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Abstract

The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the
identification of non-linear interactions between variables. However the number of rules increases dramatically when
applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important
rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or
bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule
system. We propose three statistics: R, L, and v-values, to rank the importance of each TS rule, and a forward selection
procedure to construct a final model. We use our method to predict how key components of childhood deprivation
combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based
on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and
educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that
the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy
decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule
system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions
in complex biomedical data.
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Introduction

In the use of health informatics, one way to support public

services planners in making decisions under uncertainty is to

provide decision models that are robust and have excellent

predictive performance. Preferred models tend to be as simple as

possible while providing a good fit to the system’s behaviour

(Occam’s razor [1]). The benefits of more parsimonious models lie

in that they 1) are easier to interpret; 2) are more likely to avoid

over-fitting; 3) can be better generalised; and 4) use fewer

computing resources.

Fuzzy logic has become one of the cornerstones for characteris-

ing uncertainty in system modelling and data mining [2–5]. The

TS fuzzy rule model [5] is commonly used and has two main

advantages. The first is its representative power, being able to

describe a highly nonlinear system with simple local linear models

(LLMs). The second is its connections with linear-in-parameters

models, so that linear system modelling techniques can be applied.

In constructing a TS fuzzy model, the input space is decomposed

into fuzzy regions, and LLMs are used to approximate the system

in each individual region. The overall system output is obtained by

fusing these subsystems. In this manner, an interaction between

variables, whereby the effect on an output measure of a given level

of a variable is dependent on the level of one or more other

covariates, is easily revealed. The interaction will be represented

by notably different output rules at different combinations of

variable levels (regions of the data space).

Unfortunately, the bottleneck of using TS fuzzy systems in

many practical applications is the high dimension of information

space, which necessitates a large number of LLMs (the curse of

dimensionality) [6–11]. As a result, the use of TS models in data rich

fields such as epidemiology, medical statistics, bioinformatics and

health informatics is limited. This is an unfortunate drawback. In

such fields, a complex interaction between variables is expected.

Few epidemiological indices can be treated in isolation, and a

statistical method of analysis must consider how the effect of

different levels of one risk factor can be dependent on or modified

by the level of many other factors. This is precisely the strength of

the ‘if-then’ TS rule system. High order interactions can easily be

specified, without the need of a complex overall model structure

(involving non linear functions for example). A method for

constructing a compact, but robust, rule base for the TS model

would therefore be of practical use.

In the wide field of fuzzy modelling, there are several methods

proposed to tackle the curse of dimensionality, for example, hierarchical

fuzzy systems [12–14]. However, the hierarchical decomposition is

not suitable for TS fuzzy models in studies such as ours. There are

several reasons for this. Although the hierarchical method applied

to TS fuzzy systems can decrease the exponential growth of fuzzy
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rules, the exponential growth of parameters remains inherent [14].

Hence studies based on hierarchical fuzzy models have to face the

difficulty of interpreting relatively more complexity in the rules

themselves [15]. Specifically, building such a hierarchical TS fuzzy

system corresponds to moving the complexity of the system from

the antecedent (i.e., the need of mn rules) to the consequent part, as

a result, each rule is more complicated in hierarchical system than

in the corresponding standard TS (with LLMs) system [12]. Also

importantly, there is great difficulty in handling the intermediate

variables introduced by the hierarchical structures [14]. The

intermediate variables usually do not possess any physical meaning

and may go outside their definition domain, consequently causing

a loss of linguistic interpretability [10] [14][16]. With hierarchical

fuzzy systems, it can be impossible to gain interpretations of

relationships between input variables and outcome for practical

applications. Lastly, hierarchical decomposition of problem is not

always trivial, and in many applications cannot be accomplished

[12].

In most biological or medical applications the aim of the

modelling is not simply to forecast, but to gain an understanding of

precisely how certain variables interact, and to identify the key

variables and levels of variables. This ability is offered by the

standard TS approach due to the simple LLMs that are applied in

each section of data space. We therefore seek a solution to the

dimensionality problem for the TS model, rather than the use of

hierarchical systems, for a very important reason: we wish to

preserve the TS model transparency and ease of interpretation, a

particular strength when trying to interpret complex biological and

medical data. However the problem of the large rule base remains

the key issue to be overcome if these systems are to be applied to

high dimensional problems [6–10].

Currently, the SVD-QR with column pivoting algorithm has

been proposed to perform rule selection for a parsimonious fuzzy

rule-base [17–19]. Unfortunately, some existing studies have

shown great sensitivity to the chosen effective matrix rank (MR)

values, so that different estimates of the MR often produce

dramatically different rule-reduction results [19]. Here, we

attempt to derive a general method for identifying the parsimo-

nious set of TS fuzzy rules. We apply the method to a data set

describing the complex relationship between a range of measures

of childhood deprivation, and educational achievement. This is a

typical data set available to policy planners and epidemiologists,

where some strong general trends are expected alongside very

complex and subtle interactions between risk factors.

