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Abstract

Autophagy is a bulk degradation mechanism for cytosolic proteins and organelles. The heart undergoes hypertrophy in
response to mechanical load but hypertrophy can regress upon unloading. We hypothesize that autophagy plays an
important role in mediating regression of cardiac hypertrophy during unloading. Mice were subjected to transverse aortic
constriction (TAC) for 1 week, after which the constriction was removed (DeTAC). Regression of cardiac hypertrophy was
observed after DeTAC, as indicated by reduction of LVW/BW and cardiomyocyte cross-sectional area. Indicators of
autophagy, including LC3-II expression, p62 degradation and GFP-LC3 dots/cell, were significantly increased after DeTAC,
suggesting that autophagy is induced. Stimulation of autophagy during DeTAC was accompanied by upregulation of
FoxO1. Upregulation of FoxO1 and autophagy was also observed in vitro when cultured cardiomyocytes were subjected to
mechanical stretch followed by incubation without stretch (de-stretch). Transgenic mice with cardiac-specific
overexpression of FoxO1 exhibited smaller hearts and upregulation of autophagy. Overexpression of FoxO1 in cultured
cardiomyocytes significantly reduced cell size, an effect which was attenuated when autophagy was inhibited. To further
examine the role of autophagy and FoxO1 in mediating the regression of cardiac hypertrophy, beclin1+/2 mice and
cultured cardiomyocytes transduced with adenoviruses harboring shRNA-beclin1 or shRNA-FoxO1 were subjected to TAC/
stretch followed by DeTAC/de-stretch. Regression of cardiac hypertrophy achieved after DeTAC/de-stretch was significantly
attenuated when autophagy was suppressed through downregulation of beclin1 or FoxO1. These results suggest that
autophagy and FoxO1 play an essential role in mediating regression of cardiac hypertrophy during mechanical unloading.
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Introduction

The postnatal heart undergoes hypertrophy in response to

mechanical overload, which can be induced by high blood

pressure or a partial loss of myocardial tissue after myocardial

infarction. Cardiac hypertrophy is characterized by the

enlargement of individual cardiomyocytes, expression of fetal-

type genes, and cytoskeletal reorganization [1]. Although

cardiac hypertrophy is an important adaptation of the heart in

response to increased wall stress, the continued presence of

hypertrophy leads to myocardial cell death and cardiac

dysfunction, and thus, hypertrophy is believed to be a significant

risk factor for the development of heart failure [2]. Importantly,

however, cardiac hypertrophy can be reversed when the

increased wall stress is normalized, a process termed regression.

Unloading of hemodynamic stress by a left ventricular assist

device induces regression of cardiac hypertrophy and improve-

ment of LV function in end-stage heart failure patients [3].

Regression of cardiac hypertrophy is accompanied by activation

of unique sets of genes, including fetal-type genes and those

involved in protein degradation [4,5]. However, the signaling

mechanism mediating regression of cardiac hypertrophy has

been poorly understood.

Macroautophagy (hereafter autophagy) is a bulk degradation

process for cytosolic proteins and organelles mediated through the

formation of double membranous vesicles, termed autophago-

somes, fusion of autophagosomes with lysosomes, and degradation

by the lysosomal acid hydrolases and proteases [6]. Autophagy is

an important mechanism of catabolism for maintaining cellular

homeostasis during energy deprivation, while it also contributes to

the quality control of proteins and organelles during stress.

Although cardiac hypertrophy is often accompanied by

increases in protein synthesis, it is also accompanied by structural

remodeling and dysfunction of intracellular organelles. One of the

cellular mechanisms for adaptation against these during cardiac

hypertrophy could be activation of autophagy. In fact, autophagy

is activated during acute and chronic phases of cardiac hypertro-

phy [7,8]. Although the functional significance of autophagy
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during cardiac hypertrophy is not fully understood, autophagy

may promote clearance of damaged proteins and organelles.

Considering that regression of cardiac hypertrophy is the reverse

process of hypertrophy, regression of cardiac hypertrophy may

also influence autophagy.

The forkhead box, class O (FoxO) family transcription factors

are critical regulators of autophagy in cardiomyocytes [9,10].

