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Abstract

Gene or protein expression data are usually represented by metric or at least ordinal variables. In order to translate a
continuous variable into a clinical decision, it is necessary to determine a cutoff point and to stratify patients into two
groups each requiring a different kind of treatment. Currently, there is no standard method or standard software for
biomarker cutoff determination. Therefore, we developed Cutoff Finder, a bundle of optimization and visualization methods
for cutoff determination that is accessible online. While one of the methods for cutoff optimization is based solely on the
distribution of the marker under investigation, other methods optimize the correlation of the dichotomization with respect
to an outcome or survival variable. We illustrate the functionality of Cutoff Finder by the analysis of the gene expression of
estrogen receptor (ER) and progesterone receptor (PgR) in breast cancer tissues. This distribution of these important
markers is analyzed and correlated with immunohistologically determined ER status and distant metastasis free survival.
Cutoff Finder is expected to fill a relevant gap in the available biometric software repertoire and will enable faster
optimization of new diagnostic biomarkers. The tool can be accessed at http://molpath.charite.de/cutoff.
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Introduction

The use of diagnostic, prognostic and predictive biomarkers is of

increasing importance in many areas of medicine. Many markers

are measured in laboratory assay as continuous variables or as

ordinal variables. Gene expression is usually measured on a metric

scale, using qRT-PCR or hybridization based methods, for

example using single gene assays such as TaqMan or on a global

scale using DNA microarrays. In tissue-based diagnostics, protein

expression is usually evaluated by immunohistochemistry (IHC)

and quantified on an ordinal scale using the percentage of stained

cells, staining intensity or combinations of these. Examples of such

combinations include the Allred score that takes values between 0

and 8 [1,2] and the immunoreactive score (IRS) that takes values

between 0 and 12 [3,4].

In order to translate a continuous or ordinal diagnostic variable

into a clinical decision, it is necessary to determine a cutoff point

and to stratify patients into distinct groups each requiring a

different kind of treatment [5]. Although the mean or median

value of the diagnostic factor was used before, it is often desirable

to determine cutoff points based on the distribution of the variable

or by optimizing the correlation with clinical outcome or response

to a treatment. Methods for cutoff optimization include minimi-

zation of p-values or maximization of combinations of test

sensitivity and test specificity [6]. X-Tile is a freely available tool

that is specialized to the analysis of survival data and uses a

minimal p-value approach for cutoff optimization [7]. Previously,

like many others, we manually investigated and optimized cutoff

points of molecular markers [8–10]. However, methods for cut-off

determination vary among published studies and the underlying

algorithms remain obscure in many instances.

The literature is filled with newly identified biomarkers, but only

a small minority has found acceptance in patient care so far. This

is in part due to overestimation of the true effects in the first study

and a low reproducibility in subsequent validation studies. Cutoff

optimization was demonstrated to contribute to overestimation of

results when multiple cutoff points are investigated and the

problem of multiple hypothesis testing is ignored [11,12].

Conflicting the need of a higher degree of objectivity [13], cut-

off point determination is often done in a non-systematic manner

and therefore among the causes for a poor reproducibility of

biomarker studies.

The reason for this is the lack of comprehensive and easy-to-use

tools for cutoff determination. Therefore, we developed Cutoff

Finder, a bundle of optimization and visualization methods that are

accessible via the internet (http://molpath.charite.de/cutoff). The

purpose of the web application is twofold: (i) As not a single

methods can be considered to be optimal for all kind of data and

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e51862



all clinical situations, we implemented a multitude of five methods

for cutoff determination. (ii) To avoid overestimation of the true

effect, the robustness when varying the cutoff point can be

investigated in overview plots showing effect sizes with confidence

intervals. The workflow through the web application is shown in

Fig. 1.

