surprisingly, we found that for many networks, the third iteration of label
propagation receives a negative weight.
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Introduction

In protein interaction networks, proteins linked by short paths of

interactions tend to have similar functions [1], so an uncharacter-

ized protein’s local network neighborhood can be used to predict

its function [2]. Similarly in social networks, people connected by

up to three degrees of separation can be used to predict one

another’s happiness [3], risk of obesity [4], and which products

they will purchase [5,6]. Algorithms that predict node properties

based on network connectivity are also important in web search

[7,8] and finding genes associated with genetic diseases [9].

These algorithms take as input a network that represents a set of

objects as nodes whose pairwise relationships are encoded as the

links in the network. Then, based on a query list of nodes with a

particular property (or label) of interest, i.e., ‘‘positive examples’’ or

simply ‘‘positives’’, these algorithms assign a score to each node in

the network according to how likely it is to also have the queried

label. For example, given a set of proteins with known functions in

mitochondrial biogenesis, these algorithms can use the network to

find other proteins likely to have the same function (e.g., [10–12]);

or given a set of people who have bought a particular product or

service, these algorithms can find others likely to buy that product

(e.g., [6]).

Labeling problems like these have proved difficult when the

network has a relatively large number of nodes compared to the

number of positive examples, especially when the number of

positive examples is small; to date the best performing algorithms

for these problems, so-called label propagation algorithms [13–

15], only perform well when linked nodes tend to share the same

label (in other words, are assortatively mixed [16]). Label

propagation fails for other, common patterns of node labeling

[17,18] such as disassortative mixing where linked nodes tend to

have different labels (e.g., people linked by sexual contact tend to

be of different genders) or networks where nodes with many shared

neighbors are more likely to have the same label than nodes that

are directly connected to one another (e.g., networks of negative

genetic interactions [19,20]).

Here we introduce a unifying framework that generalizes a large

class of algorithms for node label prediction. We will refer to this

general framework as Generic Label Propagation (GLP). This

framework allows us to highlight a limiting underlying assumption

shared by all algorithms that fall under this class. Further, using

this framework, we introduce a new algorithm called 3Prop that

retains all of the advantages of label propagation but can adapt to

diverse node labeling patterns. In particular, 3Prop gains this

adaptivity by learning independent weights for the first three steps

of label propagation, thereby overcoming an inherent limitation

that we show restricts other label propagation algorithms. 3Prop

can be applied to large networks, computes node scores quickly,

and is easy to implement. Furthermore, as we will show, because

the topological structure of many real world networks limits the

amount of node label information available through label

propagation, 3Prop will likely perform well on a wide range of

network labeling problems. Specifically, 3Prop predicts node labels

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e51947



more accurately (and sometimes much more accurately) than label

propagation on five separate social and biological network labeling

problems where the networks range in size from 750 to 3 million

nodes and the proportion of labeled nodes ranges from 0.0002%

to 40%.

Methods

To motivate our 3Prop algorithm and to illustrate why label

propagation fails for some networks, we introduce a general

framework, which we will refer to as Generic Label Propagation

(GLP), that encompasses common variations of label propagation

algorithms. As we show, these algorithms fall into one of two

classes, which we call symmetric and asymmetric. In both classes, the

scores assigned to a node can be derived from probabilities that,

starting from the node, random walks of different lengths will end

in a positive node. These two classes have direct correspondence,

in that algorithms from one class can be used to calculate scores for

the other, and vice versa.

Below, we will first establish the GLP framework, and then use

the random walk interpretation of the GLP scores to illustrate the

intrinsic limitation of algorithms that fall into this framework.

Generic Label Propagation
Label propagation algorithms address the following problem:

given an undirected, possibly weighted, network over n nodes and

a set of positive examples of nodes with the label of interest (i.e.,

positives) as input, score all nodes in the network so as to rank

them according to how likely they are to be positives. Note that in

our formulation, we are not using negative examples, as in most

problems that we consider (e.g., predicting gene function) negative

labels are rarely available. We will represent the input network

using an n|n affinity matrix A, where Aij § 0 is the weight of the

link between node i and j (Aij ~ 0 indicates that i and j are not

connected). We will also assume that the network has no self-links

so Aii ~ 0 for all i. We represent the positive nodes using a label

vector y[f0,1gn
, where yi ~ 1 if node i is labeled (a positive) and

yi ~ 0 otherwise. For unweighted networks Aij ~ 1 if nodes i and j

are connected, in this case A is an adjacency matrix. In many real-

world networks, only a small proportion of the node pairs are

linked, making A a sparse matrix.