They are also involved in regulating muscle atrophy in skeletal

muscle via the activation of protein degradation mechanisms

including autophagy and the ubiquitin proteasome system

[11,12,13]. While FoxOs also negatively regulate hypertrophy in

the heart [14,15], whether FoxOs are directly involved in

regression of cardiac hypertrophy and, if so, the precise

mechanism through which FoxOs mediate regression of cardiac

hypertrophy are unknown.

In this study, we used transverse aortic constriction followed by

de-constriction as a model to study the mechanism mediating

regression of cardiac hypertrophy. The goals of this study were to

1) elucidate the role of autophagy during regression of cardiac

hypertrophy, and 2) understand the role of FoxO1 in mediating

regression of cardiac hypertrophy. We here report that autophagy

plays an important role in mediating regression of cardiac

hypertrophy in response to mechanical unloading and that FoxO1

plays an important role in mediating autophagy and regression of

cardiac hypertrophy.

Materials and Methods

Antibodies
Antibodies used in the study include those against LC3 (MBL,

#PD014), p62 (ARP, #03-GP62-C), FoxO1 (Epitomics, #1874-1

& Cell Signaling, #9454), Beclin1 (BD Biosciences, #612112),

Cathepsin L (Sigma-Aldrich, #C2970), Sirt1 (Upstate, #07-131),

P-AMPKa (Cell signaling, #2535), AMPK (Cell Signaling,

#2532), Rab7 (Sigma-Aldrich, #R4779) and a-Tubulin (Sigma-

Aldrich #T6199).

Microsurgery for pressure overload & unloading
The method of inducing pressure overload by TAC has been

described previously [16]. To induce unloading of myocytes, the

suture in the aortic arch was removed 1 week after TAC (DeTAC)

and the mice were observed for 7 days, after which they were

subjected to echocardiography and hemodynamic analyses and

sacrificed. All protocols concerning animal use were approved by

the Institutional Animal Care and Use Committee at the

University of Medicine and Dentistry of New Jersey.

Transgenic mice
Transgenic mice with cardiac-specific overexpression of WT-

FoxO1 (Tg-FoxO1) were generated on an FVB background using

the murine a-myosin heavy chain promoter provided kindly by

Dr. J Robbins (University of Cincinnati, Cincinnati). The plasmid

harboring WT-FoxO1 was a kind gift from Dr. Domenico Accili

(Columbia University, New York) [17]. Transgenic mice express-

ing GFP-LC3 (Tg-GFP-LC3) [18,19], Beclin1 heterozygous

knockout mice (beclin1+/2) [18] and FoxO1 cardiac-specific

homozygous knockout mice (c-FoxO12/2) [9] have been

described previously. Double transgenic or bigenic Tg-FoxO1

and Tg-GFP-LC3 mice were generated by breeding, and only F1

generation mice were used for evaluation of GFP-LC3 puncta.

Echocardiography analyses
The method used to analyze cardiac function using echocar-

diography in mice has been described previously [9,20].

Primary culture of neonatal rat ventricular myocytes
Primary cultures of left ventricular cardiomyocytes were

prepared from 1-day-old Crl: (WI) BR-Wistar rats (Harlan

Laboratories) as described previously [9,18]. A fraction enriched

for cardiomyocytes (.95%) was obtained by centrifugation

through a discontinuous Percoll gradient [18].

Adenoviruses
Adenoviruses harboring WT-FoxO1 (Ad-FoxO1-WT), short

hairpin (sh-) FoxO1 (Ad-sh-FoxO1), sh-scramble (Ad-sh-Scr),

control LacZ (Ad-LacZ) [9], and sh-Beclin1 (Ad-sh-Beclin1)

[9,18] have been described previously. Myocytes were transduced

with 15 MOI of adenoviruses. Ad-LacZ and Ad-FoxO1-WT

transductions were carried out for 24 hours, while Ad-sh-Scr, Ad-

sh-FoxO1 and Ad-sh-Beclin1 were transduced for 96 hours.

