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Abstract

Background: SRT2104 has been developed as a selective small molecule activator of SIRT1, a NAD+-dependent deacetylase
involved in the regulation of energy homeostasis and the modulation of various metabolic pathways, including glucose
metabolism, oxidative stress and lipid metabolism. SIRT1 has been suggested as putative therapeutic target in multiple age-
related diseases including type 2 diabetes and dyslipidemias. We report the first clinical trial of SRT2104 in elderly
volunteers.

Methods: Oral doses of 0.5 or 2.0 g SRT2104 or matching placebo were administered once daily for 28 days.
Pharmacokinetic samples were collected through 24 hours post-dose on days 1 and 28. Multiple pharmacodynamic
endpoints were explored with oral glucose tolerance tests (OGTT), serum lipid profiles, magnetic resonance imaging (MRI)
for assessment of whole body visceral and subcutaneous fat, maximal aerobic capacity test and muscle 31P magnetic
resonance spectroscopy (MRS) for estimation of mitochondrial oxidative capacity.

Results: SRT2104 was generally safe and well tolerated. Pharmacokinetic exposure increased less than dose-proportionally.
Mean Tmax was 2–4 hours with elimination half-life of 15–20 hours. Serum cholesterol, LDL levels and triglycerides
decreased with treatment. No significant changes in OGTT responses were observed. 31P MRS showed trends for more
rapid calculated adenosine diphosphate (ADP) and phosphocreatine (PCr) recoveries after exercise, consistent with
increased mitochondrial oxidative phosphorylation.

Conclusions: SRT2104 can be safely administered in elderly individuals and has biological effects in humans that are
consistent with SIRT1 activation. The results of this study support further development of SRT2104 and may be useful in
dose selection for future clinical trials in patients.
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Introduction

SIRT1 is one of a family of seven nicotinamide adenine

dinucleotide (NAD+)-dependent, protein deacetylase enzymes

(called sirtuins) that contribute to the regulation of body energy

homeostasis as well as many other responses to cellular stress.

SIRT1 is broadly expressed in virtually every tissue including

adipose tissue, liver, pancreas and skeletal muscle where it acts as

the mediator of multiple cellular signaling pathways through the

deacetylation of target proteins [1,2,3,4]. Increased SIRT1

expression has been suggested as a target for therapeutic activation

in multiple age- related diseases via the modulation of various

metabolic pathways, including glucose metabolism [5], fatty acid

oxidation [6], regulation of oxidative stress [7], lipid metabolism

and fat mobilization in white adipocytes [8,9], as well as improved
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insulin secretion [1], pancreatic b-cell preservation [9,10] and

increased insulin sensitivity [3,9,11].

The rationale for the pharmacological activation of SIRT1 by

small molecules is based on beneficial pharmacology observed in

animal studies where SIRT1 is genetically overexpressed or up-

regulated due to calorie restriction [1,2]. The polyphenolic

compound resveratrol was the first compound shown to increase

or activate SIRT1. However, due to its poor bioavailability, low

potency and lack of specificity for SIRT1, resveratrol is not

practical as a therapeutic [3,4,12,13]. SRT2104 is the first

generation of non-resveratrol compounds with improved drug-

like properties that are more specific and potent synthetic direct

activators of SIRT1 compared to resveratrol [3,4,5,14,15,16].

In-vitro and animal studies have been performed to evaluate the

pharmacologic and toxicologic properties of SRT2104 [17,18].

The pre-clinical safety of SRT2104 has been investigated in the

bacterial reverse mutation assay (AMES test), mouse lymphoma

and mouse micronucleus genetic toxicology models, and in safety

pharmacology studies in rats and dogs. SRT2104 was not

genotoxic and was not associated with adverse central nervous

system, cardiovascular system, or pulmonary effects in these

preclinical safety and pharmacology studies. In vitro studies in

human liver microsomes and cultured hepatocytes suggest that

SRT2104 does not inhibit CYP1A, CYP2C9, CYP2C19,

CYP2D6, and CYP3A4, or significantly induce cytochrome

P450 isoforms CYP1A and CYP3A4.

SRT2104 was well tolerated and safe in young healthy

volunteers for up to 7 days dosing of 0.03–3.0 g/day [19]. The

elimination half-life (t1/2) was similar for doses up to 3.0 g/day,

although increases in exposure were less than dose proportional at

doses greater than 1.0 g/day.

No clinical data had been collected to date in elderly individuals

who would be expected to be among the target populations for the

treatment of many diseases of aging. Therefore, the primary

objective of this study was to investigate the safety, tolerability and

pharmacokinetic properties of SRT2104 when administered for 28

consecutive days in elderly male and female volunteers. In

addition, we evaluated multiple exploratory pharmacodynamic

endpoints to test whether the compound showed metabolic effects

in humans that are consistent with those expected for SIRT1

activation.

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1.

Study Participants, Design and Treatment
This was a phase I, single-center, double-blind, randomized,

placebo-controlled, parallel-arm study to assess the safety,

tolerability, pharmacokinetic and initial pharmacodynamic prop-

erties of SRT2104 (Sirtris Pharmaceuticals, Cambridge, MA,

USA) administered for the first time to male and female elderly

volunteers 60 to 80 years of age. Volunteers were enrolled between

01 Oct 2009 and 5 Feb 2010. Doses of 0.5 and 2.0 g or matching

placebo were administered once daily for 28 consecutive days. The

selection of the doses investigated in this study was based upon

safety and pharmacokinetic data obtained from a previous clinical

study involving SRT2104 [19]. Suitability of participants was

defined on the basis of a medical history, physical examination,

vital signs, electrocardiogram and laboratory measurements.

