
The Influence of Dopaminergic Striatal Innervation on
Upper Limb Locomotor Synergies
Ioannis U. Isaias1,2,3*, Jens Volkmann3, Alberto Marzegan1, Giorgio Marotta4, Paolo Cavallari1,

Gianni Pezzoli2
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Abstract

To determine the role of striatal dopaminergic innervation on upper limb synergies during walking, we measured arm
kinematics in 13 subjects with Parkinson disease. Patients were recruited according to several inclusion criteria to represent
the best possible in vivo model of dopaminergic denervation. Of relevance, we included only subjects with normal spatio-
temporal parameters of the stride and gait speed to avoid an impairment of upper limbs locomotor synergies as a
consequence of gait impairment per se. Dopaminergic innervation of the striatum was measured by FP-CIT and SPECT. All
patients showed a reduction of gait-associated arms movement. No linear correlation was found between arm ROM
reduction and contralateral dopaminergic putaminal innervation loss. Still, a partition analysis revealed a 80% chance of
reduced arm ROM when putaminal dopamine content loss was .47%. A significant correlation was described between the
asymmetry indices of the swinging of the two arms and dopaminergic striatal innervation. When arm ROM was reduced, we
found a positive correlation between upper-lower limb phase shift modulation (at different gait velocities) and striatal
dopaminergic innervation. These findings are preliminary evidence that dopaminergic striatal tone plays a modulatory role
in upper-limb locomotor synergies and upper-lower limb coupling while walking at different velocities.
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Introduction

Upper limb locomotor synergies are a basic component of

human gait. They represent an active phenomenon driven by

locomotor centers within spinal cord and the brainstem and

modulated by cortical and subcortical inputs [1,2]. Information on

neural control of locomotor automatism and gait-related arm

motion in humans is still scanty. Animal studies, as well as

preliminary functional imaging studies in humans, indicate that

locomotor movements are coordinated by spinal networks referred

to as a central pattern generators (CPGs), which are governed by

the brainstem locomotor command region that, in turn, is under

the control of the basal ganglia and premotor cortex [3–9].

Parkinson disease (PD) is a progressive neurological condition

characterized by bradykinesia, rigidity, postural instability and

possibly tremor. Patients with PD typically show little or no arm

oscillation while walking, and this is often the first clinical motor

sign to appear [10,11]. In PD patients, the arm swing is not

correlated with clinically tested shoulder rigidity [10] and often

disproportional to the degree of upper limb akinesia during

voluntary alternating movements, thus pointing to a task-specific

motor disturbance associated with walking. At an anatomopatho-

logical level, PD is mainly characterized by the loss of

dopaminergic neurons in the substantia nigra pars compacta,

which leads to striatal dopamine depletion [12]. It has been

estimated that motor PD symptoms appear when the loss of

dopamine neurons reaches the 50% to 60% threshold, [13] which

corresponds to a 70% to 80% decrease in putaminal dopamine

content [14].

The aim of this study is to investigate a putative role of

dopamine and the striatum in locomotor upper limb automatism,

taking into account their relationship with walking speed. Patients

were carefully selected to represent a clinically homogenous in vivo

model of dopaminergic striatal innervation loss (see, Subjects) which

was measured by [123I] N-v-fluoropropyl-2b-carbomethoxy-3b-

(4-iodophenyl) tropane (FP-CIT) and single-photon computed

tomography (SPECT).

Materials and Methods

Ethics Statement
The local institutional review board (Section of Human

Physiology, DePT) approved the study and all patients provided

written informed consent.

