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Abstract

We report here neuroprotective and anti-inflammatory effects of a flavonoid-enriched fraction isolated from the peel of
Northern Spy apples (AF4) in a mouse of model of hypoxic-ischemic (HI) brain damage. Oral administration of AF4 (50 mg/
kg, once daily for 3 days) prior to 50 min of HI completely prevented motor performance deficits assessed 14 days later that
were associated with marked reductions in neuronal cell loss in the dorsal hippocampus and striatum. Pre-treatment with
AF4 (5, 10, 25 or 50 mg/kg, p.o.; once daily for 3 days) produced a dose-dependent reduction in HI-induced hippocampal
and striatal neuron cell loss, with 25 mg/kg being the lowest dose that achieved maximal neuroprotection. Comparison of
the effects of 1, 3 or 7 doses of AF4 (25 mg/kg; p.o.) prior to HI revealed that at least 3 doses of AF4 were required before HI
to reduce neuronal cell loss in both the dorsal hippocampus and striatum. Quantitative RT-PCR measurements revealed that
the neuroprotective effects of AF4 (25 mg/kg; p.o.; once daily for 3 days) in the dorsal hippocampus were associated with a
suppression of HI-induced increases in the expression of IL-1b, TNF-a and IL-6. AF4 pre-treatment enhanced mRNA levels for
pro-survival proteins such as X-linked inhibitor of apoptosis and erythropoietin following HI in the dorsal hippocampus and
striatum, respectively. Primary cultures of mouse cortical neurons incubated with AF4 (1 mg/ml), but not the same
concentrations of either quercetin or quercetin-3-O-glucose or its metabolites, were resistant to cell death induced by
oxygen glucose deprivation. These findings suggest that the inhibition of HI-induced brain injury produced by AF4 likely
involves a transcriptional mechanism resulting from the co-operative actions of various phenolics in this fraction which not
only reduce the expression of pro-inflammatory mediators but also enhance pro-survival gene signalling.
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Introduction

Flavonoids are biologically active phenolic compounds derived

from natural sources such as teas, fruits and vegetables that have

attracted considerable attention for the prevention and treatment

of stroke [1]. The therapeutic potential of these compounds is

supported by their safety [2–4], efficacy in a wide variety of pre-

clinical models for ischemic brain injury [5,6] and epidemiological

evidence suggesting that consumption of a flavonoid-enriched diet

reduces the risk of stroke [7,8]. More recently, associations

between various flavonoid subclasses and the risk of ischemic,

hemorrhagic and total stroke have been examined. Overall, these

studies suggest a higher intake of flavonoids found in fruits

(flavonols, flavanones and flavan-3-ols) decreases the risk of all

three of these stroke outcome measures [9–12].

Apples are the second highest source of anti-oxidants and

phenolics (next to oranges) in the North American diet [13]. The

structural classes of phenolics represented in apples include

flavonols (quercetin glycosides), flavan-3-ols (epicatechin, cate-

chin), anthocyanins (cyanidin-3-O-galactoside), hydrochalcones

(phloridzin) and phenolic acids (chlorogenic acid, cafeic acid)

[14–17]. Apple skin contains approximately 46% of the total

phenolics in apples [18], and specific flavonoids such as quercetin

glycosides and cyanidin-3-O-galactoside are not found in the flesh

of apples [17–22]. Extensive experimentation has demonstrated

that flavonols (quercetin glycosides), flavan-3-ols (epicatechin,

catechin), anthocyanins (cyanidin glycosides) and phenolic acids

(chlorogenic acid) abundant in apple skin exhibit anti-oxidant,

anti-inflammatory and neuroprotective properties in both in vitro

and in vivo models that recapitulate the unfavourable conditions

responsible for ischemic brain injury [5,6,23,24]. Flavonoids

belonging to these different chemical classes inhibit, to varying

degrees, enzymes that phosphorylate (kinases) and dephosphory-

late (phosphatases) proteins critical to signal transduction pathways

which regulate oxidative stress, inflammation and cell survival

[25–28]. The well recognized phosphatidylinositol 3-kinase

inhibitor LY294002 [(4-morpholinyl)-8-phenyl-4H-1-benzopyran-

4-one] is based on the chemical structure of quercetin [29], while

flavopiridol [2-(2-Chlorophenyl)-5,7-dihydroxy-8-[(3R,4S)-3-hy-
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droxy-1-methyl-4-piperidinyl]-4H-chromen-4-one] is a flavone-

based inhibitor of cell cycle-dependent kinases in clinical

development for the treatment of cancer [30,31]. Flavopiridol

also prevents neuronal cell loss in rodent models of cerebral

ischemia [32,33]. Subtle differences in chemical structure resulting

in distinct kinase and phosphatase inhibition profiles may therefore

enable flavonoid-enriched extracts to target multiple signaling

pathways controlling oxidative stress, inflammation and cell

survival in a complementary fashion [26,34,35].

In view of these findings, we have isolated and characterised the

neuroprotective and anti-inflammatory properties of a flavonoid-

enriched fraction from the peel of the apple cultivar Northern Spy,

termed apple fraction 4 (AF4), in experimental models of ischemic

brain injury. Dosage was based on the total concentration of

quercetin, quercetin glycosides, catechin, epicatechin, cyanidin-3-

O-galactoside, phloridzin, chlorogenic acid and cafeic acid that

comprised AF4. The ability of oral administration of AF4 to

reduce motor performance deficits and neuronal cell loss in the

dorsal hippocampus and striatum was examined using a mouse

model of hypoxic-ischemic (HI) brain injury. Optimal dosing

parameters were established by comparing the effects of admin-

istering differing amounts of AF4 for varying periods of time prior

to HI on subsequent neuronal cell loss in these structures.