Label propagation assigns scores to nodes by an iterative process

which propagates ‘‘evidence for positiveness’’ out from positive

nodes through the links in the network to nearby nodes; this

process is often compared to heat diffusion [13,19]. On

appropriately normalized networks, this iterative process is

guaranteed to converge, and can be implemented using a simple

update rule that can either be iterated to convergence [13,14] or a

fixed number of iterations [21]. The solution to this iterative

process can also be derived by optimizing an objective function

which corresponds to doing Maximum A Priori (MAP) estimation

in the framework of Gaussian Markov Random Fields [13] (see

Text S1), however we describe GLP through this iterative process.

In particular, in each iteration of GLP, the score of node i, given

by fi, is updated by taking a weighted sum of the scores of i’s

neighbors at the previous iteration, along with i’s initial label.

Typically, to ensure convergence of the updates, the original

matrix A is normalized to generate a matrix M that has the same

pattern of non-zero elements and, therefore, corresponds to a

network with the same links but different link weights. These

normalizations are described later. Using M, the update rule for

node i is given by:

f after
i / l

Xn

j~1

Mijf
before

j z (1{l)yi, ð1Þ

where 0vlv1 is a parameter that determines the influence of a

node’s neighbors relative to its provided label. The update rule can

be written in matrix-vector notation as

fafter/lMfbeforez(1{l)y; and, by expanding the iterations,

the values of the node scores after R iterations, f(R), can be written

as:

f(R) ~ lRMRf(0) z (1{l)
XR{1

r~0

lrMry, ð2Þ

where f(0) is the vector of the initial node scores and Mr is the r-th

matrix power of M. In the limit as R??, this series is guaranteed

to converge to a unique solution so long as all the eigenvalues of M

are in the range ½{1,1�. The final node scores at convergence, f,

do not depend on f(0), so, abusing notation, we can write:

f ~ (1{l)
X?

r~0

lrMry: ð3Þ

Although this is the form we will consider in this paper, GLP

algorithms typically compute f by rewriting the fixed-point

equation corresponding to the update rule in equation (2), i.e.,

f ~ lMfz(1{l)y, ð4Þ

as (I{lM)f~(1{l)y (where I is the identity matrix) and then

either solving a linear system with coefficient matrix (I{lM)
using a conjugate-gradient based algorithm [22,23].

Normalization and Two Variants of GLP
Two different normalizations of A ensure convergence and

correspond to the asymmetric and symmetric variants of GLP

(abbreviated here as ALP and SLP, respectively).

In SLP, the matrix Msym is produced by setting

M
sym
ij ~ Aij=

ffiffiffiffiffiffiffiffi
didj

p
, where di ~

Pn
j~1 Aij is the weighted degree

of node i. In matrix notation, we can write S~D{1=2AD{1=2

where we are using S to refer to Msym and D is a diagonal matrix

whose diagonal elements Dii ~ di. SLP methods include diffusion

kernel-based [19] and Gaussian smoothing methods [13]. Other

related approaches include the Iterated Laplacian method [24]

and various methods derived by enforcing smoothness over a

symmetric, positive-semi definite, kernel [25] (see Text S1).

In ALP, M
asym
ij ~ Aij=di, i.e., P ~ D{1A where P refers to

Masym. Note that unlike S, P is not symmetric. However, each row

of P can be interpreted as a probability distribution over the

neighbors of the corresponding node, i.e., P is a singly stochastic

matrix. ALP methods include random walk with restart [26],

personalized PageRank [7], and RankProp [21].