Subjects
We tested 13 subjects with idiopathic PD (six males; mean age:

64 years; range: 52–73 years; disease duration mean: 5 years;

range: 3–6) and a control group (HC) of 10 neurologically healthy

adults (seven males; mean age: 64 years; age range: 55–70 years).
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The diagnosis of PD was made according to the UK Parkinson

Disease Brain Bank criteria and patients were clinically evaluated

by means of the Unified Parkinson Disease Rating Scale motor

part (UPDRS-III; range: 0–108). Median UPDRS-III score was 21

(range: 11–32). A sub-score for unilateral arm rigidity and

bradykinesia (UPDRSrb) was calculated as the sum of UPDRS

items 22 (rigidity), 23 (finger taps), 24 (hand movements), 25 (rapid

alternating movements of hands). Median UPDRSrb score of the

worst arm was 8 (range: 4–11) and of the less affected arm was 4

(range: 1–5). We selected only mildly affected patients for this

study (Hoehn & Yahr II) (see later).

At the time of the study, and during a follow-up time of at least

six months after enrollment, no patient showed any signs

indicative for atypical parkinsonism (e.g. gaze abnormalities,

autonomic dysfunction, psychiatric disturbances, etc.). All patients

reported a marked improvement (.30% UPDRS-III score

reduction) after the intake of L-Dopa or dopamine agonists. L-

Dopa daily dose and L-Dopa Equivalent Daily Doses (LEDDs)

were also recorded, with the latter calculated according to the

following conversion ratio: 100 mg levodopa = 1.5 mg pramipex-

ole = 6 mg ropinirole. Median value of LEDDs per day was

500 mg (range 200–625 mg).

All subjects were screened for cognitive impairment by the

Mini-Mental State examination, Clock Drawing Test and Frontal

Assessment Battery and excluded if not meeting normal, age-

related performance.

Other exclusion criteria for study participation were a history of

neurological disorders (other than PD for patients), head trauma

with loss of consciousness, orthopedic diseases, systemic illness or

previous orthopedic, brain or spinal cord surgery. A MRI was

performed within six months from enrollment and only subjects

with normal results (i.e., no sign of white matter lesion or atrophy)

participated in the study.

Gait disturbance is a key component of motor disability of PD

and patients may variably present with reduced gait speed,

shortened stride length, prolonged stance and double support

phases [15]. At an early disease stage, PD patients may still show

normal spatio-temporal gait parameters during steady linear

walking [16]. To avoid an impairment of upper limbs locomotor

synergies as a consequence of gait impairment per se, we enrolled

only PD patients with normal spatio-temporal parameters of the

stride (Table 1).

Experimental Protocol and Data Processing
After a 3-day washout of antiparkinsonian medication, subjects

performed three sets of six walking trials, at a self-chosen

‘‘preferred’’ speed, ‘‘slow’’ and ‘‘fast’’ speed, in random order

along a 10 m path, following verbal instruction in the absence of

external feedback. Set-up and data processing has been extensively

described elsewhere [16,17]. In brief, kinematics of body segments

were measured during walking, using an optoelectronic system

(SMART, BTS, Milan, Italy, sampling frequency 60 frames/s),

which computed the 3D coordinates of spherical markers (15 mm

diameter) attached on bony fixed landmarks. The marker

coordinates were low-pass filtered (cut-off frequency 3–7 Hz,

self-estimated by a linear-phase autoregressive model-based

derivative assessment algorithm). Specific sets of parameters for

the characterization of each task were automatically extracted by

ad hoc algorithms and then visually inspected to check for possible

errors. In particular, the time course of the angular displacement

of the humerus segment of the arm with respect to the vertical

(positive forward) [17] were computed in planes perpendicular to

the inter-acromion line. These measures allowed to analyze the

pendular behavior of the arm segment independently from

shoulder and pelvic girdle horizontal rotation associated with

trunk torsion. Angular profiles were normalized in time as a

percentage of the stride duration, and for each cycle we extracted

the range of motion (ROM) of absolute arm angle. Finally, arm

swing asymmetry (ASA) was calculated according to Zifchock and

coll. [18] as follows: ASA = (45u-arctan(ArmSwingLEFT/ArmS-

wingRIGHT))*100/90u.
For arm ROM larger than 3u, the phase-shift (upper-lower limb)

was further computed as the temporal delay between the positive

peak (antero-posterior swing) of the wrist and the negative peak of

malleolus, between 20% and 80% of the stride cycle. When the

upper limb produced two oscillations per stride, which may occur

at the lower walking speeds, phase-shifts were computed using the

first positive peak of arm oscillation.