Quantitative RT-PCR was employed to assess the effects of AF4

on the expression of genes encoding proteins that regulate

inflammation and cell survival. Lastly, we compared the effects

of AF4, quercetin-3-O-glucoside, quercetin and major metabolites

of AF4 on the survival of primary cultures of mouse embryonic

cortical neurons subjected to oxygen glucose deprivation.

Materials and Methods

Isolation of AF4 from apple peel
The peels of the apple cultivar Northern Spy were collected

from a commercial pie manufacturer, Apple Valley Foods Inc.,

Kentville, NS, Canada. Immediately after peeling, the peels were

treated with 2% CaCl2 in water (w/v) at 55 6 5uC for 10 min to

prevent degradation of phenolic compounds. After draining the

excess water and within 3 h of the CaCl2 treatment, the apple

peels were transported in plastic containers to the Nova Scotia

Agricultural College (NSAC). The apple peels were dried in clean

plastic trays at 6062uC for 48 h using a convection oven with air

circulation (Milner Agincourt; ON, Canada). The dried peels were

ground into a fine powder using a Willey mill with a 1 mm sieve

screen (Model Laboratory Heavy Duty, Arthur Thomas Co.;

Philadelphia, PA) and kept in a freezer (270uC) for later use. One

hundred grams of apple peel powder was placed in a 2 L flask and

sonicated in 1 L of absolute ethanol twice for 15 min with a

10 min interval. The suspension was then transferred to 50 ml

conical tubes and centrifuged at 3000 rpm for 15 min. The

supernates of two of the above extracts (totaling 200 g of apple

peel in 2 L of ethanol) were collected and evaporated to produce a

200 ml concentrate using a rotary evaporation system at 45uC
(RotavaporH R-200; Buchi, Flawil, Switzerland). The concentrat-

ed extract was made into powder using a freeze dryer (model

Super Modulo, Thermo Electron Corporation, NY, US).

Flash chromatography using a sorbent (Sorbent SP207-05

Sepabeads resin brominated styrenic adsorbent; particle size

250 mm, surface area 630 m2/g; Sorbent Technologies; Atlanta,

GA) was used to fractionate the concentrated apple peel extract

described above. The apple peel extract was loaded onto a

chromatography column (3.8645 cm, Sati International Scientific

Inc.; Dorval, QC, Canada) that contained 600 g of adsorbent and

had been conditioned with deionized water. After loading the

extract, the column was immediately washed with water (2–3 times

the bed volume of water). The removal of sugar from the crude

extract was monitored by measuring the Brix value of wash water

using a refractometer. The washing step was terminated when the

Brix value fell below 1%. The phenolic compounds retained in the

column were eluted using a step gradient of ethanol (800 ml per

elusion). The initial three fractions were eluted with 20%, 30%

and 40% ethanol. The eight subsequent fractions were collected

by increasing the volume of ethanol by increments of 5%. Eluates

were concentrated to 20 ml using a rotary evaporator (RotavaporH
R-200; Buchi, Flawil, Switzerland) at 45uC. Fraction four (AF4)

had the highest proportion of flavonols and other monomeric

phenolic compounds, and was therefore selected for this study.

LC-MS/MS analysis of phenolics in the C-18 fractions
Analyses of the major individual phenolic compounds present in

the apple peel fractions (Table 1) were performed according to our

previously described methods [36]. Analyses were performed using

a Waters Alliance 2695 separations module (Waters; Milford, MA)

coupled with a Micromass Quattro micro API MS/MS system and

controlled with Masslynx V4.0 data analysis system (Micromass;

Cary, NC). The column used was a Phenomenex Luna C18

(150 mm62.1 mm, 5 mm) with a Waters X-Terra MS C18 guard

column. For the separation of the flavonol, flavan-3-ol, phenolic

acid and dihydrochalcone compounds, a gradient elution was

carried out with 0.1% formic acid in water (solvent A) and 0.1%

formic acid in acetonitrile (solvent B) at a flow rate of 0.35 ml/

min. A linear gradient profile was used with the following

proportions of solvent A applied at time t (min); (t, A%): (0, 94%),

(9, 83.5%), (11.5, 83%), (14, 82.5%), (16, 82.5%), (18, 81.5%), (21,

80%), (29, 0%), (31, 94%), (40, 94%). The analysis of cyanidin-3-

O-galactoside was carried out using the mobile phases of 5%

formic acid in water (solvent A) and 5% formic acid in methanol

(solvent B) at a flow rate of 0.35 ml/min. The linear gradient

profile used was as follows; (t, A%): (0, 90%), (10, 70%), (17, 60%),

(21, 48.8%), (26, 36%), (30, 10%), (31, 90%), (37, 90%).