The solutions of SLP and ALP are closely related–a slightly

modified version of the former can be used to compute node scores

for the latter (and vice versa). This similarity arises because

S ~ D1=2PD{1=2, so Sr ~ D1=2PrD{1=2. Substituting this defini-

tion into equation 3, we can write the final node scores for SLP,

fsym, as:

Labeling Nodes Using Three Degrees of Propagation
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fsym ~ (1{l)
X?

r~0

lrD1=2PrD{1=2y

~ D1=2(1{l)
X?

r~0

lrPry

~ D1=2~ffasym

ð5Þ

where ~ffasym ~ (1{l)
P?

r~0 (lP)r~yy are node scores calculated by a

slightly modified version of ALP that replaces y with a modified

vector ~yy where ~yyi ~ 1=
ffiffiffiffi
di

p
if node i is positive and ~yyi~0

otherwise. The only differences between the two variants of GLP

are an element-wise rescaling of the label vector and of the final

node scores, so ALP can be used to compute the SLP node scores

and vice versa. Although in our experimental section we use SLP

because it performs slightly better than ALP on the labeling

problems we consider, we will analyze ALP because the elements

of matrix powers of P can be interpreted as random walk

probabilities.

Random Walk Interpretation of Label Propagation Scores
and Inherent Limitations of GLP

If we interpret Pij as the probability that a random walk of

length one that starts from node i ends in node j, then the (i,j)-

element of P2, ½P2�ij ~
Pn

k~1 PikPkj , is the probability that a

random walk of length two starting from node i will end in node j,

and by induction, ½Pr�ij is the probability that a length r random

walk starting from node i ends in node j. Under this interpretation,

if we write p(r) ~ Pry for the result of the matrix-vector product in

the r-th term in the summation in equation 3, then its i-th element

p
(r)
i ~

Pn
j~1 ½Pr�ijyj is the probability that a random walk of

length r from node i will end in a positive node (recall that yj~1 if

node j is a positive and yj ~ 0 otherwise). As a result, the score

assigned to node i by ALP, ½fasym�i ~ (1{l)
P?

r~0 lrp
(r)
i , is a

weighted sum of these random walk probabilities, where (1{l)lr

is the weight assigned to the length r random walk probabilities.

Because lr’s (weights) are always positive, a path of rth length

will always have some input into the score, regardless of whether

its relevant or not. Moreover, due to exponential decaying weights,

direct neighbors will always have more influence on the score than

second degree neighbors, and so on. This setup makes it

impossible for label propagation to do well in cases such as

dissasortative mixing [16] where direct links between nodes

provide evidence against them having the same label (see

Figure 1). In particular, in such scenario, p(1) should have a

negative weight to decrease the scores of nodes directly connected

to positives. Similarly, when nodes with the same label tend to

share neighbors, length two random walk probabilities should

have a higher weight than direct connections but this is impossible

under GLP because 1wlwl2. Note that the relative weight of p(2)

cannot be increased by setting l&1 (so that l&l2) because this

also assigns high weight to random walks of length w2 which

degrades the quality of the node scores. Indeed, as we will show,

versions of GLP with high values of l but with the summation in

equation 3 truncated at r ~ 2 or r ~ 3 achieve higher accuracies

on biological node labeling problems than GLP.

3Prop
The 3Prop algorithm makes GLP more adaptive by assigning

independent weights to each of the first three summands

(corresponding to random walks of up to length three) in equation

3. The number of free parameters is kept small in 3Prop because

longer random walks are assigned zero weights. As we explain

later, in many real-world networks, assigning non-zero weights to

longer random walks is unnecessary and often counter-productive

(see Subsection ‘‘Why Random Walks of Length Three?’’ in

results). Another difference from GLP is that some of the weights

can be negative, allowing 3Prop to adapt to disassortative mixing.

Specifically, the 3Prop scores are given by:

f3prop ~
X3

r~1

arM
ry ð6Þ

for any real-valued scalars a1,a2, and a3. Note that because the

scale of the node scores is arbitrary, there are fewer than three free

parameters in 3Prop. Like GLP, there are two versions of 3Prop,

symmetric and asymmetric, and the symmetric version of 3Prop

(where M~S) performs better than the asymmetric version

(where M~P) on the labeling problems we consider in the

experimental section.