For each subject all variables (e.g. gait speed, arm ROM, phase-

shift, etc.) were averaged over trials.

To characterize the speed-related effects, the slopes of the

regression lines of arm ROM, phase-shift as well as of spatio-

temporal parameters of the stride were computed for each subject

as a function of the gait speed.

SPECT Data Acquisition, Processing and Analysis
Dopamine-transporter (DAT) values were measured by means

of Single Photon Computed Tomography (SPECT) with [123I] N-

v-fluoropropyl-2b-carbomethoxy-3b-(4-iodophenyl) tropane (FP-

CIT).

SPECT data acquisition and reconstruction has been described

in details elsewhere [19]. In brief, intravenous administration of

110–140 MBq of FP-CIT (DaTSCAN, GE-Healthcare, UK) was

performed 30–40 minutes after thyroid blockade (10–15 mg of

Lugol oral solution) in PD patients subsequently overnight

withdrawal of dopaminergic therapy. Data were compared with

a group of 15 healthy subjects (four males; mean age, 62; age

range: 44–70 years).

Brain SPECT was performed by means of a dedicated triple

detector gamma-camera (Prism 3000, Philips, Eindhoven, the

Netherlands) equipped with low-energy ultra-high resolution fan

beam collimators (4 subsets of acquisitions, matrix size 1286128,

radius of rotation 12.9–13.9 cm, continuous rotation, angular

sampling: 3 degree, duration: 28 minutes).

Brain sections were reconstructed with an iterative algorithm

(OSEM, 4 iterations and 15 subsets) and then processed by 3D

filtering (Butterworth, order 5, cut-off 0.31 pixel-1) and attenua-

tion correction (Chang method, factor 0.12).

FP-CIT uptake values for the caudate nucleus and putamen of

both PD patients and healthy subjects were calculated according

to Basal Ganglia Matching Tool [20].

Striatal uptake values were used to calculate an asymmetry

index (AI), as follows: AI = (VOILEFT – VOIRIGHT)/(VOILEFT+-
VOIRIGHT)*200.

General Statistical Analysis
Distribution was non-normal for most of the variables, as

assessed by Shapiro-Wilk’s test. Accordingly, descriptive statistics

and comparisons were always based on median/range values and

non-parametric tests, respectively.

ChiSquare was used to test demographic homogeneity among

groups regarding gender.

To relate comparisons to DAT binding values, upper and lower

limbs were also re-classified into ipsilateral and contralateral

according to the putamen with greater dopaminergic innervation

loss. For healthy controls, left hemibody refers conventionally to

ipsilateral.

Dopamine and Arm Swing

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e51464



Differences in spatio-temporal gait parameters, arm ROM,

phase shifts indexes and slope parameters between control and

patient groups were analyzed by means of Wilcoxon two-sample

test.

To quantify the (in)consistency of these measures and the stride-

to-stride variability, we calculated the coefficient of variation (CV)

of these measures when walking at preferred gait speed.

When comparing two hemibodies of the same subject (both for

kinematic as well as DAT binding values) we applied a Wilcoxon

matched pair test.

Hoeffding’s D measure was used to identify correlations among

DAT binding values and biomechanic data (including asymmetry

indexes) that differed among patients and healthy controls. If no

linear correlation was found, we applied partition analyses in

search for a DAT binding cut-off value related to abnormal

kinematic parameters.

Statistical analyses were performed with the JMP statistical

package, version 8.0.2 (SAS Institute, Inc., Cary, NC, USA).

Results

No difference was found among PD patients and HC for gender

distribution and age.