Electrospray ionization in negative ion mode (ESI-) was used for

the analysis of the flavonol, flavan-3-ol, phenolic acid and

dihydrochalcone compounds. The following conditions were used:

Capillary voltage of 3000 V, nebulizer gas (N2) temperature of

375uC and a flow rate of 0.35 ml/min. For the analysis of

cyanidin-3-O-galactoside, electrospray ionization in positive ion

mode (ESI+) was used. The settings for the positive ion

experiments were as follows: Capillary voltage of 3500 V,

nebulizer gas temperature of 375uC and a flow rate of 0.35 ml/

min. The cone voltage (25–50 V) was optimized for each

individual compound. Multiple reaction-monitoring (MRM) mode

using specific precursor/product ion transitions was employed for

identification and quantification of each phenolic compound using

external calibration curves generated individually for each

compound measured. The ion transition used for each compound

were as follows: for quantification in comparison with standards:

m/z 301R105 for quercetin, m/z 609R301 for quercetin-3-O-

rutinoside, m/z 463R301 for quercetin-3-O-glucoside and quer-

cetin-3-O-galactoside, m/z 448R301 for quercetin-3-O-rhamno-

side, m/z 595R301 for quercetin-3-O-paltoside, m/z 273R167

for phloridzin, m/z 353R191 for chlorogenic acid, m/z 179R135

for cafeic acid, m/z 193R134 for ferulic acid and isoferulic acid,

m/z 449R287 for cyanidin-3-O-galactoside, m/z 289R109 for

catechin and m/z 290R109 for epicatechin. In MRM experi-

ments, both quadrupoles were operated at unit resolution.

AF4-Mediated Neuroprotection
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Animal care
All experiments involving the use of animals were approved by

the Dalhousie University Committee on Laboratory Animals

(Protocol Numbers: 11-043, 11-007) and were performed in strict

accordance with the guidelines for the Canadian Council on

Animal Care. All surgeries were performed under 2% isoflurane at

a rate of 1.5 L/min through a vaporizer. All efforts were made to

minimize suffering. The animal holding rooms were on a 12-hour

dark/light cycle and water and food were provided ad libitum.

AF4 treatment
The AF4 dose for each experiment was standardized based on

the concentration of the total non-polymeric phenolics in AF4 that

included quercetin-3-O-glucoside, quercetin-3-O-galactoside, quer-

cetin-3-O-rhamnoside, quercetin-3-O-rutinoside, epicatechin, cat-

echin, cyanidin-3-O-galactoside, chlorogenic acid and phloridzin.

AF4 powder was dissolved in water (5, 10, 25 or 50 mg/10 ml).

The extract was administered by oral gavage to 6–8 week old

C57Bl6 mice. Mice in the control group were given an equivalent

volume of vehicle (water, 10 ml/kg, p.o.; once daily). Administra-

tion of water in the amount of 10 ml/kg equates to 0.25 ml for a

25 g mouse that is an acceptable volume for oral gavage. Twenty-

four hours after the final dose of AF4 or vehicle, all mice were

subjected to 50 min of hypoxia-ischemia (HI) and sacrificed 2

weeks later.

HI brain injury model: Unilateral common carotid artery
occlusion combined with exposure to a low oxygen
environment

The procedure used to induce cerebral ischemia in adult mice

was adapted from the HI method developed by Levine (1960) for

rats. Mice were anaesthetized using isoflurane (Baxter Corpora-

tion; Mississauga, ON, Canada) in an induction chamber (3%

vaporized with medical oxygen at a flow rate of 3 L/min). The

ventral portion of the neck was shaved and then sterilized with

Soluprep (SoluMed Inc.; Laval, QC, Canada) and Betadine

(Purdue Frederick Inc.; Pickering, ON). Anesthesia was main-

tained with 2% isoflurane vaporized with oxygen at a flow rate of

1.5 L/min. A small ventral incision was made on the neck of the

mouse with a pair of scissors to expose the sternohyoid and

sternomastoid muscles. The left carotid artery was located beneath

the intersection point of the sternohyoid and the sternomastoid

muscles. The left carotid artery was carefully separated from the

vagus nerve and permanently occluded using a high-temp

electrocautery pen (Bovie Instruments; St. Petersburg, FL). If the

common carotid artery was not completely occluded or exhibited

blood loss the mouse was immediately euthanized. Following a 2–

3 h recovery period the mice were placed in a hypoxia-chamber,

consisting of a glass cylinder vented with 8% oxygen balanced with

nitrogen flowing at a rate of 6 L/min. The chamber was placed in

a water bath at 36.5uC to maintain normal body temperature.

After 50 min of exposure to the low oxygen environment (8%

oxygen balanced with nitrogen) mice were removed from the

chamber and returned to their home cage. The mice were allowed

to survive for 2 weeks following HI to permit the brain infarct in

the ipsilateral hemisphere to develop before harvesting the brain

tissue for histological analyses.

Assessment of motor performance
Time spent on a rotarod (ACCURotorRotarod, ACCUScan

Instruments Inc.; Columbus, OH) was measured to assess motor

performance of the mice. The apparatus consists of an accelerating

rotating cylinder. The rotational speed increases at a constant

acceleration, thereby progressively increasing the difficulty for the

mouse to maintain its balance while walking. The amount of time

spent on the rod was recorded as a measure of performance, with

longer times indicative of better motor performance. The

acceleration of the rotarod was set to 100 rotations/min2. Mice

were tested on the third day of vehicle (10 ml/kg, p.o.; once daily

for 3 days) or AF4 (50 mg/kg, p.o.; once daily for 3 days)

treatment (24 h pre-HI) and 2 weeks following HI (14 days post-

HI). On each of these days the mice were tested with 3 sessions

and the average time spent on the rotarod was calculated for that

day. The difference in performance 14 days post-HI and 24 h pre-

HI was determined and compared between the two treatment

groups.