Estimating 3Prop Weights
3Prop uses linear discriminant analysis (LDA) (see, e.g., [27] for

a description) to fit its weights to a given labeling problem. LDA is

a linear classification algorithm that computes the 3Prop weights

a~½a1,a2,a3�T by maximizing the difference between the average

3Prop score of all positive and all non-positive nodes, while

accounting for the correlation between random walks of various

lengths. The value of a computed by LDA is given by:

a ~ C{1(x(z){x({))

where x(z) and x({) are vectors containing three elements, with

the r-th element equal to the average score assigned to the positive

and non-positive examples, respectively, when only considering

random walks of length r. Specifically, in asymmetric 3Prop,

x(z)
r ~

1

nz

X
iDyiw0

p
(r)
i and x({)

r ~
1

n{

X
iDyi~0

p
(r)
i where nz

and n{ are the number of positive and non-positive examples,

respectively (note that n ~ nzzn{). Recall that p
(r)
i is the i-th

element of the vector p(r) ~ Pry. C is the sample covariance

matrix of Xn|r where Xir~p
(r)
i . In the symmetric version of

3Prop, s(r) ~ Sry replaces p(r). To avoid over-fitting, we compute

p(r)’s (or s(r)’s) on a randomly selected portion of the training data

(generally the labels of 2/3 of the nodes), and then compute x({),

x(z) and C using positives and non-positives from the remaining

1/3 of the nodes in the training set.

Results

A Biological Example
Figure 1 illustrates the use of 3Prop on two different patterns of

node label distribution in two types of biological networks. In these

networks, the nodes represent proteins or genes and the task is to

label nodes with the functions of their corresponding proteins. In

the network shown in Figure 1A, the links connect proteins that

physically interact with one another in the yeast cell and the

positives proteins involved in ‘‘Meiotic Cell Cycle’’ according to

Gene Ontology (GO) [28]. In Figure 1B, genes are linked if they

have a synthetic lethal genetic interaction (i.e., simultaneous

mutation of both of their corresponding genes is fatal, but a

mutation of only one is not). The positives in this example are

Labeling Nodes Using Three Degrees of Propagation
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genes involved in ‘‘Transcriptional Initiation’’. In Figure 1A,

nodes with the same label are assortatively mixed and in Figure 1B,

positive nodes rarely link to each other but often share neighbors.

These differences in network characteristics are typical of physical

and genetic interaction networks [20,29,30]. GLP based algo-

rithms do well in predicting node labels for 1A (performance

illustrated in Figure 1M), but completely fail to identify the node

labeling pattern presented in 1B (performance illustrated in

Figure 1N). On this genetic interaction network example, GLP

achieves an area under the ROC curve (AUROC) of 0.2 which is

much worse than random performance–the low performance of

GLP can be attributed to its fixed assumption that nodes

connected by shorter paths are more likely to share labels.

The other panels in Figure 1, namely 1E-1L, illustrate the 3Prop

algorithm; the random walk probabilities of length up to three

along with the final 3Prop scores. For the physical interaction

network, length two and three random walk probabilities are

much better indicators of a positive label than the length one

probabilities. For the genetic interaction network, the best single

indicator of being a positive is to have a relatively low length three

random walk probability. 3Prop detects these trends and assigns

weights accordingly (see Table 1 for the weights). The resulting

node scores for symmetric 3Prop (Figures 1K and 1L) for both

labeling problems perfectly distinguish the true positives from the

non-positives, resulting in an AUROC of 1 (asymmetric 3Prop

achieves an AUROC of 0.83 on example 1B and an AUROC of 1

on example 1A).

Experimental Performance of 3Prop
In our experiments we use a diverse collection of networks

including: two types of molecular networks, protein-protein

interaction (PI) and genetic interaction (GI) (downloaded from

BioGRID [31]); five social networks representing Facebook

friendship relationships between students at various universities

[32]; a blog network capturing hyperlinks between political

opinion blogs [33], and a patent-citation network where patents

are linked whenever one cites the other [34] (see Table 2). We

consider all edges as undirected. These networks vary in size from

750 nodes to 3 million nodes. We consider categories of biological

function as labels for the PI and GI networks (we use 47 GO

categories from GO fringe [35] that have between 30–300

annotations), gender as labels for the social networks, political

view (liberal and conservative) as labels for the blog network, and

assigned patent categories as labels for the patent-citation network

(we only use patent categories that have more than 100 patents

assigned to them). The chosen set of networks represents a broad

variety of patterns in the proportions of nodes that are initially

labeled with various categories. For example, about 40% of nodes

in Facebook networks are initially labeled as male; in contrast, only

0.0002% of the nodes in the patent network are initially labeled

with the category ‘‘Wheelwright Machines’’.

We compare the performance of symmetric 3Prop with that of

symmetric GLP (SLP) which has been shown to perform well in

gene function prediction problems [36]. We report the perfor-

mance of SLP and 3Prop according to 3-fold cross-validation,

where we determine the parameter settings using a further 2-fold

cross-validation on the training fold.