Evaluation of cell size
To evaluate cardiomyocyte cross-sectional area in vivo, tissue

sections of mouse hearts were fixed in 10% neutral-buffered

formalin, embedded in paraffin, sectioned at 5 mm thickness and

stained with wheat germ agglutinin Texas red, as described

previously [20]. The outlines of at least 200 circular to oval shaped

myocytes with nearly circular capillary profiles were traced in 10

fields from 3 different mouse samples and the cross-sectional area

was measured using Image-Pro Plus software (Media Cybernetics).

To determine cell size in vitro, images of cultured cardiomyocytes

were obtained at 206magnification using a light microscope. The

outlines of cardiomyocytes obtained in 8 different visual fields from

at least 3 different cultures were traced and the relative cross-

sectional area was evaluated.

Evaluation of fluorescent LC3 puncta
The method used to evaluate fluorescent LC3 puncta in vivo has

been described previously [9,18]. Briefly, fresh heart slices were

embedded with Tissue-Tek OCT compound (Sakura Finetechni-

cal Co., Ltd.) and frozen at 270uC. Sections 10-mm-thick were

obtained from the frozen tissue samples using a cryostat (CM3050

S, Leica), air-dried for 30 min, fixed by washing in 95% ethanol

for 10 minutes, mounted using a reagent containing 49,6-

diamidino-2-phenylindole (DAPI) (Vectashield; Vector Laborato-

ries Inc.) and viewed under a fluorescence microscope (Nikon

Eclipse E800). The number of GFP-LC3 dots was determined by

manual counting in 10 fields from 5 different animals using a 606
objective, and nuclear number was evaluated by counting DAPI-

stained nuclei in the same fields using the same magnification. The

number of GFP-LC3 puncta/cell was evaluated as the total

number of dots divided by the number of nuclei in each

microscopic field.

Sample preparation and immunoblot analysis
Heart tissue homogenates were prepared using RIPA buffer,

while protein lysates from cultured cardiomyocytes were prepared

using boiled 26 SDS sample buffer, as has been described

previously [9]. To evaluate protein concentration in cultured

myocytes, RIPA buffer with lysosomal protease inhibitors (1:200

dilution) was used to extract proteins. The method used to detect

protein expression using immunoblots has been described

previously [9,18]. Densitometric analyses of the blots were carried

out using the public domain ImageJ program (NIH, Maryland).

Quantitative reverse transcription-PCR
Total RNA was extracted from mouse hearts and in vitro cultures

using TRIzol (Invitrogen). cDNA was synthesized using the
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RETROscript kit (Ambion) according to the manufacturer’s

instructions. Real time-PCR was carried out as stated previously

[20]. Primers for Gabarapl1 [11,13], Bnip3 [11], Ulk2 [13], and

ANF [20] have been reported previously. The following primer

pairs were also used –

FoxO1: Sense – CAGATCTACGAGTGGATGGT

FoxO1: Antisense – ACTTGCTGTGTAGGGACAGA

GAPDH: Sense – GAGCTGAACGGGAAGCTCACT

GAPDH: Antisense – TTGTCATACCAGGAAATGAGC

In vitro model of hypertrophy regression
Neonatal rat ventricular myocytes were cultured in collagen-I-

coated BioFlex plates (Flexcell Intl, #BF-3001C) and subjected to

20% cyclic stretch in a uniaxial strain at 30 cycles/min for

36 hours in a 37uC incubator. Myocytes subjected to mechanical

stretch and incubation without stretch for 36 hours each were

considered a de-stretch model. Control samples were cultured in

the Bioflex plates without going through the stretch regimen.

Autophagy Inhibitors
To inhibit autophagosome formation, cultured cardiomyocytes

were treated with 10 mM 3-Methyladenine (3-MA) for 24 hours

or Ad-sh-Beclin1 for 72 hours as described [18]. To inhibit

autophagy flux in vivo, chloroquine was injected (10 mg/kg)

intraperitoneally for 4 hours as previously described [21], follow-

ing which animals were euthanized to detect expression of

autophagy markers by immunoblot.

Statistics
Data are expressed as mean 6 SEM. Statistical analyses

between groups of 2 were done by unpaired t-test. Groups of 3 or

more were analyzed using one-way ANOVA, followed by the

Newman-Keuls multiple comparison test. A value of p,0.05 was

considered significant.