Preparation of tissue for histology
The mice were humanely euthanized by intraperitoneal (i.p.)

administration of sodium pentobarbital (Scherung-Plough; Pointe-

Claire, QC, Canada) at a dose of 240 mg/kg. The mice were then

transcardially perfused with 0.9% saline, followed by 4%

paraformaldehyde (PFA) in phosphate buffer (pH 7.4). Brains

were removed and post-fixed by storing in 4% PFA for 48–72 h.

Next, the tissue was cryoprotected by submersion in a solution of

30% sucrose in 0.1 M phosphate buffer for 24 h. Free floating

coronal sections were cut on a freezing microtome at a thickness of

30 mm and placed in a solution of phosphate with 0.06% sodium

azide for long-term storage.

Table 1. Concentration of polyphenolic compounds of
fraction number 4 (AF4) determined by LC-MS/MS.

Phenolic compounds Concentrationa

(mg/ml)

Flavonol Quercetin (Q) 9.960.3

Q-3-O-paltoside 63.862.4

Q-3-O-rutinoside 1535.7646.2

Q-3-O-galactoside 2914.9672.8

Q-3-O-glucoside 1474.8658.9

Q-3-O-rhamnoside 2771.6677.5

Total Flavonols 8770.7

Anthocyanins Cyanidin-3-O-galactoside 559.4616.7

Dihydrochalcones Phloridzin 386.8613.6

Phenolic acids Chlorogenic acid 1221.1631.2

Cafeic acid 43.662.0

Total phenolic acids 1264.7

Flavan-3-ols Catechin 106.863.7

Epicatechin 1044.3636.8

Total Flavan-3-ol 1151.1

Total phenolics 12132.7

amean 6 standard deviation of the mean for three determinations.
Phenolic Constituents in AF4. The total of major phenolics present in AF4
determined by LC-MS/MS to be 12132.7 mg/ml. The major polyphenolic
compounds detected in AF4 belong to subclasses of flavonols, anthocyanins,
dihydrochalcones, flavan-3-ols, phenolic acids and flavanols and were similar to
those reported by other investigations of apple skins. The most abundant
phenolics in AF4 were quercetin-3-O-galactoside, quercetin-3-O-rutinoside,
quercetin-3-O-glucoside, quercetin-3-O-rhamnoside, chlorogenic acid and (2)-
epicatechin.
doi:10.1371/journal.pone.0051324.t001
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Nissl staining
Serial forebrain sections cut 360 mm apart were mounted onto

superfrost glass slides (Fisher Scientific; Nepean, ON, Canada) and

allowed to dry for 24 h. Once dry, the sections were dehydrated

using a graded series of increasing concentrations of ethanol

(2 min of 50%, 70%, 95%, 100%) and then placed in xylenes for

5 min. Then the tissue was rehydrated using another graded series

of ethanol of decreasing dilution (100%, 95%, 70%, 50%). The

brain sections were then rinsed with distilled water, incubated in

1% cresyl violet solution (Sigma-Aldrich; Oakville, ON, Canada)

for 10–15 min, rinsed in water again and then destained in a 1%

acetic acid solution. The sections were then dehydrated through a

series of graded ethanol solutions of increasing concentrations

(50%, 70%, 95%, 100%) and cleared in xylenes before they were

coverslipped using Cytoseal (Stephens Scientific; Riverdale, NJ).

Infarct measurement
Volumetric measures of each hemisphere were carried out to

examine the extent of hemispheric atrophy. The area of the left

and right hemisphere was measured using the tracing function in

Scion image on every 12th section (total of 10 sections) between

Bregma 1.18 mm and 22.80 mm and a volume between sections

was approximated by multiplying the area by 360 mm (the distance

between consecutive sections). Volumetric values from the left side

of the brain were compared to the right side of the brain by

generating a ‘percent of control hemisphere’ value ([left volume/

right volume]/100).

Neuronal nuclei (NeuN) immunohistochemistry
Sections were rinsed three times with phosphate buffered saline

(PBS) containing 0.1% Triton X (PBS-TX) for 10 min at room

temperature and then placed in 1% H2O2 in PBS-TX for 30 min

to quench endogenous peroxidases. The tissue was then rinsed

three times in PBS-TX for 10 min and incubated in 5% horse

serum in PBS-TX for 30 min. Following incubation in serum,

sections were incubated with a primary monoclonal anti-NeuN

antibody raised in mouse (Cat. No. MAB377, Millipore; Etobi-

coke, ON, Canada) that had been diluted 1:2000 in PBS-TX for

1 h at room temperature and then left over night at 4uC on a

shaker. After incubating the tissue in primary antibody overnight

the tissue was rinsed three times in PBS-TX and then incubated in

a biotinylated anti-mouse secondary antibody raised in horse

(Vector Laboratories Inc.; Burlingame, CA) that had been diluted

1:500 in PBS-TX for 1 h. Following another series of washes in

PBS-TX, the tissue was incubated for 1 h in an Avidin-Biotin

complex diluted 1:1000 in PBS-TX to amplify the signal from the

secondary antibody. The sections were then washed and placed in

a solution of 0.5 mg/ml diaminobenzidine (DAB) (Sigma-Aldrich;

Oakville, ON, Canada) with nickel, glucose oxidase, ammonium

chloride and D-glucose in PBS. The tissue was reacted with the

DAB solution for 5–10 min until the desired staining intensity was

achieved. No primary, no secondary and no ABC controls were

used to confirm staining specificity. Finally, the tissue was washed

and mounted onto superfrost glass slides (Fisher Scientific;

Nepean, ON, Canada) and left to dry overnight. Once dry, the

sections were dehydrated in a graded ethanol series of 50%, 70%,

95%, and 100%, cleared in xylenes, and coverslipped using

Cytoseal (Stephen’s Scientific; Riverdale, NJ).