Subjects were required to have normal fasting glucose levels (4.4

to 6.0 mmol/L) at screening and a body mass index of at least

18 kg/m2 and no greater than 30 kg/m2. Subjects were ineligible

if they had a history of any chronic disease or any clinically

significant illness within 3 months of study entry, including any

history of renal or liver impairment and/or any endocrine,

inflammatory, cardiovascular, gastro-intestinal, neurological, psy-

chiatric, neoplastic or metabolic disease which in the opinion of

the investigators could risk subject safety or interpretation of the

results. Subjects were deemed ineligible if they participated in any

clinical trial with an investigative medicinal product within the

past three months prior to the first dose in the current study, had

been exposed to more than three new chemical entities within 12

months of enrollment, or used other concomitant medications and

herbal products in the previous 3 months that in the opinion of the

investigator could interfere with the study procedures or compro-

mise subject safety. Additional exclusions included: women of

childbearing potential and non-sterile men, unless they agreed to

use acceptable method of contraception; history of alcoholism or

drug abuse (including a positive pre-study drug/alcohol test at

screening); use of tobacco or nicotine products; history of

complications when donating blood or known relative inaccessi-

bility of veins for venipuncture; donation of blood within three

months of enrolment; history of significant drug or other allergies.

Participants were asked to maintain their usual level of physical

activity for the duration of the study.

Twenty-four participants were planned to 3 parallel treatment

arms (SRT2104 0.5 g/day, SRT2104 2.0 g/day, or placebo) and

were randomized in a 1:1:1 ratio to provide evaluable data from 8

subjects in each of the 3 dose panels [see Methods S1 for subject

random allocation sequence and un-blinding procedures]. There

was no formal calculation of power for this study. A sample size of

8 subjects per group was chosen based on feasibility to allow

preliminary characterisation of the safety, tolerability and phar-

macokinetics of SRT2104 in the elderly population. In addition, a

series of pharmacodynamic measures (see below) were included as

secondary endpoints to preliminary assess the potential biological

activity of the compound in humans.

Subjects participated in the study for approximately 79 days and

underwent 2 screening visits, 2 inpatient visits, 7 outpatient visits

and 8 telephone call visits (Figure S1). Subjects were screened

during the 21 days prior to receiving their first dose of study drug

(or placebo). They were admitted overnight as inpatients on the

evenings prior to dosing on Days 1 and 28 for intense

pharmacokinetic assessment. Subjects also returned to the clinical

unit as outpatients on Days 7, 14 and 21 for weekly safety visits.

Additional telephone safety assessments were made approximately

on Days 3, 5, 10, 17, 20 and 24. The end of dosing follow-up visit

was performed approximately 35 days following the first dose of

SRT2104 or placebo. An additional follow up safety telephone call

(defined as the last subject’s last assessment) was made to each

subject approximately 30 days following his or her final dose of

SRT2104 and/or placebo.

During the treatment phase of the study (days 1 to 28 inclusive),

test material (SRT2104 or placebo) was supplied as 250 mg

capsules and was administered at approximately the same time

every morning, approximately 15 minutes following consumption

of a standardized meal (Ensure PlusH, a high energy, high protein

liquid meal replacement product providing approximately

650 kcal with approximately 30% of calories derived from fat).

Subjects were not permitted to consume additional calories for at

least 1–2 hours after dosing, although water was permitted ad

libitum. Subjects were also instructed to refrain from caffeine and

alcohol for 24 hours prior to screening and during assessments

visits. The test material was administered within the investigation

clinical unit on the days when serial pharmacokinetic sampling

SIRT1 Activation in Elderly Volunteers
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was performed (days 1–2 and 28–29) and at home on the

remaining days (days 3–27). A diary card was provided to

volunteers to confirm daily consumption of the standardized meal,

as well as time of dose and number of capsules taken. Missing

doses were recorded.

At every visit (including at screening and follow-up), blood and

urine samples were collected for clinical laboratory assessments

(general blood biochemistry, full blood count, coagulation

parameters and urinalysis). On the same days, physical examina-

tion, vital signs (resting pulse rate, respiration rate, temperature,

and blood pressure readings), pre- and post-dose 12-lead ECG and

a review of adverse events (AE) and any medications received were

also performed. Safety evaluations were based on the incidence,

severity and type of AEs and clinically significant changes from

baseline in physical examination findings, vital signs or clinical

laboratory results.

The study was approved by the Institutional Review Board of

Imperial College Healthcare NHS Trust, London (UK), the UK

Medicines and Healthcare products Regulatory Agency (MHRA;

EudraCT number 2009-011918-21) and the Research Ethics

Committee of Berkshire, Reading, UK (REC reference number

09/H0505/96). The study was registered on the public database

ClinicalTrials.gov (reference number NCT00964340) and was

conducted at The National Institute for Health Research (NIHR)-

Wellcome Trust Imperial College Clinical Research Facility

[formerly known as Sir John McMichael Clinical Research Centre

(SJMC), Imperial College, London, UK] in compliance with the

Declaration of Helsinki and the International Conference on

Harmonisation (ICH) and Good Clinical Practice (GCP) guide-

lines. Written informed consent was obtained from each subject

prior to the performance of any study-specific procedures.

Subject’s ability to consent was confirmed by medically qualified

professionals of the study team.

Bioanalysis and pharmacokinetic data analysis
Pharmacokinetic samples were collected through 24 hours post-

dose on the first and last day of the dosing period (immediately

prior to dosing and at 15, 30 minutes and 1, 2, 3, 4, 8, 12 and

24 hours post-dose). Blood samples for pharmacokinetic analysis

were collected in pre-labelled lithium heparin heparin Vacutainers

for pharmacokinetic analysis (,4 mL per draw). Each sample was

separated by centrifugation at 15006g and 4uC for 10 minutes.

Two equal aliquots of plasma were transferred to polypropylene

vials labelled identically to the original blood sample and stored at

approximately 220uC for subsequent analysis of plasma SRT2104

concentration. The bio-analysis was performed by Simbec

Research Ltd, Merthyl Tydfil, South Wales, UK. Pharmacokinetic

parameters for SRT2104 were derived from non-compartmental

methods using WinNonLin v5.2 (Pharsight Corporation, Moun-

tain View, CA, USA). SRT2104 concentrations were quantified in

all subjects above a limit of quantification [LOQ] = 0.5 ng/mL.

Actual blood sample collection times were used in the analysis.