It is widely accepted that deprivation is a key component of

social inequality, for example, rates of admission to hospital for

cardiovascular conditions are influenced by socioeconomic depri-

vation [20], and the relationship between deprivation and

educational achievement in childhood is crucial to understanding

the substantial impact of deprivation on later outcomes in

adulthood [21]. The ‘‘Independent Inquiry into Inequalities in Health

Figure 1. The input space partitioning for TS fuzzy model. Each
region representing combinations of the variables x1 and x2 is described
by an ‘‘if-then’’ rule with local linear model.
doi:10.1371/journal.pone.0051468.g001

Figure 2. Forward selection procedure for selecting important
LLMs.
doi:10.1371/journal.pone.0051468.g002
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Report’’ [22] in the UK stimulated studies of the complex

relationship between poverty and health, and the Welsh Index of

Multiple Deprivation (WIMD) was designed as part of the

Neighbourhood Statistics programme in England and Wales

[23]. This index, like other complex measures of deprivation, is

based on the assumption that an overall measure of deprivation is

a combination of different domains. For example, substandard

housing or low income may contribute to poor health, but poor

health is also a deprivation factor on its own right. WIMD is

calculated for small geographical units called Lower Layer Super

Output Areas (LSOA, with around 1500 people), which were

generated by the Office for National Statistics by taking into

account population size, mutual proximity, and social homogene-

ity and are designed to be permanent. WIMD is an important

resource for the distribution of monies for public services and there

has long been interest in whether such area-level indices of

socioeconomic position are actually useful for predicting health

outcomes or educational attainments in many countries [24–27].

Existing studies tend to focus on individual domains, and have

rarely used high dimensional indices of multiple deprivations to

explore the inherent interactions. Here we use the TS model

system and new rule selection criteria to explore whether multiple

indices of deprivation can influence child educational outcomes

and how these multiple indices interact with each other to

influence educational outcome for different categories of children.

Materials and Methods

2.1 TS Fuzzy Modelling Framework and Current Rule
Selection Method

The TS fuzzy model decomposes the input space into fuzzy

regions, approximates the system in every region by a LLM, and

then combines these LLMs into an overall system output (Figure 1).

A TS fuzzy model is expressed as follows [5]:

Rulei: If x1 is Ai, 1 and � � � xp is Ai, p then

yi~a0iza1ix1z � � �zanixp ð1Þ

where, i~1, � � � ,L, yi is the output variable of the ith rule, Ai,j is

a fuzzy set of the jth domain in the ith rule, and a0i, � � � ,api are

consequent coefficients of the ith rule. Compared with a Mamdani

fuzzy model, the rule consequent part is replaced by an affine

linear function of input variables. As such, each rule can be

considered as a local linear submodel. An overall output y is produced

Figure 3. Distributions of observed scores on individual deprivation domains across all small geographic areas (LSOAs).
doi:10.1371/journal.pone.0051468.g003
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by fusing together these LLMs yi as

y~
XL

i~1

ti(x)(a0iza1ix1z � � �zapixp) ð2Þ

where

ti(x)~ri(x)

,XL

i~1

ri(x) ð3Þ

is the normalized firing strength of the ith rule, and ri is usually

defined by

Figure 4. Fuzzy sets characterising the membership – low deprivation or highly deprivation within each child deprivation domain.
doi:10.1371/journal.pone.0051468.g004

Table 1. Cut-off points for low-deprivations and high-deprivations on input domains.

Input variables Low Deprivation core score range Deprived area core score range

Income [0, 11.91] [37.95, 100]

Health [0, 13.22] [36.29, 100]

Access [0, 14.41] [25.97, 100]

Housing [0, 14.74] [31.69, 100]

Environment [0, 18.97] [24.66, 100]

Community [0, 12.39] [37.00, 100]

doi:10.1371/journal.pone.0051468.t001
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ri(x)~ P
j

Ai,j(xj) ð4Þ

in which the Ai,j(xj) is the membership function of the fuzzy set

Ai,j . The overall system model (2) is also called the global model.

The coefficients determine the size and direction of the effects in

the local fuzzy region.

Given N input-output data pairs x(l),d (l)
� �� �N

l~1
, the matrix

G~

t1(x(1)) � � � tL(x(1))

..

. ..
. ..

.

t1(x(N)) � � � tL(x(N))

2
664

3
775

N|L

ð5Þ

is the firing strength matrix, in which each column corresponds to one

fuzzy rule. Promisingly, the equation (2) can also be viewed as a

linear-in-parameters regression model,

y(x,h)~
XL

i~1

w(i)(x)T hize ð6Þ

where w(i)(x)~ ti(x),ti(x)xTð ÞT[Rpz1 and hi~ a0i,a1i, � � � ,
�

apiÞ
T[Rpz1, e is the random noise. Furthermore, the (2) can be

expressed in matrix form as follows,

Y~Whze ð7Þ

where Y~ y(1),y(2), � � � ,y(N)
� �T

[RN , W~½W (1),W (2), � � � ,
W (L)�[RN|(pz1)L, W (i)~½w(i)(x(1)),w(i)(x(2)), � � � ,w(i)(x(N))�T

[RN|(pz1) is called the weight matrix, h~½h1,h2, � � � ,hL�
T

[R(pz1)L. It can be seen that if the basis functions (BFs) w(i)(x) are

fixed, then (6) or (7) becomes linear with respect to parameters hi.