Imaging Findings
In comparison to HC, patients showed reduced DAT binding

values in the putamen (PD, right median: 2.19; right range: 1.2–

3.51; left median: 2.63, left range: 1.41–3.4; HC, right median:

4.94, right range: 3.07–5.71; left median: 4.94, left range: 2.96–

5.71; p,0.01 all) and caudate nucleus (PD, right median: 4.06;

right range: 2.74–5.49; left median: 4.17, left range: 2.3–4.94; HC,

right median 5.16, right range: 3.18–6.48; left median: 5.05, left

range: 3.07–6.7; p,0.05 all) thus further supporting the clinical

diagnosis of PD. In HC, no difference was described when

comparing DAT binding values of right and left hemisphere. In

PD patients, DAT binding values of the most affected putamen

(median: 1.97; range: 1.2–3.07) were on average 30% lower than

in the opposite hemisphere (median: 2.85; range: 1.86–3.51;

p,0.01). No statistical difference was instead found when

comparing DAT binding values of the caudate nucleus of PD

patients (most affected, median: 3.73; range: 2.3–4.83; less

affected, median: 4.2; range: 2.74–5.5). Average AI value for the

putamen of PD patients was 30 (range 6–59); all HC had a

putamen AI score below 5 (putamen AI score average 2.1; range

0–4).

UPDRSrb score was negatively correlated with striatal DAT

binding values (p = 0.01, RSquare = 0.20), but this relationship

explained only 20% of the variance. This finding is in agreement

with previous results of SPECT and FP-CIT in subjects with PD

and confirms the validity of the methods applied in this study [21].

Walking at Preferred Speed
As expected, no difference was found for lower limbs spatio-

temporal gait parameters (i.e. stride length, stride time and stance)

between patients and controls at preferred gait speed (see, Subject).

In HC, right and left hemibodies did not show any difference for

any gait-related parameters (Table 1).

Consistency of the spatio-temporal measures did not differ

significantly between the patient and control group.

When arms were re-classified into ipsilateral and contralateral

to the more dopamine depleted hemisphere (see, General

statistical analysis), the contralateral arm ROM of PD patients

Table 1. Spatio-temporal parameters of the stride, arm ROM and phase shift of subjects with Parkinson disease and healthy
subjects.

Parkinson patients Healthy subjects

Gait speed (Km/h) 3.81 (1.86, 7.81) (preferred gait speed range: 2.87, 4.35) 3.82 (1.24, 9.94) (preferred gait speed range: 3.35, 4.4)

Contralateral Ipsilateral Contralateral (Right) Ipsilateral (Left)

Arm ROM (u) 7.48 (1.47, 32.06)** 18.19 (2.11, 29.8)** 25.27 (2.29, 31.8) 25.71 (5.21, 38,15)

Phase shift (%stride) 215.35 (223.1, 25.6)* 211.8 (216.9, 26.1) 210.17 (219.1, 25.4) 29.97 (218.9, 23.5)

Stride length (mm/BH) 0.68 (0.55, 0.28) 0.68 (0.49, 0.82) 0.7 (0.57, 0.82) 0.69 (0.54, 0.81)

Stride time (sec) 0.89 (0.73, 1.47) 0.92 (0.75, 1.42) 0.86 (0.8, 1,28) 0.87 (0.64, 1.28)

Stance (%stride) 65.2 (58.78, 71.25) 66.56 (62.77, 72.84) 64.42 (61.76, 72.6) 64.28 (61.54, 81.82)

Slope arm ROM
[u/(km h21)]

2.08 (0.12, 6.68) 3.47 (0.43, 7.82) 3.96 (2.1126.34) 3.5 (1.2426.58)

Slope phase shift
[%stride/(km h21)]

4.98 (2.9, 11.6)* 3.85 (2.52, 9.6)* 3.04 (1.5524.68) 2.88 (1.824.16)

Slope stride length
[mm/BH/(km h21)]

0.07 (0.05, 0.09) 0.08 (0.05, 0.09) 0.06 (0.0520.08) 0.07 (0.0520.08)

Slope stride time
[sec/(km h21)]

20.18 (20.3, 20.12) 20.17(20.3, 20.11) 20.16 (20.22, 20.09) 20.16 (20.23, 20.09)