Figure 1. Node prediction scores assigned by 3Prop on two different types of network. Displayed networks are subnetworks of a protein
interaction network (top row) and a genetic interaction network (bottom row). Both networks are derived from the BioGRID database, and the true
positive examples are derived from Gene Ontology. (A): Large red nodes indicate proteins involved in meiotic cell cycle, (B): Large red nodes indicate
proteins involved in transcription initiation. (C,D): Large red nodes indicate four randomly selected positives selected from (A) and (B) respectively, for
training 3Prop. (E-J): Node size reflects relative magnitude of scaled random walk probabilities, s(r) ~ Sry, for r~1 (E,F), r ~ 2 (G,H), or r ~ 3 (I,J). (K,L):
node scores assigned by 3Prop, compiled as a weighted sum of the three sets of the scaled random walk probabilities. (M,N): node scores assigned by
GLP, compiled as an exponentially decaying weighted sum of the three random walk probabilities (we set l ~ 0:5 based on cross-validation).
doi:10.1371/journal.pone.0051947.g001

Table 1. 3Prop coefficients assigned to walks of length one,
two, and three.

experiment 1st step 2nd step 3rd step

Fig. 1A (PI) 0.022 0.68 0.29

Fig. 1B (GI) 20.11 20.22 20.66

Caltech 0.072 0.45 20.477

Princeton 0.063 0.45 20.48

Georgetown 0.054 0.46 20.48

Oklahoma 0.0081 0.51 20.48

UNC 0.022 0.49 20.48

doi:10.1371/journal.pone.0051947.t001
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We evaluate GLP and 3Prop using two standard measures: area

under the ROC curve (AUROC) and average precision

(AUP).The ROC curve is a graphical plot of recall (number of

true positives divided by the total number of positives) as a

function of false positive rate (number of false positives divided by

the total number of negatives) for a binary classifier as we vary the

discrimination threshold. The area under this curve (AUROC) can

achieve a maximum value of 1 and a minimum of 0; a random

classifier will result in AUROC of 0.5. AUROC can also be

interpreted as the probability that a randomly chosen positive is

assigned a discriminant score that is higher than a randomly

chosen negative example. Precision at a given recall is defined as

the fraction of predictions that are true positives and is given by

TP/(TP+FP) where TP is the number of true positives and FP is

the number of false positives at the given recall rate. A classifier

that performs better in terms of AUROC is not guaranteed to

perform better in terms of average precision, or vice versa. In

general, average precision is a more suitable measure where there

are many more non-positive compared to positive examples [37].

Figure 2 compares the performance of 3Prop to that of SLP.

Figure 2A and B show the average precision and relative

improvement in average precision on held-out data (using 3-fold

cross-validation), respectively. As shown in Figure 2B, predicting

cellular function annotations using the GI network in yeast (47

labeling tasks) where 3Prop results in 49% improvement;

predicting the same annotations using the PI network in yeast

where 3Prop results in 19% improvement; on the five Facebook

networks, 3Prop results in an average improvement of 34%. GLP

already performs well on the patent and blog networks, and using

3Prop results in more modest improvements of 5% and 3%,

respectively. Figure 2B compares the performance of 3Prop and

GLP in predicting gender from all five Facebook networks.

Because approximately half of the nodes are positive examples in

the gender prediction task, in addition to mean precision, we also

show area under the ROC curve (AUC), which is suitable for

evaluating balanced problems where the number of positives is

similar to the number of negatives. This figure also shows the

achievable range of performance of GLP for all settings of the free

parameter l. The performance of GLP is rather poor: on average

about 40% of highly ranked nodes will have the opposite gender as

the one predicted. As shown, the improvement of 3Prop over GLP

is consistent across all five Facebook networks.

Why random walks of length three? As we have

described, 3Prop only assigns non-zero weights to random walk

probabilities that are shorter or equal to three. The choice of three

is motivated by our observations about the performance of GLP

with increasing random walk lengths, and average shortest node

distances in several real-world networks (Table 2). For example,

Figure 3 shows the performance of GLP with increasing random

walk lengths on the two molecular interaction networks (PI and

GI). As shown, the performance of GLP peaks with increasing

random walk length up to three. The decrease in performance of

GLP for rw3, for some settings of l, may be partially explained by

the fast convergence rate of random walks on real-world networks (see

the Discussion Section). In addition, we also observed that versions

of 3Prop that consider longer random walks than three do not

result in significant performance improvements. In particular, the

area under the precision-recall curve of NProp peaks at 3Prop

though there are some small gains in area under the ROC curve

for 4, 5, and 6Prop (Fig. 4). This may reflect the greater ability

provided by NProp for Nw3 to distinguish nodes w3 hops away

from a positive but adding the additional parameters does decrease

the average precision in predicting positive examples.