Each column of the firing strength matrix G corresponds to one

fuzzy rule. Important rules correspond to the columns of the

matrix that are linearly independent of each other [19]. The SVD

(singular value decomposition) of G plays an important role in rule

selection. The redundant fuzzy partitions (corresponding to the

linearly dependent or zero-valued columns) are associated with

near zero singular values of G. The smaller the singular values, the

less influential the associated fuzzy rules. The SVD-QR with

column pivoting algorithm has been popularised in identifying the

most important fuzzy rules from a given rule base.

In short, the algorithm works as follows. First, calculate the SVD

of firing strength matrix G in G~USVT where U[RN|N ,

V[RL|L, and estimate its effective rank from S. Next calculate a

permutation matrix P such that the columns of the matrix Gr in

GP~½Gr,GL{r� are independent. The actual rule selection is the

calculation of the permutation matrix that extracts an independent

subset of columns Gr, assuming to correspond to the most

important rules. This algorithm was originally proposed by Golub

et al for subset selection in regression analysis [28], and has been

used to select hidden nodes in a feed forward neural network [29].

However, in practical applications, one needs to choose a

necessary effective rank for this algorithm. The negative conse-

quence is that different choices of the rank often produce

dramatically different rule reduction results [19] [30].

2.2 Modification of the Current Method: The Index of R-
values of TS Fuzzy Rules Considering the Effects of Rule
Antecedent Parts

In order to avoid the estimation of the effective rank values, we

apply the pivoted QR decomposition to the firing strength matrix

G. The QR decomposition (also called QR factorization) of a matrix is a

decomposition of a matrix A into a product A = QR with an

orthogonal matrix Q and an upper triangular matrix R, which is

often used to solve the linear least squares problem [31]. In this

paper, the absolute values of the diagonal elements of matrix R in

QR decomposition are called the R-values of G. The R-values tend

to track the singular values of the matrix G, so these R-values can

be used in rule ranking as follows:

Step 1. Calculate the QR decomposition of G and obtain the

permutation matrix P via GP~QR, where Q is an orthogonal

matrix, R is an upper triangular matrix. The absolute values of the

diagonal elements of R, denoted as DRii D, decrease as i increases and

are named as R-values.

Step 2. Rank fuzzy rules in terms of the R-values and the

permutation matrix P. Each column of P has one element taking

the value 1 and all the other elements taking the value 0. Each

column of P corresponds to a fuzzy rule. The numbering of the jth

most important rule in the original rule base is the same as the

numbering of the row where the ‘‘1’’ element of the jth column is

located. For example, if the ‘‘1’’ of the 1st column is in the 4th row,

then the 4th rule is the most important one and its importance is

measured as DR11D. The rule corresponding to the first column is

the most important, and in descending order the rule correspond-

ing to the last column is the least important.

2.3 A New Index for TS Fuzzy Rules: L-values take into
Account the Effects of Rule Consequent Parts

The R-values only take into account the rule base structure

(focusing on the rule antecedent parts). An alternative approach is

to consider the effects of rule consequents [30]. The so-called a-

values of fuzzy rules [30] have been proposed to consider the

contribution of rule consequent parts in constructing parsimonious

linguistic type fuzzy models whose consequent parts are constants.

These a-values of fuzzy rules are actually the absolute values of

consequent constants. One may naturally infer that the indices a-

values of fuzzy rules [30] can be extended to TS fuzzy models with

LLM consequents, where the new index for TS model is defined as

sum of absolute values of consequent parameters a0i, � � � ,api in (1)

or length of the vector a0i, � � � ,api

� �T
. However, our experiments

suggest this is not the case, with a tendency for system output to

exceed domain range and hence poor generalization performance.

If one considers the differences between the TS fuzzy model (1)

and the linguistic type fuzzy model whose consequent parts are

constants, it can be found that their submodels exhibit completely

different interactions with the global models [7] [9][32]. Instead,

we propose a new index for ranking TS fuzzy rules by considering

the contribution of the LLMs, termed as L-values for TS rules.

Definition. L-value of TS fuzzy rule Rulei is

Li~1{ 1

1ze
{d: ~aaik k ð8Þ

where ~aai~ a0i, � � � ,api

� �T
, ~aaik k~

ffiffiffiffiffiffiffiffiffiffiffiffiPp
j~0

a2
ji

s
, d is a parameter

defined by user to expand or shrink differences among L-values.

Fuzzy Rule Systems for Epidemiology Data Analysis

PLOS ONE | www.plosone.org 5 December 2012 | Volume 7 | Issue 12 | e51468



Figure 5. Prediction results on 50 LSOA areas (from the testing set, DTs). (a) By the initial system model (64 LLMs); (b) By a model with 6
LLMs, selected using the v -values in our proposed rule selection procedure. The solid line represents the observed education deprivation scores
while the dashed line represents the model.
doi:10.1371/journal.pone.0051468.g005
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2.4 A Further New Index for TS Fuzzy Rules: v-values take
into Account the Effects of Both Rule Antecedent Parts
(R) and Consequent Parts (L)

In order to consider both the TS rule base structure information

and the contribution of LLMs for rule ranking, we propose a

further index:

vi~Li
: DRii D
max

i
DRii D

ð9Þ

where Li and DRii D are the L-value and R-value of Rulei respectively.