The maximum SRT2104 plasma concentration (Cmax) and the

corresponding time of peak plasma concentration (Tmax) were

taken directly from the individual plasma data. The mean area

under the plasma concentration-time curve from time 0–24 hours

(AUC0–24), the area under the plasma concentration-time curve

from zero to time AUC(0-t) (where t is the time of the last

measurable concentration) and the area under the plasma

concentration-time curve from zero to infinity AUC(0-‘) were

calculated by the linear trapezoidal rule. The terminal phase

elimination rate constant (Kel) was determined from the slope of

the concentration-versus-time data plot during the log-linear

terminal phase by regression analysis and the t1/2 was generated

by dividing ln2 by the elimination rate constant Kel. The

accumulation ratio (R) was calculated as the ratio of day 28 to

day 1 AUC0–24.

Pharmacodynamic data analysis
Modified Oral Glucose Tolerance Test (mOGTT). The

oral glucose tolerance test (OGTT) allows identification and

monitoring of individuals with impaired glucose tolerance and to

evaluate the pharmacological effects of glucose lowering agents

[20,21]. A mOGTT was performed at baseline and on day 29 to

assess the pharmacodynamic effects of SRT2104 (or placebo) on

glucose, insulin and C-peptide levels. On both occasion, after an

overnight fast, subjects were asked to drink a standard glucose

beverage containing 75 g of glucose. Blood sample were drawn

10 min before and just prior to the subject consuming the

beverage. Additional blood samples were drawn at 10, 20, 30, 60,

90, 120 and 180 minutes after the subject had consumed the

glucose beverage. Plasma level of glucose, insulin and C-peptide

were measured at each time point. The maximum glucose level

(Gmax) was determined, and the area under the plasma glucose

concentration–time curve (AUCgluc) was calculated using the

trapezoidal rule. AUCgluc60 was defined as the area under the

curve from 0 to 60 min after glucose ingestion, the period during

which plasma glucose concentration increases. The effects of

SRT2104 (or placebo) on glucose, insulin and C-peptide levels and

relative AUCs were calculated in each subject as the differences

between values at baseline (screening) and after 28 daily

administrations of the test material.
31P Magnetic Resonance Spectroscopy. Phosphorus-31

magnetic resonance spectroscopy (31P MRS) is a noninvasive tool

for quantitatively monitoring the high-energy phosphate metab-

olism of skeletal muscle during exercise and recovery

[22,23,24,25]. Muscle concentrations of phosphocreatine (PCr),

adenosine triphosphate (ATP), inorganic phosphate (Pi), and pH

measured by 31P MRS are comparable to those measured by

invasive biochemical analysis after biopsy [26]. 31P MRS

experiments were performed on a clinical Siemens 3T Tim Trio

(Siemens Healthcare, Erlangen, Germany). Subjects lay supine in

the scanner. A custom-built 31P surface coil of 8 cm diameter was

placed over the largest part of the gastrocnemius muscle. The

measurement protocol consisted of a resting period of 2 min 8 s,

an exercise period of 3 min 12 s, followed by a resting/recovery

period of 5 min 20 s. During the exercise period, subjects

performed repetitive plantar flexion of the foot against a custom-

built, weighted pedal device at the rate of 30 repetitions per

minute. Weighting of the pedal device during the exercise period

was adjusted to be equivalent to 10–15% of lean body mass, as

calculated with a height, weight and gender algorithm, using the

formula of Hume [27]. 31P MR spectra were acquired with a

‘‘pulse-acquire’’ sequence. Each spectrum was generated by

averaging 8 free induction decays (FID) acquired with a 2 s

repetition time, which resulted in a 16 s time resolution per

spectrum. Free induction decays were acquired with a dwell time

of 0.5 ms and 1024 readout points. Spectra were analyzed using

the AMARES routine of the jMRUI software package [28]. After

manual phase-correction of the spectra, the PCr resonance peak

was fitted to a Lorentzian lineshape to calculate tissue concentra-

tion. Intracellular pH was determined from the chemical shift of

PCr and inorganic phosphate, and the value of ADP was

calculated as in Vanderthommen et al. 2003 [29].

Analyses of 31P MRS measures of the T1/2 for ADP and PCr

recovery (seconds) in the gastrocnemius muscle after exercise were

assessed as changes from baseline to Day 27 using an ANCOVA

model with treatment group as a factor and baseline as a covariate.

SIRT1 Activation in Elderly Volunteers
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No adjustment was made for multiple comparisons in consider-

ation of the two estimates.

Recovery times of ADP and PCr were calculated by fitting a

mono-exponential curve to the observed recovery data. The effects

of SRT2104 (or placebo) on glucose, insulin and C-peptide levels

and relative AUCs were calculated in each subject as the

differences between values at baseline (screening) and after 28

daily administrations of the test material.

Magnetic Resonance Imaging. Magnetic Resonance Imag-

ing (MRI) was also carried out on a clinical Siemens 3T Tim Trio

(Siemens Healthcare, Erlangen, Germany). The torso was imaged

using the 6-channel spine array and two 4-channel body array

coils. The data were acquired using a 3D spoiled gradient echo

sequence with partial Fourier acquisitions (VIBE) [30]. The

imaging volume consisted of contiguous 3D slabs (voxel size of

1.461.465 mm3) acquired in a single 15 s end-expiration breath-

hold (repetition time = 7 ms; echo times TEs = 2.45, 3.67 ms; flip

Figure 1. CONSORT 2010 Flow Diagram. The schema graphically outlines the design and conduct of the clinical study.
doi:10.1371/journal.pone.0051395.g001
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angle = 10u; 450 mm field-of-view; GRAPPA factor 2). The most

inferior slab was positioned at the pubic symphysis and the most

superior slab surpassed the top of the lungs. Fat-only images in the

abdomen were manually segmented into intra-abdominal adipose

tissue (IAT) and abdominal subcutaneous adipose tissue (SAT).