Ethics Statement
All animal protocols were approved by the review board of the

Institutional Animal Care and Use Committee of the University of

Medicine and Dentistry of New Jersey (07115 and 10073).

Results

Left ventricular unloading induces regression of cardiac
hypertrophy

To study the involvement of autophagy in the regression of

cardiac hypertrophy, C57BL/6 mice were subjected to pressure

overload caused by transverse aortic constriction for 1 week (1W

TAC), after which unloading was induced by removal of the

constriction for 1 week (1W DeTAC). After 1W TAC, cardiac

hypertrophy was observed via echocardiographic and postmortem

analyses, as indicated by significant increases in LV weight

(LVW)/body weight (BW) (Fig. 1A), and diastolic septal and

posterior wall thickness (Fig. 1BC). After 1W DeTAC, a significant

decrease in cardiac mass was observed, indicating regression

(Fig. 1ABC). Left ventricular ejection fraction (LVEF) was

decreased slightly after 1W TAC compared to sham (Fig. 1D

and Supplemental Table S1), but did not decrease further after

1W DeTAC (Fig. 1D). The mRNA level of atrial natriuretic factor

(ANF), a fetal-type gene reactivated during cardiac hypertrophy,

was increased significantly after 1W TAC and was decreased after

1W DeTAC (Fig. 1E). Histological analyses showed that LV

myocyte cross-sectional area was increased after 1W TAC,

whereas it was significantly and uniformly reduced after 1W

DeTAC compared to after 1W TAC (Fig. 1FG and supplemental

Fig. S1), again indicating regression of cardiac hypertrophy.

Autophagy is enhanced during regression of cardiac
hypertrophy

We hypothesized that autophagy is activated during regression

of cardiac hypertrophy. Expression of LC3-II, a protein known to

be associated with autophagosomes, was increased following 1W

DeTAC (Fig. 2AB). To evaluate the extent of autophagosome

formation upon regression of cardiac hypertrophy, we examined

transgenic mice harboring GFP-LC3 (Tg-GFP-LC3) [19] and

found that the number of GFP-LC3 dots/cell was significantly

increased upon cardiac unloading (Fig. 2CD). Expression of p62, a

polyubiquitin-binding protein sequestered in autophagosomes for

lysosomal degradation [22], was significantly reduced in DeTAC

samples, indicating increased autophagic flux during regression of

cardiac hypertrophy (Fig. 2AB). Collectively, these results suggest

that autophagy is significantly induced during regression of cardiac

hypertrophy. Interestingly, although the number of GFP-LC3

dots/cell was increased significantly, LC3-II was decreased and

p62 was accumulated after 1W TAC. These results suggest that

autophagic flux might be inhibited after 1W TAC under our

experimental conditions (Fig. 2AB).

FoxO1 is involved in mediating regression of cardiac
hypertrophy

There are several reports describing the role of FoxO

transcription factors in muscle atrophy [12,13,14,15]. We and

others have shown previously that FoxO1 is a critical regulator of

autophagic flux in cardiomyocytes [9,10]. Thus, we hypothesized

that FoxO1 may be involved in mediating the reduction in cardiac

mass and cell size during regression of cardiac hypertrophy. To

this end, we evaluated expression of FoxO1 after 1W TAC and

1W DeTAC. FoxO1 was significantly upregulated during

regression of cardiac hypertrophy, while it was downregulated

during cardiac hypertrophy (Fig. 2AB).

FoxO1 regulates autophagy in vivo
To elucidate the role of FoxO1 in mediating autophagy in the