Slope stance
[%stride/(km h21)]

20.18 (20.29, 20.12) 22.0 (23.7, 21.4) 20.15 (20.22, 20.1) 21.86 (22.55, 21.23)

Median values, non-outlier min-max, and levels of statistical difference (Mann-Whitney U-test or Matched pairs) are reported. Data refer at walking at different velocities
unless otherwise specified.
*p,0.05 (PD vs. HC); ** p,0.01 (PD vs. HC). BH = body height (mm). ROM = range of motion; Phase shift = temporal delay (%stride) between the positive peak (antero-
posterior swing) of the wrist and the negative peak of malleolus; Stride = the period from initial contact of one foot and following initial contact of the same foot, is one
gait cycle. Stance = gait phase when a foot is in contact with the ground, it begins with initial heel contact and ends with toe off.
For Parkinson patients, ipsilateral and contralateral refers to the more dopamine depleted hemisphere. For healthy controls, left hemibody refers conventionally to
ipsilateral.
doi:10.1371/journal.pone.0051464.t001
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was reduced when compared to the ipsilateral one (trend towards

significance, p = 0.07; Table 1). Contralateral arms also showed a

significant anticipation of maximum arm flexion (forward move-

ment) in relation to ipsilateral thigh extension (backward

movement), compared to controls (Table 1).

Of relevance, only four subjects with PD showed reduced arm

ROM bilaterally. The remaining nine patients had one arm with

ROM in the range of normality (ROM.18u [mean ROMHC-1SD

ROMHC]). In the latter group of patients, all but two arms with

reduced ROM were contralateral to the putamen with lower DAT

binding values. Still, the putamen corresponding to the arm with

ROM in the range of normality had over 45% DAT binding loss

(with respect to the median value of our normal subjects).

No linear correlation was found between arm ROM reduction

and dopaminergic innervation loss. A partition analysis revealed a

80% chance of reduced arm ROM when putaminal DAT binding

value was below 2.63 (.47% reduction with respect to median

value of normal subjects).

Average ASA value was 29 (range: 18–35) for PD and 6 for HC

(range: 4–12). ASA and AI indices of both the caudate nucleus

(p = 0.005, RSquare = 0.52) and the putamen (Figure 1; p = 0.001;

RSquare = 0.62) were strongly correlated. This correlation proved

to be statistically significant also when weighted for UPDRSrb and

UPDRS-III scores. Last, no correlation was found between

UPDRSrb and UPDRS-III scores and arm ROM.

Walking at Different Speeds
When walking at different velocities, the range of speeds was

comparable across subjects and PD patients and large enough to

reliably compute a slope line.

No difference was found for lower limbs spatio-temporal gait

parameters (i.e. stride length, stride time and stance) between

patients and controls also when walking at different gait velocities.

Phase shift modulation (slope) was significantly higher in PD

patients than controls (p,0.05, Table 1). All patients were able to

normally modulate all other spatio-temporal gait parameters and

arm ROM (both ipsilateral and contralateral) when walking at

different velocities (Table 1). Interestingly, patients with reduced

arm ROM (,18u) when walking at preferred gait speed showed a

significantly higher capability of modulating upper-lower limb

phase shift which positively correlated with the corresponding

dopaminergic content of the putamen (RSquare = 0.37, p = 0.01)

and caudate nucleus (RSquare = 0.38, p = 0.01). This correlation

was not present if arm ROM was in the range of normality when

walking at preferred gait speed (Figure 2A and B).

Discussion

Some relevant conclusion can be drawn from the present study:

(1.) We confirmed that early-stage PD patients may exhibit normal

spatio-temporal gait parameters [16]. The presence of normal

lower limb locomotor automatisms in subjects with reduced arm

ROM supports the notion that both types of movement may be

differentially organized [17].

(2.) We did not find a linear correlation between arm ROM

reduction and corresponding putaminal dopaminergic depletion.

Rather, we were able to define a cut-off value for dopaminergic

putaminal innervation loss before arm ROM would decrease. (3.)