Image analysis of sections processed for NeuN
immunohistochemistry

Sections stained for NeuN immunoreactivity from the striatum

0.1 mm anterior to bregma and the hippocampus 1.8 mm

posterior to bregma were captured on a light microscope using

PixeLink software at 506 (106 ocular lens and a 56 objective).

The images were analyzed using ImageJ software by an observer

who was blind to the treatment group of the animals. The cell

counts in the striatum were determined by first converting the

images to an 8-bit grey scale. The pixel threshold was set to a level

three-fold greater than the background intensity and the pixels

were made black on a white background by selecting the binary

tool. The striatum was outlined and the analyze particle function

was used to count positively labeled cells in the striatum. An index

of neuronal cell survival was determined by dividing the number of

NeuN positive cells in the ipsilateral striatum by the number of

NeuN positive cells in the contralateral striatum: A value of 1.0

indicated no injury in the ipsilateral striatum, whereas a value less

than 1.0 indicated neuronal loss. Neuronal cell loss in the

hippocampus was determined similarly: The hippocampus was

outlined and the area of positively labeled cells was measured with

the measurement functions. Neuronal cell loss in the hippocampus

was determined by measuring the area occupied by NeuN positive

cells in the CA1-C3 region of brain sections cut approximately

1.8 mm posterior to bregma, as the dense packing of pyramidal

neurons in the dorsal hippocampus precluded individual cell

counts in sections 30 mm thick. The area of NeuN positive neurons

in the ipsilateral hippocampus was divided by the area of NeuN

positive neurons in the contralateral hippocampus to generate a

ratio of NeuN postive cells. A value of 1.0 indicated no injury in

the ipsilateral hippocampus, whereas a value less than 1.0

indicated neuronal loss.

Total hippocampal and striatal RNA isolation and
quantitative RT-PCR

Quantitative reverse-transcription polymerase chain reaction

(qRT-PCR) was performed to measure the relative expression of

pro-inflammatory, anti-apoptotic and erythropoietin transcripts.

The dorsal hippocampus and striatum ipsilateral to the carotid

artery ligation were collected from mice gavaged with vehicle

(10 ml/kg, p.o.; once daily for 3 days) or AF4 (25 mg/kg, p.o.;

once daily for 3 days) 1 h or 6 h following HI, submerged in

RNAlater RNA stabilization reagent (Qiagen; Toronto, ON,

Canada) and stored at 220uC. Total RNA was extracted from

hippocampi and striati using an RNeasyLipid Tissue Mini Kit

(Qiagen; Toronto, ON, Canada) according to the procedure

described by the manufacturer. RNA yield and purity were

measured by UV absorbance before samples were diluted to

10 ng/mL. Total RNA (50 ng) was reverse transcribed to generate

first-strand cDNA and amplified using Taqman one-step EZ RT-

PCR core reagents (Applied Biosystems; Foster City, CA). Mouse

primers and FAMH probes were purchased pre-mixed from

Applied Biosystems: Tumor Necrosis Factor-alpha (TNF-a;

Mm00443258_m1), Interleukin-1 beta (IL-1b;

Mm01336189_m1), Interleukin-6 (IL-6; Mm00446190_m1), Nu-

clear Factor of kappa Light Polypeptide Gene Enhancer in B-cells

Inhibitor-alpha (IkBa; Mm00477798_m1), Toll-like Receptor 2

(TLR2; Mm00442346_m1), Toll-like Receptor 4 (TLR4;

Mm00445273_m1), B-cell Lymphoma 2 (Bcl-2;

Mm00477631_m1), Cellular Inhibitor of Apoptosis Protein-1

(cIAP1; Mm00431811_m1), Cellular Inhibitor of Apoptosis

Protein-2 (cIAP2; Mm00431800_m1), X-linked Inhibitor of

Apoptosis Protein (XIAP; Mm00776505_m1) and Erythropoietin

(EPO; Mm01202755_m1). Reverse transcription, PCR amplifica-

tion and fluorescence detection were performed in duplicate for

each sample with an endogenous control gene (b-actin with VICH
probe: 4352341E; Applied Biosystems; Foster City, CA) using a

Stratagene MX3000P instrument with MXPro software (Agilent

AF4-Mediated Neuroprotection
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Technologies; Santa Clara, CA). All qRT-PCR reactions were

performed with a ‘no-template’ control. The relative expression of

target transcripts following AF4 alone (AF4-Sham), HI (Veh-HI)

or AF4 with HI (AF4-HI) was quantified using the 22DDCT

method [37] and expressed as fold increase in mRNA expression

relative to calibrator samples extracted from mice that received

vehicle and sham surgery (Veh-Sham). PCR cycling conditions

were 50uC for 2 min, 60uC for 30 min, 95uC for 5 min, followed

by 40 cycles of 95uC for 10 s and 60uC for 1 min. With some

minor exceptions, these methods were compliant with the

Minimum Information for Publication of Quantitative Real-Time

PCR Experiments (MIQE) guidelines [38] as shown in Tables S1

and S2 and Figures S1 and S2.