heart in vivo, we generated transgenic mice with cardiac-specific

overexpression of WT-FoxO1 (Tg-FoxO1). We generated two

lines of transgenic mice (lines #8 and #36) with different levels of

FoxO1 expression (3.7- and 11.9-fold increase, respectively,

relative to non-transgenic (NTg) mice) (Fig. 3AB). Both lines

showed decreased cardiac mass, as evidenced by the significantly

smaller size of the LV and the cardiomyocytes therein (Supple-

mental Fig. S2). In order to examine the effect of FoxO1

upregulation upon autophagy in vivo, we evaluated expression of

several autophagy markers in Tg-FoxO1 mice (Line #8). mRNA

levels of Gabarapl1, Bnip3, and Ulk2, genes associated with

autophagosome formation [11,13], were significantly increased in

Tg-FoxO1 mice (Fig. 3C). Protein expression of autophagy

markers and molecules known to regulate autophagy, including

LC3-II accumulation, p62 degradation, Beclin1, Cathepsin L,

Sirt1, P-AMPKa and Rab7, was significantly increased in Tg-

FoxO1 mice (Fig. 3DE). To evaluate autophagosome formation,

we generated bigenic mice (Tg-GFP-LC3-FoxO1) by breeding Tg-

FoxO1 and Tg-GFP-LC3 mice. The number of GFP-LC3 dots/

cell was significantly greater in the bigenic mice than in Tg-GFP-

LC3 mice (Fig. 3FG), indicating that FoxO1 can increase

autophagosome formation. Chloroquine treatment (10 mg/kg

IP) further increased the level of LC3-II in Tg-FoxO1 as

determined by immunoblot analyses (Supplemental Fig. S3).

Autophagy Induces Cardiac Hypertrophy Regression
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Figure 1. Left ventricular unloading induces regression of cardiac hypertrophy. C57BL/6 mice were subjected to pressure overload caused
by thoracic aortic constriction for 1 week (1W TAC), followed by cardiac unloading by removal of the constriction for 1 week (1W DeTAC). A) Left
ventricular weight/body weight (LVW/BW). B) Diastolic septal wall thickness (DSEP WT), C) diastolic posterior wall thickness (DPW WT), and D) left
ventricular ejection fraction (LVEF), as evaluated by echocardiographic analyses. E) mRNA level of atrial natriuretic factor (ANF), evaluated by qRT-PCR.
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Together with the decreased expression of p62 (Fig. 3DE), these

results suggest that FoxO1 positively regulates autophagy and

autophagosome formation in the heart.

Treatment with autophagy inhibitors attenuates FoxO1–
induced reduction in cell size

To determine the role of FoxO1 and autophagy in cell size

regulation, cultured cardiomyocytes were transduced with an

adenovirus harboring WT-FoxO1 (Ad-FoxO1-WT) and treated

with known inhibitors of autophagy, 3-methyladenine (3-MA), an

inhibitor of class III phosphatidyl inositol -3 kinase (PI3K), or an

adenovirus harboring shRNA-Beclin1 (Ad-sh-Beclin1), as de-

scribed previously [18]. Overexpression of FoxO1 induced

autophagy, as seen by p62 degradation (Fig. 4AB), which was

significantly attenuated by treatment with 3-MA and Ad-sh-

Beclin1 transduction (Fig. 4AB), confirming that 3-MA and Ad-sh-

Beclin1 can inhibit FoxO1-induced increases in autophagy. Under

these experimental conditions, Ad-FoxO1-WT reduced the

cardiomyocyte size (Fig. 4CD) and the relative protein content

(Fig. 4E) significantly, while inhibition of autophagy attenuated

both of these FoxO1-induced reductions (Fig. 4CDE). Collectively,

these results indicate that FoxO1 reduces the size of cardiomy-

ocytes and that autophagy plays an important role in mediating

FoxO1-induced decreases in the cell size of cardiomyocytes.

FoxO1 expression and autophagy are increased in an in
vitro model of regression of cardiac hypertrophy

To better understand the role of FoxO1 in mediating regression

of cardiac hypertrophy, we created an in vitro model of regression

of cardiac hypertrophy in which cardiomyocytes were cultured in

collagen-I-coated special culture dishes, subjected to repetitive

mechanical stretch for 36 hours and subsequently incubated

Figure 2. Autophagy and FoxO1 expression are upregulated during regression of cardiac hypertrophy. Control C57BL/6 and Tg-GFP-
LC3 mice were subjected to sham, 1W TAC and 1W DeTAC surgeries. A) Representative immunoblots of autophagy markers and FoxO1 from mouse
hearts. B) Densitometric analyses. C) Representative images of fluorescent LC3 puncta in hearts from Tg-GFP-LC3 mice. Arrows indicate LC3 puncta.
D) Mean number of GFP-LC3 dots/cell. Data represent means from at least 3 mice each. * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0051632.g002