The abdominal area was defined by using anatomical landmarks

(top of the femoral heads to the bottom of the right lung) [31]. All

images were anonymized and blinded to time point, but not to

subject in order to facilitate matching anatomical landmarks, and

sent to a third party (Vardis Group Inc, London), who derived the

adipose tissue volumes using Slice-O-Matic (Tomovision, Mon-

treal, Canada) software. Analysis of compartmental fat distribution

was performed for subcutaneous adipose tissue (SAT), visceral

adipose tissue (VAT), and the ratio of SAT:VAT, using an

ANOVA model with treatment group as a factor.

Maximal Aerobic Capacity Test. A stepwise incremental

exercise test was performed on a cycle ergometer (Monarch 874E,

Monark Exercise AB, Vansbro, Sweden) [32]. All participants

were familiarized to the test procedure on a separate occasion

prior to testing. Participants were seated in a standardized

position. The test started with unloaded cycling, subjects were

asked to maintain a cadence of 50 revolutions per minute (rpm), if

the subject could not achieve 50 rpm they were encouraged to

cycle as fast as the could (but not less than 40 rpm). Every two

minutes the external load on the cycle ergometer was increased by

0.5 kg, this equated to a 25-Watt increase in workload at 50 rpm.

Cardiac monitoring of heart rate, respiratory rate/minute

ventilation and pulse oximeter for oxygen saturation were

continuously recorded during the test.

Analysis of Maximal Aerobic Capacity parameters was

performed using an ANOVA model with treatment group as a

factor. Workload was progressed in 2-minute staged increments

from an initial 3 minutes unloaded cycling, to exhaust subjects

over a 6- to 10-min period. The test was terminated when the

participant reached volitional exhaustion or their cadence dropped

by 10 rpm. At the end of each increment, work-rate watts, rating

of perceived exertion (Borg RPE scale), heart rate (Polar Vantage

chest heart rate monitor, Polar Electro, Finland) and 3-lead ECG

were recorded.

Statistical methods
Analyses of demographics were performed on the Intent-to-treat

(ITT) population including all subjects who were randomized.

Analyses of exploratory pharmacodynamic measures were per-

formed on the Per-Protocol (PP) population, including all

randomized subjects who received study medication and had at

least one post baseline efficacy assessment and no major protocol

deviations.

Descriptive statistical analysis (N, mean, SD, CV%, median,

minimum, and maximum, logarithmic transformation, analysis of

variance (ANOVA) and 90% confidence intervals) was performed

on pharmacokinetic parameters assessed at each sampling time

point for each dose level. Natural log-transformed AUC0–24,

AUC0-‘ and Cmax data using a linear mixed effects model with

dose level and gender as fixed effects and subject as a random

effect were used to analyze differences between treatments.

Statistical analysis of accumulation ratio was performed after a

ln transformation of the data from each dose level. A mixed effect

model was fitted with day and gender as fixed effects and subject as

a random effect. Day 28 (last dosing day) was compared with day 1

(first dose) in order to estimate the accumulation ratio for each

dose level. The ratio was calculated from the geometric least-

square mean from day 28/day 1. Statistical significance was set at

P#0.05, 2-sided. Dunnett’s test was used to adjust for multiple

comparisons against placebo. The statistical analysis was per-

formed using the SASH for Windows software package (Version

9.1.3) (SAS Institute, Cary, North Carolina, USA).

Results

This was a pilot Phase I study of non-therapeutic objectives to

allow preliminary characterization of safety, tolerability and drug

kinetics of SRT2104 in male and female elderly volunteer

following single and repeat daily dosing for 28 days.

Sample size was not based upon formal calculation of power or

regulatory guidelines but it was consistent with most first-in-man/

Phase-I drug’s pharmacokinetic trials designed to provide suffi-

cient information about the drug’s pharmacokinetics profile and

allow the design of future Phase II trials. In addition, although the

study was not designed to fully characterize the pharmacological

effects of SRT2104, it evaluated the potential biological activity of

the compound for the first time in humans, and that is an

information that has not been previously reported. However, given

the exploratory nature of our investigation, results should be

interpreted with some caution and require further substantiation

from larger confirmatory studies in adequately selected target

populations.

Table 1. Summary of subject demographics at screening.

Characteristic Placebo 0.5 g/day 2.0 g/day No Treatment Total study group

Age (years) N 8 8 9 2 27

Mean (Min – Max) 67.0 (62–73) 67.6 (61–77) 66.2 (61–72 69.5 (69–70) 67.1 (61–77)

Sex Female 4 (50%) 5 (63%) 6 (67%) 1 (50%) 16 (59%)

Male 4 (50%) 3 (38%) 3 (33%) 1 (50%) 11 (41%)

Race Asian 0 1 (13%) 0 0 1 (4%)

Black 0 1 (13%) 0 0 1 (4%)

White 8 (100%) 6 (75%) 9 (100%) 2 (100%) 25 (93%)

BMI Kg/m2 (SD) 25.0 (3.24) 26.0 (1.31) 25.5 (2.97) 24.2 (1.27)

Weight Kg (SD) 73.6 (10.70) 68.8 (6.58) 67.3 (7.07) 63.1 (7.57)

SD = Standard Deviation.
doi:10.1371/journal.pone.0051395.t001
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Table 2. Incidence of all treatment-emergent adverse events by subject treatment group.