2.5 Local Linear Model Selection and Implementation
The standard system modelling technique usually involves tasks

of model construction and evaluation of the generalization

performance. The datasets used for the two tasks should not be

the same. In our study, one additional task, model selection, is

involved. So the data is split into three subsets. DTr is used to

identify the system parameters in training a TS fuzzy model TS0.

The performance of the trained TS0 is measured in terms of the

error index err0
Ts obtained by applying to the testing samples in

DTs. The data subset DV is used to validate the selected fuzzy rules

for constructing a compact TS model. The err0
V measures the

validation performance by applying to the validation samples in

the data set DV .

The R-values, L-values, and v-values can be used to identify the

most influential TS fuzzy rules that ensure the smallest possible

model explains the available data well. First, assume V to be the

results obtained from a rule ranking index:

V~ V 1ð Þ,L,V Kð Þf g ð10Þ

where K denotes the number of rules in the initial model TS0.

The rule importance denoted by V(s) decreases as s = 1, 2, ???, K

correspondingly. Let
P(0)

~1 be the rule subset that includes

recursively selected rules.

The Forward Stepwise (FS) Procedure is a heuristic that starts with an

empty set of TS fuzzy rules (i.e.
P(0)

~1):

1) Set
P(0)

~1, M (0)~1 , k = 0, s = 1, assign a model error

tolerance threshold eh(§err0
V );

2) Select the most important TS fuzzy rule(s);

3) Construct a model TS(s) using the influential fuzzy rules;

4) Apply TS(s) to the validation dataset DV and the test dataset

DTs to obtain new root-mean-square -errors (RMSEs):

errV (s) and errTs(s);

5) If errV (s)ƒeh, then put the model TS(s) into M(s) and

increase s by 1 and go to Step 2. If errV (s)weh, increase s by

1 and go to Step 2;

6) If s = K, then stop the process and select a TS(�) in M (s) with

the most compact rule-base as the final model and use the

corresponding err�Ts as the measure of generalization

performance for TS(�).

Using the FS procedure, one at a time, the highest ranked LLM

is added to
P(s)

. The models with errV (s)ƒeh are added to the

model-base M(s), and the procedure continues until every rule has

been assessed. Then the most compact model TS(�) among M (s) is

selected as the final global model. That is to say, the model TS(�)

has the smallest number of LLMs used, at the same time the TS(�)

Figure 6. The R-values and singular values of TS fuzzy rules.
doi:10.1371/journal.pone.0051468.g006
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achieves satisfactory approximation ability with err�V ƒeh (see

Figure 2). We note that because eh §err0
V , the termination of the

FS procedure is guaranteed.

Our implementation of the methodology is as follows (we note a

similar backward selection procedure can be defined):

Step 1. Initialise the input space partition.

Step 2.Train a TS model by a system modelling technique.

Step 3. Rank the rules of the trained TS model in terms of the

new indices.

Step 4. Select most influential LLMs using the FS procedure.

Step 5. Select the final compact model indicated via the FS

procedure.

Figure 7. The R-values (a), L-values (b) and v-values (c) of TS fuzzy rules in natural order.
doi:10.1371/journal.pone.0051468.g007

Table 2. Rule ranking results in terms of R-values, L-values, and v-values (Numeric values represent rule IDs).

Index Rule ranking results

R-values 9 1 11 3 54 13 56 50 52 15 5 40 17 2 38 25 62 4 64 58 6 49 19 7 34 22 27 36 18 57 29 8 21 33 20 60 53 41 31 55 45 51 61 39 23 59 12 10 30 35 48
46 37 24 47 43 42 16 32 14 63 26 44 28

L-values 2 9 58 53 11 62 34 17 46 1 49 19 5 43 38 20 13 7 3 54 21 4 52 15 22 56 59 6 42 55 27 50 25 33 57 37 31 24 8 18 14 40 51 47 23 36 26 41 12 39 35
64 63 29 10 61 45 44 60 32 30 48 16 28

v-values 9 1 11 3 54 13 56 50 52 15 5 17 2 62 38 40 4 58 25 49 6 19 34 7 22 27 64 53 21 20 57 33 18 36 8 55 31 59 41 51 46 29 23 39 12 37 35 24 43 10 61
45 47 42 60 14 26 63 30 32 44 48 16 28

doi:10.1371/journal.pone.0051468.t002

Fuzzy Rule Systems for Epidemiology Data Analysis
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A linear least squares method is used in this study to identify the

parameters in (7) for Step 2. For TS models with hyper-parameters,

other methods are available (e.g. ANFIS [33]). We note that there

is a choice to be made regarding the error threshold eh in the above

scheme. eh controls the trade-off between global model accuracy

and parsimony of the rule base. With specific data, a trial-and-

error procedure is appropriate to determine how much the global

model accuracy can be degraded at the expense of a compact rule

base.

2.6 Data sets: WIMD Child Index Data and Linkage with
Educational Outcomes

The Child Index of Deprivation is as a sub-index of the WIMD

multiple deprivation index. The latest (2008) version comprises

seven separate domains of deprivation relevant to children: income,

health, access to services, housing, physical environment, community safety and

education (including skills and training) [23]. Each domain score was

developed in terms of a combination of relevant indicators.

Selection of the indicators for each domain is based on up-to-date,

comprehensive and robust criteria, and is available for the entire

country at the LSOA small geographic area level. The significance

of research on area-based effects lies in emphasising the need to

focus public health and educational initiatives on the broader

characteristics of places where disadvantaged people live, rather

than simply on the people who live in these areas themselves [24].