Methods

Implementation and Availability
Cutoff Finder is a freely available web application that can be

accessed using an arbitrary web browser (http://molpath.charite.

de/cutoff). The web application is implemented as Java Server

Pages (JSPs) that connect to R using the R package and TCP/IP

server Rserve [14]. The R statistical language [15] serves as an

engine for all statistical computing and visualization. The R code

for cutoff optimization and the plot functions can be found in Text

S1. The R file is loaded as static source to the R server. For each

cutoff analysis, the web application calls the wrapper R function

get.cutoff() that serves as controller. The controller calls specialized

R functions for each kind of cutoff optimization and for each kind

of plot. Results of the cutoff optimization and plots are returned to

the web server. Using the R code, results and plots of the web page

can be reproduced 100%.

Analysis Workflow
The steps of data procession are shown in Figure 1:

1. The data are uploaded from a tab-separated table, rows

representing patients and columns representing variables. The

maximum number of rows is 5000, the maximum number of

columns is 50.

2. The user selects the biomarker and optionally outcome and

survival variables from the table columns.

3. The user selects the method for cutoff determination.

4. The user chooses the set of plots to be generated.

5. The inquiry is send to the statistical engine R. The optimal

cutoff point is determined and analysis plots are generated.

6. The user is directed to the results webpage, where the optimal

cutoff point and plots are shown.

Cutoff Determination
A multitude of five methods is offered for cutoff optimization.

The first method is based solely on the distribution of the

biomarker in the sample cohort. Methods 2–4 deal with

optimization of the correlation with a binary variable, for example

response to treatment. The last method is devoted to optimization

of the correlation with survival.

Figure 1. Workflow of Cutoff Finder. The track below the icons refers to the places where the steps of data processing are done. These are the
steps of data procession: 1. Data are uploaded from a tab-separated file or imported from one of three example data sets. 2. The user selects the
biomarker and optionally outcome and survival variables from the table columns. 3. The user selects the method for cutoff determination. 4. The user
chooses the set of plots to be generated. 5. The optimal cutoff point is determined and analysis plots are generated using R as statistical engine. 6.
Cutoff point and plots are shown at the results webpage.
doi:10.1371/journal.pone.0051862.g001

Figure 2. Distribution based cutoff optimization (independent of outcome and survival data) in the GSE2034 breast cancer data.
Histograms of ER (A) and PgR (B) gene expression in 286 lymph-node negative breast cancers. A mixture model of two Gaussian distributions is fitted
to each of the histograms (red lines). Vertical lines designate the optimal cutoffs derived from the mixture model.
doi:10.1371/journal.pone.0051862.g002

Rapid Biomarker Cutoff Optimization
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1. Fit of mixture model: A mixture model of two Gaussian

distributions is fitted to the histogram of the biomarker. This

procedure is implemented using the function flexmix from the R

package flexmix [16]. The optimal cutoff is determined as the

value where the probability density functions of the mixing

distribution coincide.

2. Significance of correlation with binary variable: This method

correlates the dichotomized biomarker with a binary outcome

variable using logistic regression. Logistic regression is executed

using the function glm from R package stats [15]. The optimal

cutoff is defined as the point with the most significant (Fisher’s

exact test) split. Odds ratios (ORs) as well as sensitivity and

specificity including 95% confidence intervals are calculated.

Confidence intervals for proportions are estimated using

Wilson’s method as it is implemented in the R package binom

[17].

3. Based on ROC curve: Two methods determine the cutoff point

by minimizing the distance on the ROC curve to the left top

edge of the diagram. The first method minimizes the Euclidean

distance between these points. The second method minimizes

the Manhattan distance between the points. Here, the sum of

sensitivity and specificity is maximized, equivalent to maximi-

zation of Youden’s statistics J = sensitivity+specificity –1 [18].

4. Minimum sensitivity or specificity: For each or these two

methods, the user enters a percentage value. The cutoff point is

chosen as the first threshold for the biomarker, where the

sensitivity (or specificity) exceeds this predefined value.

5. Significance of correlation with survival variable: This method

fits Cox proportional hazard models to the dichotomized

variable and the survival variable. Survival analysis is executed

using the functions coxph and survfit from the R package survival

[19]. The optimal cutoff is defined as the point with the most

significant (log-rank test) split. Hazard ratios (HRs) including

95% confidence intervals are calculated.