Preparation of mouse primary cortical neuron cultures
Embryonic day 15 timed pregnant CD1 out-bred mice were

obtained from Charles River Laboratories (Charles River; QC,

Canada). Primary cortical neuron cultures were prepared from

cerebral cortices of wild type (WT) CD1 mouse embryos as

described previously [39], with the following modifications.

Pregnant CD1 females were heavily anaesthetized with isoflurane

vapor (Benson Medical Industries, Inc., Markham, ON) before

being euthanized by decapitation. The embryonic day 16 (E16)

fetuses were immediately removed from the sacrificed pregnant

females by cesarean section and placed in ice-cold Hank’s

Balanced Salt Solution (HBSS) (GIBCO; Invitrogen, Amarillo,

CA). The meninges were removed from the brains and cortices

were isolated under a dissecting microscope. The cortices from

each embryo were placed in individual wells of a 24-well plate

(Corning; Lowell, MA), containing 1 ml of ice-cold PBS (GIBCO;

Invitrogen, Amarillo, CA) with 1 mM Mg2+, 13 mM glucose and

0.3% w/v bovine serum albumin (BSA) (Invitrogen, Amarillo,

CA). Under sterile conditions, the tissue was briefly minced,

transferred to 15 ml sterile conical tubes (Corning; Lowell, MA)

and centrifuged at 3506 g for 3 min at room temperature. The

dissecting solution was discarded and the cortical neurons were

then dissociated by incubating in 1 ml of 0.1% trypsin solution

(0.1% w/v trypsin (Invitrogen, Amarillo, CA) in PBS with 1 mM

Mg2+ and 13 mM glucose) at 37uC for 15 min. The trypsinization

was inhibited by the addition of 0.5 ml of trypsin inhibitor solution

that also contained DNase I (0.06% w/v trypsin inhibitor

(Invitrogen; Amarillo, CA) and 0.01% DNase I (Invitrogen;

Amarillo, CA) in PBS with 1 mM Mg2+, 13 mM glucose and 0.3%

w/v BSA). The tubes were mixed briefly and the cells were

centrifuged at 3506g for 3 min at room temperature. The trypsin

and inhibitor solutions were discarded and each cell pellet was

suspended in 1 ml of cortical neuron plating medium (Neurobasal

medium (Invitrogen, Amarillo, CA) with 10% fetal bovine serum

(GIBCO; Invitrogen; Amarillo, CA), 2% B27 supplement, 1 mM

L-glutamine, and 1% Gentamycin (Invitrogen; Amarillo, CA),

triturated 10 times and counted using trypan blue exclusion and a

hemocytometer. Cortical neurons were plated in 96-well plates

(Corning; Lowell, MA) that were pre-coated with poly-D-lysine

(PDL; Sigma-Aldrich; Oakville, ON) according to the procedure

described by the manufacturer. Briefly, plates were coated

immediately before use with 100 mg/ml PDL for 5-10 min

(50 ml/well), washed three times with tissue-culture grade water

and left to dry for 2 h before cells were introduced. Cortical

neurons were plated at a concentration of 16106 cells/ml (100 ml/

well) and medium was completely changed the day after plating to

serum-free cortical neuron medium (Neurobasal medium with 2%

B27 supplement, 5 mM HEPES, 1 mM L-glutamine, and 1%

Gentamycin), which was replaced every 3 days in culture. Cultures

were maintained in a humidified, 37uC incubator with 5% CO2.

Experiments were performed on the eighth day in vitro (DIV8).

Neuroprotection assay: LDH-release
Lactate dehydrogenase (LDH) is a stable cytosolic enzyme that

is released by necrotic cells upon membrane damage. The

membrane integrity of cortical neurons was assayed by measuring

the release of LDH using the Cytotoxicity Detection KitPLUS

(Roche Applied Science; Indianapolis, IN). This assay kit detects

LDH released into culture supernates by a coupled enzymatic

reaction that converts a tetrazolium salt into a red formazan

product. Resulting formazan was detected using an ELx800 UV

spectrophotometer (Bio-tek Instruments, Inc.; Winooski, VT).

Positive (100% LDH release) and negative (spontaneous LDH

release) controls were prepared in triplicate according to the

manufacturer’s instructions. Primary cortical neuron cultures were

prepared as described above. Cortical neuron cultures (DIV8)

were exposed to 1 mg/ml, 0.1 mg/ml or 0.01 mg/ml of AF4,

quercetin, quercetin-3-O-glucoside, quercetin-39-O-sulphate, quer-

cetin-3-O-glucuronic acid, isorhamnetin-3-glucuronic acid or the

corresponding DMSO control (0.1%, 0.01% or 0.001% DMSO,

respectively) in serum-free cortical neuron medium for 12 h

proceeding, as well as during the 12-hour period of OGD on

DIV9. Neurons were also incubated in the presence of N6-

cyclopentyladenosine (CPA; 1 mM), which has been reported to

prevent cell death caused by oxygen glucose deprivation (OGD)