The 2008 WIMD domains are held in the SAIL databank [34–

35], a national electronic health research infrastructure. Each

domain is scored on a level 0–100 (with 100 the highest level of

deprivation), and is itself constructed from several indicators [23].

Since our outcome variable is educational achievement (see below)

we omit the education deprivation index domain from the analysis

(this index already contains summary information on education

achievement). Of the remaining 6 domains, Income measures the

extent of deprivation relating to income, at the small area level. It

focuses on the proportion of children living in households with

income below a defined threshold or claiming benefits relating to

low incomes. Health captures the degree to which children are

deprived of good health, as determined by the area prevalence of

limiting long-term illness and low birth weight. Housing captures

deprivation though a lack of central heating and overcrowding.

Physical Environment measures environmental factors that may

impact on quality of life, including air quality, emissions, flood risk

and proximity to waste disposal and industrial sites. Access to Services

measures deprivation resulting from a household’s inability to

access a range of services, considered necessary for day-to-day

living (average travel time to schools, libraries, leisure centres).

Community Safety combines police recorded crime, numbers of

youth and adult offenders and incidents of fire.

The SAIL databank currently holds individual record level data

for pupils in all maintained schools in Wales between 2003 and

2008. In the UK, state education consists of 5 Key Stages (KS),

and the National Curriculum sets out targets to be achieved in

various subject areas at each stage. In this study, we focus on the

child educational attainment at KS1 and KS2. The KS1 covers

two years of schooling in maintained schools in England and

Wales normally when pupils are aged between 5 and 7. The KS1

attainments are assessed in three subjects: mathematics, science

and either English or Welsh. If a pupil attains a satisfactory score

for all the three subjects, this pupil is considered to have reached

the expected KS1. The KS2 covers four years of schooling in

maintained schools in England and Wales when pupils are aged

between 7 and 11. The KS2 attainments are assessed in a similar

way as the KS1 attainments.

We define the overall education under-attainment rate, at the LSOA

level, as the total number of children achieving lower than

expected levels (KS1 and KS2) divided by the total number of

assessments made over the three year period 2005 to 2007. Then,

using the code of each LSOA as system linkage field in the SAIL

databank, the under-attainment rate is linked to the 2008 WIMD

Child Indices, to explore how local components of deprivation

interact to determine local area educational achievement.

Results

First the 1896 LSOA samples were split into a training dataset

DTr with 1400 samples, a testing dataset DTs with 296 samples and

a validation dataset DV with 200 samples. The 1400 training

Table 3. LLM selection results by FS procedure in terms of R-values, L-values, and v-values (Numeric values in the 2nd column
represent rule IDs).

Index Influential LLMs selected Number of LLMs RMSEv RMSEt

R-values 9 1 11 3 54 13 56 50 52 15 5 40 17 2 38 25 62 4 18 0.1101 0.1138

L-values 2 9 58 53 11 62 34 17 46 1 49 19 5 43 38 20 13 7 3 54 21 4 52 15 24 0.10 0.1176

v-values 9 1 11 3 54 13 56 50 52 15 5 17 2 62 38 15 0.1104 0.1114

doi:10.1371/journal.pone.0051468.t003

Table 4. Rule ranking results by SVD-QR with column pivoting algorithm.

Matrix rank Rule ranking

4 38 46 49 42 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 1 39 40 41 4 43 44 45 2 47 48 3 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64

5 45 46 38 49 42 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3 39 40 41 5 43 44 1 2 47 48 4 50 51
52 53 54 55 56 57 58 59 60 61 62 63 64

6 45 62 46 38 49 42 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 4 39 40 41 6 43 44 1 3 47 48 5 50 51
52 53 54 55 56 57 58 59 60 61 2 63 64

doi:10.1371/journal.pone.0051468.t004
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samples were used to construct a TS model with 6 inputs

representing the various indices of deprivation: income (x1), health

(x2), access to services (x3), housing (x4), physical environment (x5), community

safety (x6) and one output education educational under-attainment rate (y).

The scales of independent variables on their domains are [0, 100],

with 0 the least deprived and 100 the most deprived. The

distributions of deprivation scores on individual domains across all

the LSOAs are shown in Figure 3.

The fuzzy c-means unsupervised clustering algorithm [36] was

used to partition input space. We note that other methods such as

fuzzy learning vector quantization [37] can be used. Once the

prototypes are generated, the membership functions are obtained

by projecting the multi-dimensional prototypes on the input

variable space [38]. The crucial points for the fuzzy sets in our

study are shown in Figure 4. The cut-off points for low-deprivation

and high deprivation score are shown in Table 1. These represent

high degrees of certainty of high/low deprivation group member-

ship. However, uncertainty emerges for the areas whose depriva-

tion scores lie between the cut-offs, and different degrees of high/

low membership are subsequently taken into account by the

weights of the fuzzy rules.

The initial TS fuzzy model is composed of 26 = 64 LLMs. The

trained system model accurately predicts the impact of child

deprivation on education achievement (Figure 5a, generalisation

performance RMSE = 0.101). Next, we applied the proposed rule

selection and reduction methods. Figure 6 shows that the R-values

of TS rules track the singular values very well, and we conclude

they are appropriate for the ranking of the fuzzy rules. These R-

values in the original rule order are illustrated in Figure 7a, and

the rule ranking results shown in Table 2.