Additionally, the user can manually enter a cutoff point that is

used for calculations and visualization.

Visualization
Two different kinds of plots can be generated: overview plots

and plots at the cutoff point. Overview plots give a summary of all

possible cutoff points with the optimal cutoff marked by a vertical

line. The second kinds of plots are Waterfall and Kaplan-Meier

plots that are generated for a fixed cutoff point. The overview plots

include plots of ORs, HRs and differences in survival. ORs are

calculated using the function glm form the R package stats [15].

HRs are calculated using the function coxph from the R package

survival [19]. Differences in survival are calculated from the mean

survival times in the good prognosis and the poor prognosis group.

Mean survival times are estimated from the area under the

Kaplan-Meier curve using the maximum time that occurs in the

data as uniform time endpoint.

Example Data Sets
To illustrate the functionality of Cutoff Finder we analyzed gene

expression data from breast cancer tissues. To this end, the gene

expression series GSE2034, GSE7390 and GSE11121 were

downloaded from the Gene Expression Omnibus (GEO) reposi-

tory [20,21]. We analyzed measurements of probe 205225_at for

estrogen receptor (ESR1) and of 208305_at for progesterone

receptor (PgR). The gene expression data are analyzed on log

scale, such that a difference of can be interpreted as fold change of

2.

Results

We illustrate the functionality of Cutoff Finder by the analysis of

the gene expression of estrogen receptor (ER) and progesterone

receptor (PgR) in breast cancer tissues. In routine diagnostic

protocols, ER and PgR status are determined based on the

percentage of positive cells in immunohistochemically stained

tissue sections. As an alternative approach, assessment of hormone

receptor status using gene expression is currently under investi-

gation in several studies [22]. Therefore, we extracted expression

data of ER and PgR from the publicly available microarray data

sets GSE2034 (286 patients), GSE7390 (198 patients) and

GSE11121 (200 patients). Cutoff points were defined for ER

Figure 3. Cutoff optimization by correlation with a binary variable or survival in the GSE2034 breast cancer data. (A) For each
possible cutoff, ESR1 gene expression is correlated with the immunohistologically determined ER status. The odds ratio (OR) including 95% CI is
plotted in dependence of the cutoff. A vertical line designates the dichotomization showing the most significant correlation with
immunohistologically determined ER status. (B) For each possible cutoff, PgR gene expression was correlated with distance metastasis free
survival. The hazard ratio (HR) including 95% CI is plotted in dependence of the cutoff. A vertical line designates the dichotomization showing the
most significant correlation with survival. The distribution of the gene expression values in the 286 tumors is shown as a rug plot at the bottom of the
figures.
doi:10.1371/journal.pone.0051862.g003
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and PgR and the correlation of the resulting split with

immunohistochemically determined ER status and distance

metastasis free survival was analyzed. All the figures presented in

the following were automatically generated by the web applica-

tion.

Fit of a Mixture Model
This method for cutoff determination is convenient for a

molecular variable with bimodal shaped distribution. The cutoff

point is optimized based on the hypothesis that the variable is

distributed according to a mixture of two Gaussian distributions.

Using this method, the histograms ER and PgR expression were

generated and optimal cutoff points were determined (Fig. 2). Both

distributions had a pronounced bimodal shape with cutoffs points

located at 10.6 (ER) and at 5.0 (PgR).