[40]. Glucose-free medium (glucose-free Dulbecco’s Modified

Eagle Medium (Invitrogen; Amarillo, CA)) containing 1 mg/ml,

0.1 mg/ml or 0.01 mg/ml of AF4, quercetin, Q-3-O-glucoside, Q-

39-O-sulphate, Q-3-O-glucuronic acid, isorhamnetin-3-glucuronic

acid or the corresponding DMSO control (0.1%, 0.01% or

0.001% DMSO, respectively) was placed in a 96-well plate and

equilibrated to 0% oxygen in a modular chamber incubator

(Billups-Rothenberg; Del Mar, CA). The chamber was flushed for

4 min at 20 l/min with an anoxic gas mixture (5% CO2 and

Balanced N2) (PraxAIR; Dartmouth, NS) using a step-down

pressure system and placed in a humidified, 37uC incubator for

12 h. Cortical neuron medium was replaced with OGD-medium

(anoxic and glucose-free) and the cultures were placed in the

modular chamber incubator. The chamber was flushed again with

anoxic gas and placed inside a humidified, 37uC incubator for

12 h. Following, cell culture supernatants were collected on DIV9

for determination of released LDH. Absorbance was measured at

490 nm with a reference wavelength of 620 nm. Percentage of

total LDH release was calculated by following the instructions

provided by the manufacturer. Background was subtracted and

LDH-release in each sample was expressed as a percentage of the

positive control.

Statistical analyses
Unless otherwise indicated, results are expressed as mean 6

SEM (standard error of the mean). Data were analyzed using

Prism 4 software for Macintosh (GraphPad Software; La Jolla,

CA). Group differences were analyzed using a one-way ANOVA,

and when significant, Bonferonni tests were employed for post hoc

comparisons. Group differences were considered statistically

significant when p#0.05.

Results

Phenolic composition of AF4
The phenolic profile of the AF4 fraction measured by LC-MS/

MS is provided in Table 1. The major groups of compounds in

AF4 were flavonols, phenolic acids, flavan-3-ols, anthocyanins,
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and dihydrochalcones. The majority (72%) of these monomeric

phenolics were quercetin glycosides.

Oral administration of AF4 prior to HI reduces
subsequent motor performance deficits and brain
damage

Based on the results of pilot studies, we first examined the effects

of AF4 given by oral gavage at a dose of 50 mg/kg once daily for 3

days prior to HI on subsequent motor performance deficits and

brain damage. Motor performance was assessed using the rotarod

test in which the dependent measure was the amount of time

(seconds) an animal remained on an accelerating rotating rod.

Testing was performed on the third day of AF4 treatment (24 h

pre-HI) and 2 weeks following HI (day 14 post-HI). The difference

between rotarod scores for day 14 post-HI and 24 h pre-HI was

calculated and used as a measure of motor performance (Figure 1).

Mice that received vehicle (10 ml/kg, p.o.; once daily for 3 days)

displayed impaired motor performance after HI (29.2362.68). By

contrast, administration of AF4 (50 mg/kg, p.o.; once daily for 3

days) completely prevented motor performance deficits measured

14 days after HI as assessed by the rotarod test (5.47 6 2.39). In

keeping with these findings, the average hemispheric volume for

animals that received AF4 (50 mg/kg, p.o.; once daily for 3 days)

(88.6 6 4.2) was greater than that for mice which were given

vehicle (10 ml/kg, p.o.; once daily for 3 days) (62.0 6 2.1) prior to

HI (Figure 2).

AF4 produces a dose-dependent reduction of HI-induced
neuronal cell loss in the dorsal hippocampus and
striatum

In a second experiment, we examined the dose-response

relationships for the neuroprotective effects of pre-dosing with

AF4 in the dorsal hippocampus and striatum of mice subjected to

HI. Five groups of mice were dosed orally once daily with vehicle

(10 ml/kg) or AF4 (5, 10, 25 or 50 mg/kg) for 3 consecutive days.

All animals received 50 min of HI 24 h after the last administra-

tion of water or AF4. Neuronal cell loss in the hippocampus and

striatum was assessed 2 weeks after HI by counting the number of

NeuN positive cells in brain sections from these structures using

computer-assisted image analysis. AF4 produced a dose-dependent

increase in neuronal cell survival in both the dorsal hippocampus

and striatum (Figures 3 and 4). For the dorsal hippocampus, the

ratios of NeuN positive cells (ispilateral/contralateral sides) were

0.3560.09 for the vehicle treatment group, 0.3460.02 for the

5 mg/kg AF4 treatment group, 0.5760.07 for the 10 mg/kg AF4

treatment group, 0.7360.09 for the 25 mg/kg AF4 treatment

group and 0.6860.10 for the 50 mg/kg AF4 treatment group

(Figure 3). The lowest dose of AF4 that produced an increase in

neuronal cell survival in the dorsal hippocampus was 25 mg/kg

(p.o., once daily for 3 days). Increasing the dose of AF4 to 50 mg/

kg (p.o., once daily for 3 days) did not produce a further

improvement of neuronal cell survival. The dose-response

relationships for AF4-mediated neuroprotection in the striatum

were similar. The ratios of NeuN positive cells were 0.1760.04 for

the vehicle group, 0.2060.03 for the 5 mg/kg AF4 group,

0.6060.07 for the 10 mg/kg AF4 group, 0.6660.14 for the

25 mg/kg AF4 group and 0.6160.12 for the 50 mg/kg AF4 group

Figure 1. Motor performance scores. Animals were treated orally
with vehicle (10 ml/kg/day for 3 days) or AF4 (50 mg/kg/day for 3 days)
and subjected to 50 min of unilateral forebrain hypoxia-ischemia (HI).
The amount of time spent on the rotarod was recorded as a measure of
performance, with longer times indicative of better motor performance.
An overall score was calculated by taking the difference between the
average of 3 trials on the rotarod day 14 post-HI and 24 h pre-HI.
Relative to mice that were given vehicle (10 ml/kg/day for 3 days,
n = 20), animals which received AF4 (50 mg/kg/day for 3 days, n = 20)
displayed superior motor performance 2 weeks after HI. *p,0.001
relative to vehicle, Mann Whitney U test (two tailed).
doi:10.1371/journal.pone.0051324.g001