Given the threshold eh = 0.111, and applying the FS procedure

as addressed above, we select the significant LLMs in terms of the

R-values. The rule selection results are given in Table 3, in which

the RMSEv represents the RMSE of the TS model applied to

validation samples, whilst the RMSEt is the RMSE of the TS model

applied to testing areas. A parsimonious model is constructed by

18 LLMs identified from the original 64. This newly constructed

compact TS model predicts the impacts of child deprivation at

testing LSOAs with RMSEt = 0.1138. Using the new L-values

(shown in natural order in Figure 7b), a TS model with 24 LLMs is

obtained with generalization performance RMSEt = 0.1176

(Table 3). By taking into account the contributions from both

Table 5. LLM selection results by SVD-QR with column pivoting algorithm.

Rank Influential LLMs selected Number of LLMs RMSEv RMSEt

4 38 46 49 42 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 35 36 37 1 39 40 41 4 43 44 45 2 47 48 3 50 51 52 53 54 55 56 57
58 59 60 61 62 63

63 0.10877 0.1046

5 45 46 38 49 42 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 3 39 40 41 5 43 44 1 2 47 48 4 50 51 52 53 54 55 56 57 58 59
60 61 62 63

63 0.10877 0.1046

6 45 62 46 38 49 42 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 4 39 40 41 6 43 44 1 3 47 48 5 50 51 52 53 54 55 56 57 58 59 60
61 2 63

63 0.10877 0.1046

doi:10.1371/journal.pone.0051468.t005

Figure 8. The coefficients of the 15 local linear models in the constructed TS system model.
doi:10.1371/journal.pone.0051468.g008
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rule premise parts and consequent parts, the new v-values of TS

fuzzy rules were obtained as shown in Figure 7c. As indicated in

Table 3, 15 important LLMs were identified (generalization

performance RMSEt = 0.1114). Figure 5b shows the prediction

results of this compact model with only 15 LLMs, again showing

good predictive power in modelling educational achievement.

Finally, as a comparison, we used the standard SVD-QR with

column pivoting algorithm to select the important LLMs from the

TS rule-base. Table 4 illustrates the rule ranking results under

different assumed SVD-QR parameters. It can be seen that this

approach is highly sensitive to the assumed parameter of matrix

rank. As demonstrated in Table 5, under the FS procedure, the

SVD-QR pivoted algorithm with matrix ranks 4, 5 and 6 all selects

a remarkable 63 LLMs (testing sample RMSEt = 0.1046). The 3 TS

fuzzy models constructed by the SVD-QR pivoted algorithm consist

of the same LLMs in different orders, as a result the 3 TS fuzzy

models are identical. Hence, our proposed indices provide a far

more efficient means of identifying a parsimonious model, and the

important LLMs.

Discussion

Making predictions under uncertainty has become a critical

activity in healthcare and planning of public services [39]. The TS

Table 6. Examples of LSOAs dominated by each fuzzy rule.

Encrypted LSOA
code Income score

Health
score

Access
score

Housing
score

Environment
score

Community
score

Which fuzzy
rule dominates

Actual
EUR

Predicted
EUR

W0094 9.7 1.5 60.8 7.4 5.3 2.9 W1 0.07 0.18

W0736 1.4 4.5 15.5 6.7 0.5 0.8 W2 0.10 0.10

W0206 4.4 4.4 44.3 9.4 54.5 5.8 W3 0.17 0.15

W1627 0.5 2.0 14.0 1.0 49.1 5.2 W4 0.07 0.08

W1739 88.6 62.7 7.8 71.2 14.1 95.0 W5 0.41 0.42

W0689 11.2 6.5 66.2 29.2 8.7 3.4 W6 0.21 0.18

W1704 77.9 41.7 1.0 59.6 36.4 44.1 W7 0.32 0.37

W0941 42.4 48.1 8.7 8.1 3.2 36.6 W8 0.25 0.34

W0886 63.2 71.2 4.2 9.5 86.4 87.5 W9 0.43 0.42

W0475 5.3 0.4 83.5 31.5 50.6 1.0 W10 0.19 0.15

W1264 5.5 13.0 4.4 48.4 9.2 8.7 W11 0.33 0.23

W0798 11.7 32.8 9.8 16.8 2.4 13.0 W12 0.28 0.22

W0415 3.3 6.7 2.9 6.2 10.6 30.8 W13 0.15 0.10

W0862 100.0 96.6 22.7 44.1 2.7 95.8 W14 0.50 0.54

W1711 37.6 5.3 1.6 44.0 20.4 36.2 W15 0.30 0.27

doi:10.1371/journal.pone.0051468.t006

Table 7. Fuzzy sets (high or low deprivation) associated with each local linear model in the TS system model constructed by v-
value index (D = high deprivation score, ‘ – ‘ = low deprivation score).