Interpreting 3Prop weights. For all networks, except the

patent network, weights assigned by 3Prop are similar based on

the task or the network type (Figure 5). For example, in all the

Facebook networks, 3Prop assigns a large positive weight to walks

of length two, a large negative weight to those of length three and

a negligible weight to walks of length one (Table 1). This surprising

classification scheme assign a low weight to the gender of

immediate friends but relies heavily on the gender of friends of

friends of friends but is nonetheless much more accurate than any

alternative; considering the three types of random walk probabil-

ities separately result in poor performance (Table 3), as does a

version of 3Prop for which the weight of random walks of length

three is forced to be zero (i.e., ‘‘2Prop’’) (Figure 2). Note that if two

nodes are connected by a random walk of length one, they are also

connected by a random walk of length three. The good

performance of 3Prop on this example then may be attributed

to its capacity to exploit ‘‘double-counting’’.

In contrast, the 3Prop weights for the different patent categories

vary considerably (Figure 6). However, these weights all lie on a

curved line in 3-D space (Figure 6), and the location of weights on

this curve reflects the average age of the patents within each

category. Because patents can only cite older patents, this may

reflect a structural evolution of the node distribution patterns in

this network.

Table 2. Networks used in this study.

Dataset nodes edges
average shortest
distance diameter labels

Protein Interaction 5,405 414,242 2.5 7 47 protein functions

Negative Genetic Interaction 4,563 152,188 2.8 6 47 protein functions

Facebook1 (Caltech) 769 33,312 2.3 6 gender

Facebook2 (Georgetown) 9,414 851,276 2.7 11 gender

Facebook3 (Princeton) 6,596 586,640 2.7 9 gender

Facebook4 (Oklahoma) 17,425 1,785,056 2.7 9 gender

Facebook5 (UNC) 18,163 1,533,600 2.8 7 gender

Political Blogs 1,224 33,433 2.7 8 liberal or conservative

Patent Citation 3,774,768 33,037,894 8.5 23 381 patent categories

doi:10.1371/journal.pone.0051947.t002
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Discussion

Despite its limitations, label propagation has become the

algorithm of choice for many node labeling problems. It is easy

to implement, resists overfitting because it has only a single free

parameter but it nonetheless performs as well as or better than

much more complex algorithms on benchmark problems

[36,38,39]. Also, unlike more complex methods, such as multiple

kernel learning with random walk kernels (e.g., [40,41]), it scales to

large network-based classification problems.

3Prop retains all of the advantages of GLP but is faster and

more accurate. If provided with a, 3Prop’s node scores can be

calculated exactly using three matrix-vector products, whereas

GLP often requires many more iterations [22]. Computing a
requires only as much time as computing the node scores. 3Prop

has less than three free parameters, so only a small number of

positive examples are required for training. Also, in some cases,

Figure 2. Predictive accuracy of 3Prop. (A) Average precision of SLP and 3Prop in prediction node labels using PI, GI, Facebook, patent, and
blogs networks. (B) Percent improvement of symmetric 3Prop over symmetric GLP in average precision on the various networks. (C) Performance of
3Prop compared to GLP in area under the ROC curve (AUROC) (x-axis) and average precision (y-axis) in predicting gender from Facebook.
Performance of GLP is shown for the range of settings of the parameter l (lines). Stars indicate the performance of 3Prop, diamonds indicate the
performance of 2Prop.
doi:10.1371/journal.pone.0051947.g002
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Figure 3. The performance of truncated GLP with truncation level m~f1,2,:::,10g on (top) PI and (bottom) GI networks. The
different colored lines show the performance for varying values of the parameter l. Stars show the performance of the exact solution to GLP.
doi:10.1371/journal.pone.0051947.g003

Figure 4. Average precision (AUPR) and area under the roc curve (AUROC) in predicting protein function from (A) GI and (B) PI
networks, with 1Prop, 2Prop, 3Prop, 4Prop, 5Prop, and 6Prop. Here, we learn the random walk weights using the LDA algorithm (as in
3Prop). These plots show that considering random walks of length longer than 3 is unnecessary for accurate prediction of protein function from PI
and GI networks.
doi:10.1371/journal.pone.0051947.g004
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one can use pre-defined weights learning for other labeling tasks

on the same network.