Treatment Placebo SRT2104 SRT2104

0.5 g/day 2.0 g/day

(n = 8) (n = 8) (n = 9)

Number of subjects experiencing
any adverse event

8 (100%) 8 (100%) 9 (100%)

Nervous system disorders

Headache 2 (25%) 5 (63%) 1 (11%)

Lethargy 1 (13%) 1 (13%) 0

Dizziness 0 0 1 (11%)

Migraine 0 1 (13%) 0

Syncope vasovagal 0 0 1 (11%)

Gastrointestinal disorders

Diarrhoea 3 (38%) 1 (13%) 2 (22%)

Nausea 2 (25%) 1 (13%) 0

Abdominal distension 1 (13%) 1 (13%) 0

Abdominal pain lower 0 1 (13%) 0

Constipation 0 0 1 (11%)

Vomiting 0 1 (13%) 0

Infections

Nasopharyngitis 0 1 (13%) 4 (44%)

Lower respiratory tract infection 0 0 1 (11%)

General disorders

Application site haematoma 2 (25%) 1 (13%) 1 (11%)

Fatigue 1 (13%) 0 0

Mass 1 (13%) 0 0

Tenderness 1 (13%) 0 0

Injury and procedural complications

Thermal burn 1 (13%) 0 1 (11%)

Limb injury 0 0 1 (11%)

Procedural pain 0 1 (13%) 0

Fall 1 (13%) 0 0

Musculoskeletal and connective tissue disorders

Arthralgia 0 1 (13%) 0

Back pain 0 1 (13%) 0

Sensation of heaviness 0 1 (13%) 0

Joint stiffness 1 (13%) 0 0

Muscle spasms 1 (13%) 0 0

Muscular weakness 1 (13%) 0 0

Blood and urine

Blood creatinine increased 0 1 (13%) 0

Urine output increased 0 1 (13%) 0

Psychiatric disorders

Insomnia 0 1 (13%) 0

Sleep disorder 0 1 (13%) 0

Respiratory, thoracic and mediastinal disorders

Cough 0 0 1 (11%)

Dysphonia 0 0 1 (11%)

Epistaxis 1 (13%) 0 0

Skin and subcutaneous tissue disorders

Rash 1 (13%) 1 (13%) 0

Erythema 0 1 (13%) 0

SIRT1 Activation in Elderly Volunteers
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Table 2. Cont.

Treatment Placebo SRT2104 SRT2104

0.5 g/day 2.0 g/day

(n = 8) (n = 8) (n = 9)

Cardiac disorders

Palpitations 0 1 (13%) 0

Eye disorders

Dry eye 1 (13%) 0 0

Eye pain 1 (13%) 0 0

Metabolism and Nutrition Disorders

Decreased Appetite 1 (13%) 1 (13%) 0

doi:10.1371/journal.pone.0051395.t002

Figure 2. Mean plasma concentration versus time plots for SRT2104 on day 1 and 28, following multiple dose administration of
0.5 g/day (top panel) and 2.0 g/day (lower panel) to elderly male and female volunteers.
doi:10.1371/journal.pone.0051395.g002
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Demographics, Safety and Tolerability
The CONSORT 2010 flow diagram of this study is shown in

Figure 1. A total of 33 subjects were screened to take part in this

study. Two subjects withdrew consent prior to being randomized,

three were not considered eligible and one subject was screened as

a ‘reserve’ and was not randomized into the study. Of the 27

subjects that were randomized into the study, two withdrew prior

to receiving study medication and one subject was withdrawn after

receiving study medication due to an adverse event (lower

respiratory tract infection requiring treatment with amoxicillin).

The remaining 25 subjects were dosed with placebo (n = 8),

SRT2104 0.5 g/day (n = 8) or SRT2104 2.0 g/day (n = 9). One

subject who was assigned to the SRT2104 2.0 g/day regimen was

withdrawn from the study on day 2 of the dosing period due to an

acute chest infection, which was not believed to be related to

SRT2104. For another subject in the SRT2104 0.5 g/day cohort,

study drug was stopped on day 14 (due to increased serum

creatinine) and restarted on day 21 (after normalization of

creatinine concentration). All other subjects completed their

planned dosing schedules. The ‘safety population’ included all

subjects who were randomized and received at least one dose of

study medication or placebo (n = 25). All cohorts were comparable

at baseline with respect to race, sex, average age, weight and BMI

(Table 1).

SRT2104 was generally well tolerated at both dose levels. No

significant difference in the incidence and severity of adverse

events (AE) were detected between treatment groups (including

placebo) although a higher incidence of headache and nasophar-

yngitis was reported in the SRT2104 0.5 g/day and 2.0 g/day

groups, respectively (Table 2). The latter (nasopharyngitis),

however, was considered to have an unlike or no relationship to

the study medication and it was more likely to be related to the

Table 3. Summary of derived SRT2104 pharmacokinetic parameters by dose level.

Dose Day Cmax tmax
1 AUC0-t AUC0-‘

2 t1/2 CL/F

(ng/mL) (hr) (ng/ml.hr) (ng/ml.hr) (hr) (L/hr)

0.5 g/day 1 N 8 8 8 8 8 8

Mean 343.4 3.0 1872.9 1790.8 14.9 594.2

SD 232.4 0.5 1089.0 1584.1 6.9 1072.9

28 N 8 8 8 7 7 8

Mean 373.4 3.0 2280.4 2687.8 17.5 566.9

SD 286.5 1.122 1585.9 2351.9 5.2 867.6

2.0 g/day 1 N 9 9 9 6 6 6

Mean 477.6 3.0 3249.2 2073.5 15.1 1624.4

SD 523.0 2.3 3236.0 2207.7 5.9 1814.6

28 N 8 8 8 6 6 8

Mean 572.4 3.0 4797.4 7729.6 21.6 789.6

SD 353.0 2.0 2579.9 3478.6 12.5 1002.0

1Median is presented for tmax.
2Geometric mean is presented for AUC0-‘.
Abbreviations:
Cmax = maximum plasma concentration.
tmax = time of peak plasma concentration.
AUC0-t = area under the plasma concentration-time curve from zero to the time of the last measurable concentration.
AUC0-‘ = area under the plasma concentration-time curve from zero to infinity.
t1/2 = half life.
CL/F = clearance.
doi:10.1371/journal.pone.0051395.t003

Table 4. Summary of Statistical Analysis of SRT2104 Pharmacokinetic Data: Day 28 vs Day 1.

Geometric Least Square Means

SRT2104 Dose Level Parameter Day 1 Day 28 Day 28/Day 1 (90% C.I.)