New rule ID Income score Health score Access score Housing score Environment score Community score

W1 – – D – – –

W2 – – – – – –

W3 – – D – D –

W4 – – – – D –

W5 D D – D – D

W6 – – D D – –

W7 D D – D D D

W8 D D – – – D

W9 D D – – D D

W10 – – D D D –

W11 – – – D – –

W12 – D – – – –

W13 – – – – – D

W14 D D D D – D

W15 D – – D – D

doi:10.1371/journal.pone.0051468.t007
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fuzzy modelling scheme, based on a group of easily understand-

able if-then rules, is an ideal platform for modelling epidemiological

outcomes. However, the method tends to use an oversized rule

base to characterise the relationship between input variables and

the dependent outcome. This can lead to statistical problems and

is also cumbersome for decision making. Here, we have developed

and tested new indices for ranking the rule-base in order to

construct a compact model for predicting outcomes from many

dimensional data, specifically how complex indices of child

deprivation can be used to predict educational achievement.

Our indices led to a model with 15 influential LLM rules,

compared to 63 rules (out of a maximum of 64) obtained by the

standard method. Hence there are very many redundant LLMs in

the standard TS fuzzy rule-base, with a corresponding risk of over

fitting and forecasting bias.

Because they are linear, the interpretation of the LLM in each

TS rule is straightforward, being no different from a simple

regression. The use of ‘if-then’ rules, even with a large rule base, is

much more transparent from a decision maker’s perspective than,

for example, multiple regression, with large numbers of interaction

or non-linear terms, that are commonly used in the field.

However, if there are a large number of (influential) rules, the

overall model can of course become cumbersome, even this will

simply reflect the number of interactions highlighted by the data

and therefore a complex interpretation cannot be avoided.

We suggest that in order for TS model to identify the complex

interactions of variables across local data regions, one needs to

maintain the LLMs of a TS model that are able to represent the

system behaviours in their corresponding subareas. In other words,

these LLMs should fit the global model well in their local data

regions, and result in fuzzy rule consequents that are local

linearizations of a nonlinear system. The key to achieve this goal is

to generate distinguishable membership functions for fuzzy sets in

rule antecedents in which there is no much overlapping of

neighbouring membership functions in the core area of each fuzzy

set [7] [9][38]. As shown in Figure 4, the fuzzy sets generated in

this study can fufill this task.

It is widely recognised that children who have poorer childhood

health and socioeconomic conditions tend to have lower educa-

tional attainments and other long term detrimental outcomes [40–

44]. But there is less evidence on how this relationship changes

across different health and socio-economic backgrounds. This

issue becomes important because understanding the different

effects of health and socio-economic factors on educational

outcomes across different family backgrounds can lay a solid basis

for developing different health, education socio-economic inter-

vention programmes that target different groups of residents. We

now discuss the interpretation of the child deprivation/education

model in some details.

As discussed above, all fuzzy rules play a role in making

prediction on all LSOAs, but with different weights (some

effectively zero). But due to the lack of overlap of neighbouring

membership in the core area of each fuzzy set (see Figure 4), we

can take note of the dominating fuzzy rule in each case. Table 6

shows examples of LSOAs that are well described (‘‘dominated’’)

by a single fuzzy rule (identified in terms of the v-value index).

The actual EUR is calculated as the total number of children

achieving lower than expected levels (KS1 and KS2) divided by

the total number of assessments made over the three year period

2005 to 2007 in this LSOA while the predicted EUR is obtained

by using the TS model with the 15 LLMs to predict the

educational performance for this LSOA. Table 7 illustrates the

corresponding fuzzy sets associated with each LLM in the fuzzy

region of data space (re-coded W1–15). Figure 8 illustrates the

contribution of each domain (in terms of the size of the

coefficients) for these 15 LLMs, and Table 8 gives a further

summary, in which a positive coefficient represents a positive

association between the level of deprivation and the education

Table 8. Coefficients of each local linear model in the TS system model selected by v-value index*.

New rule ID Constant term Income score Health score Access score Housing score Environment score Community score

W1 2.64 0.51 0.21 0.13 0.22 20.08 0.33

W2 8.27 0.87 0.00 0.00 0.08 20.02 0.40

W3 4.00 0.96 0.39 0.06 0.04 0.04 1.22

W4 18.67 0.62 0.33 20.20 0.07 20.16 20.10

W5 20.75 0.16 0.02 0.50 0.03 20.25 0.04

W6 17.17 20.61 0.89 20.12 0.23 20.01 20.64

W7 25.46 0.07 20.01 0.04 0.15 20.09 20.01

W8 36.03 0.36 20.10 20.32 0.51 20.76 20.29

W9 22.43 0.38 20.17 0.15 20.23 0.28 20.16

W10 23.09 1.24 20.13 0.12 20.39 20.25 0.97

W11 12.28 21.27 20.68 0.44 0.31 20.23 1.28

W12 6.71 0.70 0.32 20.83 0.42 20.28 0.56

W13 0.65 0.80 0.77 20.76 0.57 21.10 0.27

W14 4.53 0.20 20.16 0.31 20.33 20.42 0.55

W15 15.94 20.06 0.78 0.09 0.02 0.25 20.03

Mean 14.58 0.33 0.16 20.03 0.11 20.20 0.29

95%CI (8.98, 20.18) (20.03, 0.68) (20.07, 0.4) (20.23, 0.18) (20.04, 0.27) (20.40, 20.01) (20.01, 0.60)

*Highest absolute coefficient values are highlighted of each rule. Note that a positive coefficient represents a positive association between the level of deprivation and
the education under-achievement rate (i.e. a positive association between measures of affluence and educational success).
doi:10.1371/journal.pone.0051468.t008
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under-achievement rate (which is of course equivalent to a positive

association between measures of affluence and educational success).