Optimizing the Correlation with Outcome
One of the most straightforward methods for cutoff optimiza-

tion concerning a binary outcome variable is to maximize the

significance of the 262 table. Other methods are discussed in a

paragraph below. As example, we searched for a cutoff point for

ER expression that optimally classifies with respect to ER status. In

this analysis, ER status is determined by immunohistochemistry

(IHC), the gold standard for investigation of ER and PgR. Fig. 3A

Figure 4. Plot of the differences in survival time. The mean survival time is estimated in the samples where the PgR is highly expressed and in
the samples where the PgR is lowly expressed. The difference of the mean survival times including is plotted. The distribution of PgR expression is
shown as rug plot at the bottom of the figure.
doi:10.1371/journal.pone.0051862.g004

Figure 5. Detailed analysis of the optimal dichotomization of the GSE2034 breast cancer data. (A) Comparison of gene expression based
and immunohistochemical determination of estrogen receptor status. The classification using ESR1 expression and the optimal cutoff taken from Fig.
2A is compared to the IHC result. (B) Kaplan Meier analysis of PgR expression using the optimal cutoff taken from Fig. 2B. Distant metastasis free
survival (dmfs) was significantly longer for patients with PgR expression above the cutoff.
doi:10.1371/journal.pone.0051862.g005

Rapid Biomarker Cutoff Optimization
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shows the correlation of gene expression and ER status according

to the designated cutoff point (Fig. 3A). The correlation was

significant for almost all (99.6%) of the investigated cutoff points.

The optimal cutoff was determined as 10.1 with odds ratio

OR = 67.8 (30.2–152.1).

Optimizing the Correlation with Survival
The straightforward method for determination of a prognostic

cutoff point is to optimize the significance of the split in the

Kaplan-Meier plot. As an example, we analyzed the correlation of

gene expression determined PgR status and distance metastasis-

free survival according to the designated cutoff point (Fig. 3B). The

correlation was significant over a large range (70%) of the

investigated cutoff points. The optimal cutoff was determined as

2.5 with hazard ratio HR = 0.46 (0.30–0.71). Additionally, a plot

showing the difference in survival times between the tumors of

high PgR expression and low PgR expression can be generated

(Fig. 4). These results are in accordance with the strong prognostic

relevance of PgR status for distance metastasis-free und overall

survival in breast cancer [23,24].

Plots at Cutoff Point
Next, we investigated the dichotomization induced by the IHC-

data-based and the survival-data-based cutoff determination in

more detail. Using ERS1 expression measured by the microarray,

determination of ER status was feasible with a sensitivity of 85.7%

and a specificity of 91.9% (Fig. 5A). Kaplan Meier analysis showed

a significantly better outcome for patients with high PgR

expression (Fig. 5B, p = 0.00028).

Comparison of Different Methods for Cutoff Optimization
For cutoff determination in the ER expression data, we

compared the mixture model approach and three approaches

based on comparison with immunohistologically determined ER

status (Tab. 1). The latter approaches included optimization of the

significance and of the distance of a point on the ROC curve from

the upper left edge of the ROC diagram. One of the ROC based

methods minimizes the Euclidean distance to this point, while the

other minimizes the Manhattan distance to this point. The cutoff

points determined by the significance method and by the

Euclidean distance method were exactly the same for all data

sets, while the Manhattan distance method agreed with these for

one of the data sets and derived by only 0.3 for the other data set.

The mixture model method showed a larger deviation from these

results and between the three data sets. However, all cutoffs were

between 9.6 and 11.2 resulting sensitivities greater than 88% and

specificities greater than 81%.

For cutoff determination in the PgR expression data, we

compared the mixture model approach and the approach based

on the significance of the split in the Kaplan-Meier plot. The

distribution based cutoffs for PgR expression were between 4.2

and 5.6 (Tab. 2). Interestingly, survival-data based cutoff

determinate led to a reduction of the cutoff value in some data

sets (GSE2034 and GSE11121) and to an increase of the cutoff

value in another data set (GSE7390).

Table 1. Cutoff point optimization for estrogene receptor (ER) expression (reporter 205225_at).

Method GSE2034 GSE7390 GSE11121

Variable cutoff sens. spec. cutoff sens. spec. cutoff sens. spec.