F) Representative images of transverse sections of the LV after wheat germ agglutinin staining. G) Cross-sectional area of myocytes (in mm2). N = at
least 8 mice in each group. * p,0.05, ** p,0.01, N.S.: Not Significant.
doi:10.1371/journal.pone.0051632.g001

Autophagy Induces Cardiac Hypertrophy Regression
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Figure 3. Overexpression of FoxO1 regulates autophagy in vivo. Transgenic mice with cardiac-specific overexpression of WT-FoxO1 (Tg-
FoxO1) were generated. A) Representative immunoblots comparing FoxO1 expression levels in the two lines (lines #8 and #36) of Tg-FoxO1 and
nontransgenic (NTg) mice. B) Densitometric analyses. C) mRNA levels of autophagy genes Gabarapl1, Bnip3 and Ulk2. D) Representative immunoblots
of autophagy markers. E) Densitometric analyses. F–G) Tg-FoxO1 mice were bred with Tg-GFP-LC3 to generate Tg-GFP-LC3 – FoxO1 bigenic mice. F)
Representative images of GFP-LC3 puncta. Arrows indicate LC3 puncta. G) Mean number of GFP-LC3 dots/cell. Data represent means from at least 4
individual mice. * p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0051632.g003
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Figure 4. Autophagy inhibition attenuates FoxO1-induced reduction in cell size and relative protein content. Cultured cardiomyocytes
were transduced with Ad-FoxO1-WT or Ad-LacZ for 24 hours or Ad-sh-Beclin1 for 96 hours, and treated with 10 mM 3-methyladenine (3-MA) for
24 hours. A) Representative immunoblots. B) Densitometric analyses. C) Representative images of cardiomyocytes viewed under a light microscope.
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without stretch (de-stretch) for the same length of time (Fig. 5A).

The relative protein content and the mRNA level of ANF were

significantly increased following mechanical stretch, indicating

induction of cardiac hypertrophy, but were attenuated after de-

stretch, indicating regression of cardiac hypertrophy (Fig. 5BC).

FoxO1 mRNA (Fig. 5D) and protein expression levels (Fig. 5EF)

were significantly increased after de-stretch. Autophagy was also

enhanced during de-stretch, as indicated by increased LC3-II and

decreased p62 expression (Fig. 5EF). Taken all together, these

results indicate that FoxO1 and autophagy may contribute to

regression of cardiac hypertrophy in vitro.

Absence of FoxO1 and autophagy attenuates the extent
of regression of cardiac hypertrophy in vitro and in vivo

To show that autophagy is required for mediating regression of

cardiac hypertrophy, we subjected beclin1+/2 mice to regression

of cardiac hypertrophy. Autophagy was significantly suppressed in

beclin1+/2 mice after 1W DeTAC, as indicated by increased p62

expression, relative to control mice subjected to 1W DeTAC

(Fig. 6AB). In the absence of autophagy, the extent of regression of

cardiac hypertrophy was attenuated, as indicated by the significant

reduction in LVW/BW after DeTAC in control mice, but not in

beclin1+/2 mice and the decreased % regression of cardiac

hypertrophy (which is the percentage decrease in LVW/BW

values after 1W DeTAC compared to after 1W TAC alone)

(Supplemental Fig. S4) in beclin1+/2 mice. Similarly, in the

absence of autophagy in vitro due to knock-down of Beclin1 using

Ad-sh-Beclin1, the % regression of cardiac hypertrophy (which is

the percentage reduction in relative protein content after de-

stretch compared to stretch alone) was significantly attenuated

(Fig. 6D). This confirmed that autophagy is required for regression

of cardiac hypertrophy. To determine whether FoxO1 is required

to mediate regression of cardiac hypertrophy, we used an

adenovirus harboring sh-FoxO1 (Ad-sh-FoxO1), which has been

described previously [9]. The absence of FoxO1 significantly

decreased the extent of regression of cardiac hypertrophy in vitro

(Fig. 6D). Taken all together, this suggests that endogenous FoxO1

is required for mediating regression of cardiac hypertrophy,

possibly through stimulation of autophagy (Fig. 6E).