0.5 g/day Cmax (ng/ml) 326.22 199.12 61.04 (14.65–254.30)

AUC(0-t) (ng.h/ml) 1950.07 1610.10 82.57 (34.83–195.70)

AUC(0-‘)* (ng.h/ml) 2503.70 1612.40 64.40 (29.19–142.09)

2.0 g/day Cmax (ng/ml) 301.28 389.50 129.28 (40.01–417.76)

AUC(0-t) (ng.h/ml) 1743.14 3577.50 205.23 (79.36–530.77)

AUC(0-‘)* (ng.h/ml) 1788.42 3669.38 205.17 (88.52–475.58)

*AUC values included in the analysis are AUC(0-‘) on Day 1 and AUC(0-t) on Day 28.
Results obtained from a mixed model ANOVA on log-transformed data with fixed effects of study day and gender and a random effect of subject.
doi:10.1371/journal.pone.0051395.t004
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time of the year (winter) during which the affected subjects

participated in the study. The most frequently reported AE were

predominantly gastro-intestinal in nature (including nausea,

constipation, flatulence, and loose bowel movements) but their

incidence was slightly higher in the placebo group relative to the

active treatment groups. The majority of AE were mild-moderate

in severity, short in duration and reversible without pharmaco-

logical intervention.

Pharmacokinetics
The ‘pharmacokinetic analysis population’ included all subjects

who were randomized, and had received at least one dose of

SRT2104 (n = 17). SRT2104 achieved mean peak plasma

concentration (Tmax) at 2–4 hours in the 0.5 g/day group

(Figure 2; Table 3). A longer apparent mean rise to peak

concentration (Tmax of 2–8 hours) was observed after the first dose

in the 2.0 g/day group, but the day 28 plasma concentration

kinetics for this group were similar to that seen at 0.5 g/day.

Plasma concentrations subsequently declined in a mono-exponen-

tial manner with an apparent half-life of approximately 15 hours.

No dose dependence was observed for either the Tmax or

elimination half-life (t1/2). The Cmax, AUC(0-t) and AUC(0–24)

values were less than dose proportional, only achieving exposures

approximately two-fold higher or less in the 2.0 g/day group

compared to the 0.5 g/day group.

Repeat administration of SRT2104 of 2.0 g/day resulted in

approximately two-fold increases in the mean AUC(0–24) relative

to the first day of dosing and a higher mean t1/2 on day 28

(21.6612.5 hr) relative to day 1 (15.165.9 hr). Between-subject

variability for AUC(0–24) was high for both dose groups. The

geometric mean CV for the 0.5 g/day group was 140% and for

the 2.0 g/day group was 102%. As described above, one subject

who was assigned to the SRT2104 0.5 g/day cohort had study

drug washed out starting at day 14 (due to increased serum

creatinine levels of 151 mmol/L) and then restarted on day 21 of

the dosing period (upon creatinine normalization, i.e. 126 mmol/

L). Subsequent repeat measurements of serum creatinine levels

revealed a relapse of out of range values (154 mmol/L on day 28)

and a return to normal range (116 mmol/L) at the end of study

follow up visit. Comparable pharmacokinetics were observed in

this subject relative to the other subjects in the SRT2104 0.5 g/

day cohort at the end of the 28 dosing period. Summaries of

statistical analysis of Pharmacokinetic Data are presented in

Table 4 (day 28 vs. day 1) and Table 5 (dose proportionality). No

apparent differences in exposure were observed between men and

women.

Exploratory Pharmacodynamic Measures
Serum Lipid Profile. At the end of study treatment (day 28)

there was a statistically significant decrease in serum cholesterol

levels in both SRT2104 0.5 g/day and 2.0 g/day groups

(p = 0.0071 and p = 0.0181, respectively), relative to baseline, as

compared to placebo (Figure 3).

This was accompanied by decreases in low-density lipoprotein

(LDL) cholesterol (but not changes in high-density lipoprotein,

HDL) and a dose-dependent increase in the mean HDL:LDL

ratios that was statistically significant for the SRT2104 2.0 g/day

group (p = 0.0141), as compared to placebo. The decrease in total

cholesterol and LDL levels as well as the increase in HDL:LDL

ratio reverted to baseline values after 7 days of drug washout

(Figures S2 and S3). Individual serum cholesterol levels at baseline

and after 28-day treatment with SRT2104 0.5 g/day and 2.0 g/

day are presented in Figure S4.

A decrease in mean serum triglyceride concentration also was

observed with active treatment at day 28 relative to baseline, as

compared to placebo, although this was not dose-dependent and

was reflected only as a trend for the SRT2104 2.0 g/day dose

group (Figure 3).

Oral glucose tolerance tests (OGTTs). All participants

were enrolled into the study and randomized to treatment arms

based on their normal glucose levels at screening (,6.0 mmol/L).

They also underwent OGTTs prior to starting treatment and

again on day 29 to assess the pharmacodynamic effects of

SRT2104 on glucose, insulin and C-peptide levels.. Maximum

serum glucose concentrations (Gmax) and area under the curve of

glucose concentration–time (AUCGlu) were similar before and

after either placebo or SRT2104 treatment (Figure 4). Likewise, no

statistically significant changes in insulin and C-peptide levels and

relative AUCs were observed in any of the treatment groups,

although trends to reduced rates in the rise of both insulin and C-

peptide and a lower peak insulin concentration were observed for

the SRT2104 2.0 g/day group at day 29 relative to baseline

(Figure 5).

31P MRS, MRI and Maximal Aerobic Capacity

Test. SRT2104 0.5 g/day and 2.0 g/day showed a trend for

a decrease in half-time for recovery of the calculated adenosine

diphosphate (ADP) concentration (ADP T1/2) values after exercise,

on day 27 relative to baseline (Table S1). This effect was greatest

in the SRT2104 2.0 g/day group (mean decrease of 15%). As

Table 5. Summary of Statistical Analysis of SRT2104 Pharmacokinetic Data: Dose Proportionality.

Study Day SRT2104 Dose Level Geometric Least Square Means

Geometric Least Square Means % Ratio (90% C.I.)