Inter-limb synergies might be influenced by the imbalance of

dopaminergic striatal tone between the two hemispheres as

shown by the strong correlation between ASA and AI indexes.

These findings question a prominent unihemispheric control of

arm swing during walking. Still, the ASA index should be

carefully interpreted as possibly related to the cut-off itself.

Indeed, in all but two patients with arm ROM unilaterally

reduced, the arm with reduced ROM (according to our

reference value of 18u) was contralateral to the putamen with

Figure 1. ASA significantly correlated to the AI of DAT binding values of the putamen (see, Methods).
doi:10.1371/journal.pone.0051464.g001
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greater dopaminergic innervation loss. (4.) When walking at

different gait velocities, arms with reduced ROM showed an

upper-lower limb coupling (phase shift) influenced by putaminal

dopaminergic innervation. (5.) Locomotor synergies were inde-

pendent of the lateralization of akinetic-rigid symptoms. Such a

discrepancy may provide preliminary evidence for a different

central organization of these entities in PD patients. Indeed,

bradykinesia and rigidity are mainly related to the thalamo-

cortical-basal ganglia loop with strict lateralized organization.

[21,22] Conversely, limbs coordination, especially during auto-

matically performed motor task, may be related to inter-

hemispheric projections of basal ganglia and possibly involve

also mesencephalic centers such as the pedunculopontine

nucleus (PPN) and the reticular system [23].

Limitations in our study must be considered. We arbitrarily

excluded patients with abnormal spatio-temporal parameters at

lower limbs to possibly avoid upper limbs related changes. By

doing this, we limited the patient sample and neglected well

known PD-related gait disturbances, including abnormal timing

of gait and stride-to-stride variability [24]. Another limit of this

study is that PD patients were not drug-naı̈ve. Still, the 3-day

wash-out as well as the several inclusion criteria support the

assumption that the enrolled PD patients well represent an in vivo

model of dopaminergic deficit and allowed us to selectively

investigate the role of intrinsic dopamine and the striatum in

upper limbs locomotor synergies. Last, we cannot exclude in this

study a direct role of a dopaminergic spinal innervation

originating from the dorsal posterior hypothalamus (A11 region)

on locomotor-related movements. Beside local hypothalamic

connections, projections to the neocortex and to the serotonergic

dorsal raphe, A11 neurons descend as the sole source of spinal

dopamine mainly through the dorsolateral funiculus [25] and

innervate most heavily the superficial sensory-related dorsal horn

and the intermediolateral nucleus [26]. A loss of A11 neurons

might eventually alter a possible interplay between dopamine and

serotonin at a spinal level and result in loss of modulation during

locomotion-like activity [27]. The role of the A11 neurons in the

pathophysiology of PD and in locomotion in general, has not

been explicitly tested.

From a anatomo-physiological perspective, the gait-related

pendular motion of upper extremities is a subconsciously and

automatically performed motor task. Inter-limb coordination

remains stable despite changes of limb segment mass, suggesting

independence from peripheral mechanism [28] and it is

maintained across kinematically and kinetically different tasks,

thus possibly related to a common neural control [29].

Descending pathways responsible for the control of locomotor

limb movements, can be ascribed to direct cortical-motoneuronal

input and indirect pathways of the basal ganglia [30,31,32].

Preliminary evidence suggest that dopaminergic neurons play an

important role in the execution of self-determined movements

[33], in the automatic nature of the rhythmic bilateral movements

of the lower-limbs [34] and the persistence of gait execution [9].

This study provides additional information to disentangle a

putative role of dopamine and the striatum in locomotor synergies.

We suggest an interhemispheric rather than unihemispheric

influence on inter-limb coupling. This may be particularly evident

when dopaminergic striatal innervation is greatly reduced (.47%

dopaminergic putaminal innervation loss). Furthermore, when

arm ROM is reduced, the modulation of upper-lower limb

coupling (phase shift) is also related to dopaminergic striatal

content.
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