Discussion

We here show that a) regression of cardiac hypertrophy is

induced by left ventricular unloading and de-stretch of cultured

cardiomyocytes after mechanical stretch, and is accompanied by

increased autophagy and upregulation of FoxO1, b) FoxO1

increases the expression of autophagy genes and autophagosome

formation in mouse hearts in vivo, c) overexpression of FoxO1

reduces cardiomyocyte size, whereas inhibition of autophagy

attenuates FoxO1-induced reductions in cell size and protein

content, and d) autophagy and FoxO1 are required to mediate

regression of cardiac hypertrophy both in vitro and in vivo.

Upregulation of FoxO1 is sufficient to stimulate autophagy in

cardiomyocytes in vitro, as shown in our previous study [9], and in

vivo, as shown in this study. We and others have shown previously

that FoxO3 also stimulates autophagy in cardiomyocytes [9,10]. In

addition, both FoxO1 and FoxO3 negatively regulate cardiac

hypertrophy [14]. Thus, we do not exclude the role of FoxO3,

another major isoform of the FoxO family expressed in the heart,

in mediating autophagy and consequently mediating regression of

cardiac hypertrophy by DeTAC or destretch. However, down-

regulation of FoxO1 significantly attenuated DeTAC- and de-

stretch-induced regression of cardiac hypertrophy, suggesting that

FoxO1 may have non-overlapping functions compared to FoxO3

that induce regression of cardiac hypertrophy.

Cardiac hypertrophy induced by pressure overload or mechan-

ical stretch is accompanied by activation of Akt through

phosphatidylinositol 3 kinase. Akt phosphorylates FoxOs, thereby

inducing their cytosolic translocation, which may remove the

FoxOs’ negative constraint upon hypertrophy and, thus, induce

cardiac hypertrophy [15]. We here demonstrate that protein

expression of FoxO1 is upregulated in response to DeTAC or de-

stretch and that endogenous FoxO1 is required for regression of

cardiac hypertrophy. Whether posttranslational modifications of

FoxOs, such as dephosphorylation and deacetylation, are required

for activation of autophagy and consequent regression of cardiac

hypertrophy remains to be investigated.

FoxO proteins are critical regulators of protein degradation

mechanisms, including the autophagy-lysosome pathway and the

ubiquitin proteasome system. Although we showed the involve-

ment of the former in mediating regression of cardiac hypertrophy

after DeTAC here, at present, FoxO1-mediated upregulation of

atrogin-1/MAFbx, a muscle-specific E3 ubiquitin ligase [12], and

its involvement in regression of cardiac hypertrophy after DeTAC

cannot be excluded. Increasing lines of evidence suggest that

functional interactions exist between autophagy and the ubiquitin

proteasome system [23]. For example, degradation of ubiquiti-

nated protein by the lysosome may occur through autophagy, with

interaction with p62 leading to the ubiquitinated protein being

engulfed by autophagosomes.

Overexpression of FoxO1 in the heart markedly reduces cardiac

mass and cardiomyocyte size in transgenic mice. It has been

shown that FoxO3 negatively regulates cell cycle/proliferation,

thereby inhibiting normal growth of the heart during development

[24]. We speculate that the small heart observed in our Tg-FoxO1

may be caused by multiple mechanisms activated through

persistent upregulation of FoxO1 in postnatal hearts.

The molecular mechanism through which activation of

autophagy contributes to regression of cardiac hypertrophy

remains to be elucidated. For example, activation of autophagy

may allow cardiomyocytes to degrade substantial amounts of

proteins and damaged organelles. However, contributions of total

proteins degraded by the lysosome to the total level of hypertrophy

regression remain to be elucidated. It is formally possible that

autophagy may contribute to hypertrophy regression through

degradation of signaling molecules or key regulators of protein

synthesis/degradation. We show that autophagy may be sup-

pressed by stretch and 1W TAC. However, suppression of

autophagy alone may not be sufficient to induce cardiac

hypertrophy since some loss-of-function mouse models of autoph-

agy, including beclin1+/2 mice, do not exhibit cardiac hypertro-

phy at baseline, at least at a young age. Thus, further research is

necessary to clarify the molecular mechanism through which

autophagy regulates development and regression of cardiac

hypertrophy.