These 15 rules can be used to cluster different geographical areas

with similar characteristics. For example, LSOA W0736 is

characterised by low deprivation on all domains, and is dominated

by rule W2, which has the form:

if deprivation scores on the six input domains are all low,

then the predicted education under{achievement

rate is :

yw2
~8:2653z0:8728:income score{0:0004: health score

{0:0026:access scorez0:0823:housing

{0:0172:environment score

z0:4043:community score

Thus, in an affluent area for which deprivation scores are all

low, there is an overall low under-achievement rate, but with the

following feature: The dominant factor (largest absolute coefficient

value) influencing educational achievement is income, with a

positive association with income deprivation index, and education

under achievement.

Such an income effect is expected [40] [44]. But the rule base

(Table 8) shows that it is not consistent across areas, often having a

negligible effect. In one case there is an apparently strong negative

effect. This is not easily explained, but may serve to draw attention

to specific areas where additional domain specific knowledge needs

to be applied. The rule W11 is the dominant rule in areas

characterised by highly deprived housing only, where it is also

suggested by the model that improving community safety can make

the most significant positive contribution to improvement of

children educational outcomes. There are several other area

categories, such as rules W6, W15, where income has a negligible

effect, interestingly each of which is also characterised by a high

housing deprivation score.

Currently very few studies have shown evidence of the effect of

community safety on child educational outcomes. Here, we find

several examples of strong positive associations with educational

outcomes. Again however, the effect of community safety is not

independent of the other characteristics of the area. For example,

rule W6 shows that for children experiencing highly deprived

conditions in access to services and housing but good conditions on

family income, health, physical environment and community safety, there is

an apparent negative association between community safety and

educational achievement. This may reflect a protective effect of

supportive parenting, whereby concerns over community safety may

be associated with general support at home.

The general observed effect of health is also expected [42] [45].

What is more interesting, again, is its influence in combination

with other socio-economic factors for children from different

backgrounds. For example, we find an interaction with the effects

of access and housing deprivation. The strongest positive association

between health and achievement is found in regions dominated by

rule W6, characterised by high deprivation in access and housing

only. In contrast, quite similar regions, dominated by rule W11,

and thereby differing only in having low access deprivation, we find

the least positive association between health and educational

outcome.

Our study indicates that the housing deprivation index emerges

as one of the strongest factors for positively influencing child

educational outcomes in terms of average strength. But again,

there is a very complex relationship when other details are taken

into account. Rules W9, W10, W14 suggest that ‘‘overcrowding’’ (a

key feature of the housing deprivation score) may sometimes have

a positive association with education, in the presence of several

high deprivation scores. It is possible that children exposed to

poorer health conditions (along with income, physical environment and

community safety), but good access to services and housing, are more

successful due to support provided by close family members.

Access and environment did not achieve strong positive associations

under most circumstances. However, once the whole multiple

dimensional data space is partitioned into fuzzy regions, some

hidden relationships are revealed, such as a positive relationship

between access deprivation and education achievement in some

area types (rules W12, W13). Similarly rule W9 yields the maximal

positive association of physical environment with educational outcomes,

while the rule W8 presents the greatest negative association between

the two variables, and yet such rules differ only in their typical

level of environmental deprivation. The strength of the TS rule base

is to highlight such apparent anomalies, while area-specific

information would most likely be required by policy makers to

resolve them.

Our study has demonstrated strong and complex relationships

between measures of childhood deprivation and educational

achievement, using a novel TS rule selection method. Consider-

ation should be given to developing different policies on health and

socio-economic intervention strategies for different categories of

children to attempt to improve child education. For example, in

the LSOAs dominated by the rules W1 , W3 public policy may

need to focus on income (pockets of poverty in that area) and

community development, while the areas fitting the rule W5 perhaps

should focus on access and physical environment. Our study provides

an indication of factors which could help in guiding development

of such policies and intervention strategies.

Conclusions
Our study has demonstrated that the TS fuzzy model can

capture complicated non-linear effects of interacting variables,

whilst remaining (from a computational and, crucially, interpre-

tation perspective) a relatively simple linear-in-variables approach.

This study has shown that novel combinations of the six of the

domains in the WIMD (income, health, geographical access to services,

housing, physical environment, community safety) produce excellent

generalization performance in predicting child educational attain-

ment at the small area level. These six forms of deprivation on

individual domains interact synergistically to work as an effective

predictor of the area based relationship between child deprivation

and educational achievement. The relationship can be complex,

and illustrates the advantage of the TS model approach. With the

aid of the LLMs of TS system, we gained considerable insights into

the patterns how the multiple health and socio-economic factors

influence educational achievements for children from different

backgrounds. Overall, the factor income exhibit strong positive

associations with child educational outcomes for most of the

children.

We suggest that there is very wide applicability of such a

method, including the parsimonious rule selection scheme

proposed in this paper, whenever the challenge is to combine

the information from many domains into decision making tools

and find relationships between such domains in complex

observational data.
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