Dose-Normalized Parameter 0.5 g/day 2.0 g/day 2.0 g/0.5 g

Day 1 Cmax_D (ng/ml) 215.74 69.64 32.28 (10.41–100.15)

AUC(0-t)_D (ng.h/ml) 1297.86 516.59 39.80 (14.39–110.07)

AUC(0-‘)_D (ng.h/ml) 1754.57 504.43 28.75 (9.56–86.49)

Day 28 Cmax_D (ng/ml) 206.06 96.83 46.99 (15.44–142.99)

AUC(0-t)_D (ng.h/ml) 1548.09 911.01 58.85 (25.18–137.51)

AUC(0-t)_D (ng.h/ml) 1548.74 909.85 58.75 (25.10–137.52)

AUC(0-‘)_D (ng.h/ml) 2636.12 1903.42 72.21 (33.02–157.88)

Results obtained from an ANOVA on dose-normalized (to 0.5 g) log-transformed data with fixed effects of dose level and gender.
doi:10.1371/journal.pone.0051395.t005
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there were no changes in resting pH or rates of pH recovery after

exercise with treatment, a post hoc exploratory analysis was

performed using the more direct measure of muscle mitochondrial

oxidative metabolic capacity provided by the half-time for

recovery of phosphocreatine (PCr) concentration (PCr T1/2)

relative to baseline values after exercise. A trend for a decrease

(mean decrease 14%) in PCr T1/2 after treatment was found for

the SRT2104 2.0 g/day dose group relative to placebo (p = 0.083)

(Figure 6 and Table S1).

Fat was distinguished on whole body MRI images and

subcutaneous (SAT) and visceral (VAT) adipose tissue volumes

were measured separately. No consistent changes from baseline

were observed in either adipose tissue measures and in the

VAT:SAT ratio with active treatment relative to placebo.

Likewise, no consistent changes in exercise endurance were found

Figure 3. Lipid profile at baseline and after 28 days treatment with placebo and SRT2104 (0.5 g/day and 2.0 g/day). [Black dots
indicate points that are two interquartile ranges outside the means; * P,0.05 and ** P,0.001 at day 28 relative to baseline.]
doi:10.1371/journal.pone.0051395.g003
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with treatment. A small (4%) but statistically significant decrease in

exercise capacity (as measured by time to cessation for the staged

bicycle assessment) at day 27 was observed in the SRT2104 0.5 g/

day group (p = 0.004), although there was no evidence for any

changes in the 2.0 g/day group (Table S2).

Discussion

We are reporting results of the first clinical study in elderly

volunteers with SRT2104, a compound belonging to a series of

novel SIRT1 activators being developed for the treatment of type

II diabetes and other-age related diseases [14,15]. There were no

serious adverse events and the drug was generally well tolerated

during 28 days continuous administration, with no dose-limiting

toxicities being detected. However, given the exploratory nature of

our study, larger, prospectively conducted studies are required to

conclude on the long-term safety of SRT2104 in the general

population.

Our data suggest a less than dose proportional increase in

exposure for SRT2104 between 0.5–2.0 g/day. In a previous oral

dose study in young healthy volunteers, AUC(0-t) and Cmax

exhibited an approximate dose proportionality over the dose range

0.03 g/day to 1.0 g/day and a less than dose proportional

increase between 1.0–3.0 g/day when administered in the fasted

state [19]. Substantial inter-individual variability in systemic

exposure was observed at both doses tested in our study, although

this also was comparable to the pharmacokinetics observed

previously in healthy young male subjects in the fasted state.

In a previous Phase 1 study in healthy young male volunteers

[19], a substantial food effect was observed for this compound.

When SRT2104 was administered with a standardized solid meal,

an increase in overall exposure of SRT2104 was observed for both

the 0.5 and 2.0 g doses, compared with administration in the

fasted state. There was also a substantial reduction in inter-subject

variability in exposure in the fed state. It was anticipated that the

standardized meal of Ensure PlusH taken prior to dosing would

simulate the effect of a solid meal because it contained a similar

caloric content. However, the variability and exposure observed in

the current study was similar to fasted-state exposure, rather than

fed-state. A proportion of this pharmacokinetic variation may

reflect individual differences in absorption metabolism, or a

combination of the two; one subject in the 0.5 g/day group

exhibited t1/2 values of greater than 24 hours after both first and

repeated administrations (29.7 and 28.3 hours, respectively),

although the Cmax, AUC(0-t) and AUC(0–24) were considerably

lower than for other subjects. However, other data (unpublished)

suggests that exposure is inversely related to gastric emptying rate.

A liquid meal of Ensure PlusH, while calorically similar to a

standardized solid meal, may have accelerated gastric emptying,

which may explain why a food-related increase in drug absorption

was not observed in this study. Changes in individual pharmaco-

kinetics may be just a consequence of differences in the ontogeny

of drug elimination pathways [33].

Although this study was primarily designed to evaluate safety

and pharmacokinetic outcomes, potential pharmacodynamic

measures were also explored as secondary endpoints to prelimi-

nary assess the biological activity of the compound in humans.

Effects of SRT2104 on plasma lipid profile were observed,

including a decrease in serum cholesterol and triglycerides, as well

as an increase in HDL:LDL ratio which appeared to be a

consequence of decreases in pro-atherogenic LDL cholesterol.

Notably, these effects increased through the dosing period and

reversed to baseline (pre-treatment) values within one week of drug

washout. Although subjects were instructed to maintain their

standard level of physical activity and diet for the entire duration

of the study, with the exception of consuming a standardized

breakfast (Ensure PlusH) every morning approximately 15 minutes

prior to dosing, we cannot exclude that a change in life style over a

relatively short period of time may have acted as a potential

confounder affecting subjects’ cholesterolaemia. However, given

the fact that changes in lipid profile were only observed in subjects

receiving SRT2104 but not placebo seems to suggest a genuine

drug-dependent effect consistent with target modulation. Both

resveratrol and SRT2104 administration lower cholesterol, LDL

and triglycerides in preclinical models of dyslipidemia, diabetes

and obesity (e.g., DIO and Lepob/ob obese mice) [4,17,18,34,35].