In this model, we were not able to extend the period of the

initial TAC sufficiently long enough for the mouse to develop

heart failure since the longer TAC facilitated scar formation in the

area of constriction and prevented the removal of the pressure

gradient. Thus, in order to investigate how regression of cardiac

D) Relative cardiomyocyte cross-sectional area. E) Relative protein content. Data represent means from at least 6 different myocyte cultures. * p,0.05,
** p,0.01.
doi:10.1371/journal.pone.0051632.g004
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Figure 5. FoxO1 expression and autophagy are increased in an in vitro model of regression of cardiac hypertrophy. Cardiomyocytes
were cultured in BioFlex plates, subjected to mechanical cyclic stretch for 36 hours (Stretch) and incubated without stretch for 36 hours (de-stretch).
A) Scheme showing the regimen of mechanical stretch and de-stretch. B) Relative protein content. C–D) mRNA levels of ANF and FoxO1, determined
by qRT-PCR. E) Representative immunoblots. F) Densitometric analyses. Data represent means from at least 4 different myocyte cultures. * p,0.05, **
p,0.01.
doi:10.1371/journal.pone.0051632.g005
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Figure 6. FoxO1 and autophagy are required for regression of cardiac hypertrophy. Control C57BL/6 mice and mice with heterozygous
knockout of Beclin1 (beclin1+/2) were subjected to 1W TAC and 1W DeTAC surgeries. A) Representative immunoblots. B) Densitometric analyses. C)
Left ventricular weight/body weight (LVW/BW). D) Cultured cardiomyocytes were transduced with Ad-sh-Scr, Ad-sh-Beclin1 and Ad-sh-FoxO1 and
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hypertrophy mediated through autophagy affects LV function,

improvement of the animal model appears to be essential.

Supporting Information

Figure S1 Distribution of cardiomyocyte cell size in mice after

TAC and DeTAC. C57BL/6 mice were subjected to pressure

overload caused by thoracic aortic constriction for 1 week (1W

TAC), followed by cardiac unloading by removal of the

constriction for 1 week (1W DeTAC). Size distribution of cardiac

myocyte cross- sectional area was measured from at least 50 cells

from 3 different animals in each group.

(TIF)

Figure S2 Characterization of Tg-FoxO1. Cardiac phenotype of

Tg-FoxO1 (line #8). Tg-FoxO1 and non-transgenic (NTg) mice

were euthanized at the age of 3 months. A) Pictures of NTg and

Tg-FoxO1 (line #8) hearts. Each graduation in the scale

below = 1 mm. B) Left ventricular weight (LVW)/body weight

(BW) (mg/g). n = 32. C,D) LV cardiomyocyte cross sectional area.

Wheat germ agglutinin staining was performed and average

cardiomyocyte cross sectional area was obtained in NTg and Tg-

FoxO1 hearts.

(TIF)

Figure S3 Stimulation of autophagy in Tg-FoxO1 hearts. Tg-

FoxO and NTg mice were treated with chloroquine (Chq, 10 mg/

kg, ip), and euthanized 4 hours after treatment. A. Immunoblots

showing FoxO1, LC3 and tubulin in the heart. The level of a-

tubulin is shown as a loading control. B. Densitometric analyses for

LC3-II expression. The data are mean of two experiments.

(TIF)

Figure S4 Regression of cardiac hypertrophy was blunted in

beclin1+/2 mice. Control C57BL/6 mice and transgenic mice

with heterozygous knockout of Beclin1 (beclin1+/2) were subjected

to 1W TAC and 1W DeTAC surgeries. Percentage decrease in

LVW/BW values after 1W TAC and 1W DeTAC compared to

after 1W TAC alone is represented as % regression of cardiac

hypertrophy in vivo. **p,0.01.

(TIF)

Table S1 Echocardiographic analyses of mice after TAC and

DeTAC.

(TIF)
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