Surprisingly, we have found that for many networks, the third

iteration of label propagation receives a negative weight. Assigning

these negative weights gives 3Prop the flexibility to exploit ‘‘over-

counting’’ of random walks in real-world networks, where short

random walk probabilities could have a large contribution to

longer random walk probabilities.

3Prop only considers random walks of length up to three; a

natural question is, ‘‘Why three and not more (or fewer)? ’’. For

example, even in assortatively mixed networks, having many paths

of length two between two nodes is evidence that they are

members of the same network module or ‘‘community’’ [42], and

nodes in the same community often share labels. Furthermore, in

some cases, higher order statistics of networks, expressed in terms

of counting paths of length w2, also contain some topological

information helpful for predicting node label (e.g., [43]). However,

we have observed that for many real-world networks, assigning

non-zero weights to random walk probabilities for rw3 is

unnecessary and may be counter-productive (e.g., Figure 3). This

may reflect the fact that the small average shortest path distances,

which were less than three, in most of the networks that we

considered, and networks with longer average shortest path

distances may require more propagation steps. However, it could

also reflect the fast convergence rate of random walks on real-world

networks. In particular, all non-bipartite, connected networks have

an associated stationary distribution over the nodes, p~½p1,:::,pn�T,

defined by limr?? ½Pr�ij~pj , where p~kd, dj~
P

j Aij and

k~
1P
i di

. [44]. In other words, after a sufficiently long random

walk, all information about the starting point of the walk is lost. So

for sufficiently large r, the rows of Pr become nearly identical, and

at this point, regardless of y, p
(r)
i &c for some constant c. As such,

once convergence is reached, adding p(r) to the node scores does

not change their relative rankings. Note that for SLP, assigning

non-negligible, non-zero positive weight to longer random walks

can decrease accuracy because as l?1, the total weight assigned

to the values of r for the constant values of p(r) becomes large and

as such, fi&
ffiffiffiffi
di

p
. This effect may explain recent observations that

node rankings based on GLP node scores and those based on

weighted degree are very similar [45]. In most networks that we

have examined, the random walk probabilities for rw3 are already

near their stationary distribution (see Figures S1 and S2), so

considering these probabilities provides no additional information

Figure 5. Weighting coefficients for walks of length one to three (a1,a2,a3) for the PI, GI, Blogs, Patent, and Facebook
networks.
doi:10.1371/journal.pone.0051947.g005

Table 3. Predicting gender from Facebook while using walks
of length one, two, and three, individually.

network 1st step 2nd step 3rd step

Caltech 0.66 0.67 0.63

Georgetown 0.59 0.60 0.56

Oklahoma 0.67 0.65 0.61

Princeton 0.69 0.65 0.61

UNC 0.6394 0.61 0.57

The performance is shown in terms of AUROC.
doi:10.1371/journal.pone.0051947.t003
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about node labeling. In summary, only short paths between nodes

carry information about node labels because random walks in real-

world networks converge quickly to the stationary distribution. We

expect this to also be true for many other real-world networks

because many of the topology properties shared by these

networks–including small average shortest path distance between

nodes (see Table 2) [46] or high betweenness centrality of hubs in

the networks [47]–are properties that lead to fast convergence of

random walks.

Supporting Information

Figure S1 Total variation distance between random walks of

increasing length as a function of walk length r for the five

Facebook networks and two molecular networks. Each grey line

was generated by starting a random walk from a random node i

and assessing the total variation distance between the distribution

ei
T½Pr� and p, where ei is a vector of 0 s, except for one 1 at

position i. There are 100 grey lines, corresponding to 100 random

selections of i. The red line shows the median. To obtain the

convergence, we only consider the largest connected component

for each network.

(TIF)

Figure S2 Total variation distance between random walks of

increasing length as a function of walk length r in the Blogs

network.

(TIF)

Text S1 Supplementary methods.

(PDF)
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