These results in humans may be partially explained by a positive

regulatory effect of SRT2104 on liver X receptor (LXR) a nuclear

receptor involved in the regulation of cholesterol and lipid

homeostasis [36].

The effects of SRT2104 on cholesterol levels seem also

comparable to the antihyperlipidemic effects of niacin (nicotinic

acid), at an intake of 1 g/day or higher [37], which is considered

to be mediated by a change in intrahepatic LDL-triglyceride

secretion and metabolism [38]. However, intakes of niacin at

quantities of one gram or more carry significant risk of side effects

(e.g., headache, nausea, vomiting, skin-flushing and liver function

toxicity), which may require close monitoring, decreased dosage or

discontinuation in favor of other agents. Further studies will be

required to explore possible lipid lowering effects of SIRT1

activators in patients with type II diabetes and dyslipidemia, in

whom the major targets for therapeutic modulation by SIRT1

may need to be different [39].

We did not observe significant changes in OGTT in this

population of elderly individual treated with SRT2104, despite a

trend toward a slower increase in insulin and C-peptide in the

SRT2104 2.0 g/day treatment group. While the latter effect

appears to be consistent with enhanced insulin sensitivity, a known

consequence of SIRT1 activation, it remains to be proven in

larger, well-selected cohorts of patients given that our observations

were based on a very small sample size and short duration of

treatment. In addition, the classification of subjects based on only a

single OGTT is insecure [40,41].

We further explored potential mechanisms mediating the

possible increase in insulin sensitivity using 31P-MRS to test for

a treatment-related increase in muscle mitochondrial oxidative

metabolic capacity. Rates of high-energy phosphate recovery after

exercise (decreasing the elevated calculated [ADP] and increasing

the partially depleted [PCr] to resting muscle baseline values)

provide an index of muscle mitochondrial oxidative metabolism

[6] that correlates well with biochemical measures of maximum

mitochondrial oxidative capacity [9]. Exercise-induced increases

in muscle oxidative phosphorylative capacity are associated with

increased SIRT1 expression [42], although effects of SIRT1 on

mitochondria function are not limited to stimulation of biogenesis

[43]. The calculated ADP recovery rate post-exercise (ADP T1/2)

showed a trend for a small increase in the SRT2104 treatment

groups. A post hoc analysis of PCr T1/2 (which potentially allows

higher precision for estimation of the net oxidative phosphoryla-

tion rate, as it does not have a dependence on intracellular pH

Figure 4. Oral glucose tolerance tests (OGTTs) at baseline and after 28 days treatment placebo (upper) SRT2104 0.5 g/day (middle)
or SRT2104 2.0 g/day (lower panel).
doi:10.1371/journal.pone.0051395.g004
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Figure 5. Insulin (left) and C-Peptide (right) concentration–time curves at baseline (screening) and after 28 days treatment with
placebo (upper) SRT2104 0.5 g/day (middle) or SRT2104 2.0 g/day (lower panel).
doi:10.1371/journal.pone.0051395.g005
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measurements from the chemical shift of muscle inorganic

phosphate [6]) was consistent with this in showing a trend for

dose-dependent increases.

However, we did not see improvements in measures of maximal

aerobic capacity and exercise oxygen consumption (VO2max),

which is also known to correlate well with PCr recovery kinetics

[44]. This may be a consequence of a lack of study power or

relative deconditioning and lack of a major dependence of aerobic

exercise on metabolic adaptations in skeletal muscle training,

which in this population of elderly subjects may have resulted in

reduced mitochondrial enzyme activities, lipid oxidation and

inability to decrease lactic acid accumulation [45,46]. Interesting-

ly, it has recently been reported that the O2 diffusing capacity is

well preserved in the elderly whereas the age related decline in

oxidative capacity is most likely a consequence of limited

mitochondrial content and/or mitochondrial dysfunction rather

than O2 availability [47].

Similarly, no significant difference in the MRI quantification of

adipose tissue was noted in our study, despite possible beneficial

effects on lipids. Weight loss in obesity and type diabetes is a likely

longer-term effect of diet and physical exercise programs possibly

combined with months of pharmacological treatment [48,49]. On

the other hand, obesity is associated with a defect in lipid oxidation

in skeletal muscle, which may be corrected with exercise training

but persists after weight loss [50]. It is possible that the small

sample size and the relatively short duration of treatment may

have at least in part contributed to the lack of SAT and VAT effect

seen in our normal weight subjects who were instructed not to

change their standard life style, diet and exercise for the entire

duration of the study. Future investigations are warranted in

patients, to explore substrate utilization during exercise and

determine the impact of SIRT1 activation on fat volume and

muscle performance capacity.

In conclusion, the present study indicates that SRT2104 was

well tolerated up to 2.0 g/day for 28 days, in both elderly men and

women. The highly variable pharmacokinetics observed may

confound development of this particular molecule as a medicine in

its current formulation, although the safety in short-term studies

suggest an encouragingly high therapeutic index. This study also

suggests that SRT2104 is biologically active in humans given the

observed changes in some of the exploratory pharmacodynamic

endpoints. This is the first study to demonstrate an impact of

SRT2104 in humans on parameters that are known to lie

downstream of SIRT1 activation. Given the potentially beneficial

effects on serum lipids and the trends toward a beneficial effect on

mitochondrial oxidative phosphorylation, the results of this study

may be of use for dose selection in future clinical trials and should

further stimulate interest in the testing of ‘‘second generation’’

sirtuin activators in adequately selected patient populations.

Figure 6. Representative example of magnetic resonance images and 31P Magnetic resonance spectroscopy results. Top left panel:
intra-abdominal (red) and subcutaneous (yellow) adipose tissue maps overlaid on coronal and sagittal body MRI images from a single subject. Bottom
left panel: dynamic series of 31P MRS spectra acquired serially during exercise and recovery from a single subject as described in Methods. Right
panel: box plot of PCr recovery time change from baseline (day 21) to day 27 for the placebo, SRT2104 0.5 g/day and 2.0 g/day groups.
doi:10.1371/journal.pone.0051395.g006
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