Fit of mixure model 10.6 88.5% 85.7% 9.6 92.5% 81.2% 11.2 NA NA

Optimization significance 10.1 91.9% 85.7% 10.4 91.0% 84.4% NA NA NA

Optimization Euclidean
distance

10.1 91.9% 85.7% 10.4 91.0% 84.4% NA NA NA

Optimization Manhattan
distance

10.1 91.9% 85.7% 10.7 98.6% 84.4% NA NA NA

Comparison of four methods for cutoff optimization. Sensitivity and specificity were calculated by comparison with immunohistochemistry that is the current gold
standard.
*no IHC data available for GSE11121.
doi:10.1371/journal.pone.0051862.t001

Table 2. Cutoff point optimization for progesterone receptor
(PgR) expression (reporter 208305_at).

Method GSE2034 GSE7390 GSE11121

Variable cutoff HR p cutoff HR p cutoff HR p

Fit of mixure
model

5.0 0.65 0.024 4.2 0.53 0.0011 5.6 0.52 0.025

Optimization
significance

2.5 0.46 0.0003 5.0 0.47 0.0024 3.7 0.40 0.0018

Comparison of two methods for cutoff optimization. The capability of the
cutoffs to stratify into high and a row risk patients was investigated by
calculation of hazard ratio and significance of the correlation with distance
metastasis free survival.
doi:10.1371/journal.pone.0051862.t002

Table 3. Development of a test for ER status with at least
90% sensitivity and 90% specificity.

Variable
GSE2034
(training set)

GSE7390
(validation set)

Reliable test results 93.4% (89.9%–95.7%) 84.3%

Sensitivity 90.4% (85.7%–93.7%) 91.8%

Specificity 90.9% (82.4%–95.5%) 87.5%

ER expression (reporter 205225_at) was the test variable that was compared to
immunohistology that served as gold standard. In GSE2034 (training data set),
one cutoff point was determined in such a way that the sensitivity exceeded
90% and another cutoff point was determined in such a way that the specificity
exceeded 90%. Samples with expression between were considered to be
equivocal with respect to the test result and excluded. The samples that are not
in the equivocal zone between the cutoffs are considered as delivering a
reliable test result. Sensitivity and specificity of the test are estimated based on
these samples. A validation of the cutoffs 10.22 and 11.49 (determined in
GSE2034) was executed in GSE7390. Percentages for the training set are
reported including 95% confidence intervals.
doi:10.1371/journal.pone.0051862.t003
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Use Case: Development of a Molecular Test with
Sensitivity and Specificity Greater than 90%

Finally, we discuss the development of a test for ER status from

ER gene expression measured by the microarray probe 205552_at

(Tab. 3). Using immunohistochemistry as gold standard and

GSE2034 as training set, we executed two runs of Cutoff Finder to

determine cutoff points with sensitivity .90% and with specificity

.90%. Based on that, we defined a test result as positive, if it was

above the upper threshold (11.49) and as negative, if it was below

the lower threshold (10.22). The interval between the lower

threshold and the upper threshold was defined as equivocal zone

that contained only 6.6% of the samples in the training set. Using

GSE7390 as validation set, test sensitivity was again above 90%,

while test specificity was slightly below 90%, but inside the

confidence interval estimated from the training set.

Discussion

Cutoff Finder is a freely available in the internet (http://molpath.

charite.de/cutoff). The web application is straightforward to use:

The user can upload a molecular data set that optionally includes

outcome and/or survival data. Then, the user selects the variables

for analysis, the method for cutoff determination and the set of

plots. On a result web page, the optimal cutoff point, overview

plots and plots at the optimal cutoff point are displayed. The plots

can be downloaded and included in scientific publications.

The problem of the choosing the optimal cutoff is difficult to

answer generally. The best method for cutoff determination may

depend on the biomarker, the assay and the clinical application

under investigation. We exemplified this situation by analyzing the

agreement between RNA based with immunohistology based

determination of estrogen receptor status using different methods.

It turned out that the cutoff points determined by three

optimization methods in two data sets were very similar (all

between 10.1 and 10.7). We believe that this is a consequence of

the high concordance between gene expression and immunohis-

tology in this use case, while in other situations cutoffs determined

by different methods can differ substantially [6]. To cope with

different biomarkers and assays, Cutoff Finder offers a multitude of

five methods for cutoff optimization.

Stratification into two groups, but not into three or more

groups, seems to be most natural for translation into clinics where

most of the decisions are binary (treatment or no treatment).

However, some of the gene tests for breast cancer stratify patients

into a low risk and a high group (Mammaprint [25] and

Endopredict [26]), while other additionally introduce a medium

risk group (Oncotype DX [27]). An interesting feature of the

software X-Tile is simultaneous optimization of two cutoffs leading

to the identification of high, medium and low risk populations

using a minimal p-value approach. X-Tile is a bioinformatic tool

for prognostic cutoff optimization that is freely available to

academic users [7]. Cutoff Finder is primarily specialized to the

dichotomization situation. However, we provided an example of

stratification into three groups by two subsequent runs: Patients

were divided into a group where the test is highly sensitive, a group

where the test is highly specific and a group of the remaining

patients with equivocal test results.

Many of the methods for cutoff determination are based on

optimization of a target quantity in dependence of the cutoff. For

example, the target quantity can be the test accuracy or the

significance of correlation of the biomarker with outcome or

survival. It is clear that in such situation a multiple testing problem

occurs that can lead to overestimation of the significance of the

optimal cutoff and the effect size at the optimal cutoff [11,12,28].

Correction of p-values and confidence intervals for maximally

selected chi square statistics and maximal selected log rank test was

investigates in the 1980s and the 1990s [29–32]. Cutoff Finder

addresses the multiple testing problem by visualizing odds ratios or

hazard rations including confidence intervals for each of the

cutoffs under investigation. This kind of plots together with the

proportion of significant tests can help to assess the stability and

significance of the dichotomization. Further, we recommend

integrating cutoff optimization in a sequential biomarker study

design: In the first step of such an approach, the cutoff is optimized

in one or more retrospective studies. In the second step, the

predefined cutoff is validated in one or more retrospective or

prospective studies. Both steps can be executed using Cutoff Finder.

Pathologists often use packages like SPSS (SPSS, Inc., an IBM

Company), GraphPad Prism (GraphPad Software, Inc.) or

Winstat (R.Fitch Software) in order to correlate biomarkers with

outcome or survival data. However, neither of them includes

functions for cutoff optimization. Therefore, cutoffs are often

chosen as median or mean value of the biomarker or adjusted

manually. For example, percentile based cutoffs were also

implemented in our previous project where biomarkers can be

assessed for their association to survival [33]. The commercial

software JMP (SAS, Inc.) allows for optimizing a dichotomization

for correlation with a binary outcome variable in a multivariate

context. However, distribution-based cutoff optimization or cutoff

optimization in context of a survival variable is not supported. The

STEPP method allows graphical assessment of treatment-covariate

interactions using Cox models on subsets of the data [34–36].

However, STEPP addresses the analysis of a clinical study in a

series of overlapping patient subgroups rather than optimization of

a cutoff point.

A specialty of Cutoff Finder is the plot of ORs and HRs

including confidence intervals. The plots include information on

both, the strength and significance of the prognostic stratification.

This is in particular important in complex situations where ORs or

HRs change strongly in dependence of the cutoff. For example, in

a study on Ki67 protein expression in lung cancer, we observed

positive HRs for low cutoffs and negative HRs for high cutoffs

(data not shown).

Cutoff Finder was developed to facilitate cutoff optimization for

tissue biomarkers that are investigated in pathology research.

Additionally, we expect our software to be interesting for a wider

group of scientists, including clinical chemists and other biomed-

ical investigators, who want to convert a metric or ordinal variable

into a dichotomization. As an example, we analyzed the

expression of hormone receptors in breast cancer tissues. Cutoff

point determination using different analysis modes turned out to

be feasible and useful. In summary, we presented a comprehensive

and straightforward tool for cutoff point optimization that can help

to improve the quality of biomarker studies.

Supporting Information

Text S1 R code of the functions that are used for cutoff
optimization and the generation of plots.
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