Figure 2. Brain injury and hemispheric volume loss. Represen-
tative Nissl-stained brain sections from two animals in the motor
performance study (A and B). Note the loss of tissue (arrows) in brain
sections from animals treated with vehicle (A and B, left panels) and
protection produced by AF4 (A and B, right panels). Volumetric
measurements from the mice used in the motor performance study (C).
A Mann-Whitney U test revealed that mice which received AF4 (50 mg/
kg, p.o.; once a day for 3 days) displayed considerably less brain
damage than vehicle (10 ml/kg, p.o.; once a day for 3 days) treated
mice. *p,0.001 relative to vehicle.
doi:10.1371/journal.pone.0051324.g002
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(Figure 4). The lowest dose of AF4 that produced an increase in

neuronal cell survival in the striatum was 10 mg/kg (p.o., once

daily for 3 days). Increasing the dose of AF4 to 25–50 mg/kg (p.o.,

once daily for 3 days) did not produce a further improvement of

neuronal cell survival. Based on these findings, the 25 mg/kg dose

of AF4 was considered optimal and was therefore selected for use

in subsequent studies.

Repeated administration of AF4 before HI is required to
reduce neuronal cell loss in the dorsal hippocampus and
striatum

In a third experiment, we examined the effects of 1, 3 or 7 pre-

doses of AF4 (25 mg/kg, p.o.; once per day) on the loss of NeuN

positive cells in the hippocampus and striatum of animals

subjected to HI (Figure 5A and B). Four groups, composed of

8–10 mice each, were dosed orally once daily with water (vehicle,

10 ml/kg) or AF4 (25 mg/kg) for 1, 3 or 7 days. All animals were

exposed to 50 min of HI 24 h after the last administration of AF4

or vehicle. Administration of AF4 (25 mg/kg, p.o.) once daily for

at least 3 days prior to HI was required to reduce neuronal cell loss

in the dorsal hippocampus and striatum. The ratios of NeuN

positive cells in the dorsal hippocampus (ipsilateral/contralateral

sides) were 0.2660.06 for the vehicle treatment group, 0.3460.07

for the 1 pre-dose AF4 group, 0.5960.08 for the 3 pre-dose AF4

group and 0.7260.09 for the 7 pre-dose AF4 group (Figure 5A).

Neuronal cell loss was reduced in the groups that received either 3

or 7 pre-doses of AF4 (25 mg/kg, p.o.), however, increasing the

number of AF4 pre-doses from 3 to 7 did not further improve

neuronal cell survival. A similar trend was observed in the

striatum. The ratios of NeuN positive cells in the striatum were

0.2360.05 for the vehicle treatment group, 0.4160.11 for the 1

pre-dose AF4 group, 0.7660.10 for the 3 pre-dose AF4 group and

0.7860.12 for the 7 pre-dose AF4 group (Figure 5B). As was the

case for the dorsal hippocampus, 3 and 7 pre-doses of AF4

(25 mg/kg, p.o.) produced comparable neuroprotection in the

striatum. These findings suggested that repeated administration of

this flavonoid-enriched fraction prior to HI was required for AF4-

derived phenols to reach neuroprotective concentration and/or

produce adaptive cellular responses that opposed the damaging

effects of HI. To maximize the probability of observing alterations

in the expression of genes that may mediate the neuroprotective

effects of AF4, we therefore elected to examine the effects of

administration of 7 doses of AF4 (25 mg/kg, p.o.; once daily) prior

to HI in subsequent experiments.

AF4 reduces pro-inflammatory gene expression in the
dorsal hippocampus 6 h after HI

In a fourth experiment, quantitative RT-PCR (qRT-PCR) was

employed to assess the effects of AF4 (25 mg/kg, p.o.; once daily

for 7 days) on the expression of genes encoding pro-inflammatory

mediators. Two groups of mice, composed 12 animals each, were

treated with vehicle (10 ml/kg, p.o.; once daily for 7 days) or AF4

(25 mg/kg, p.o.; once daily for 7 days). Half of the animals in these

groups were exposed to 50 min of HI 24 h after the last

Figure 3. Dose-dependent reductions of HI-induced hippocampal neuron loss produced by oral administration of AF4. Five groups
of adult male C57Bl/6 mice received either water (10 ml/kg, p.o.) or AF4 (5, 10, 25 or 50 mg/kg, p.o.) once daily for 3 days followed by 50 min of
unilateral forebrain hypoxia-ischemia (HI) (left hemisphere, panels A, C, E, G, I) 24 h after the last dose. Animals were killed 2 weeks later and brain
sections processed for immunohistochemical detection of the neuron specific marker NeuN. Cell counts revealed that neuroprotection was achieved
by the 25 mg/kg dosing regime of AF4 and that increasing the dose of AF4 to 50 mg/kg did not produce a further reduction in neuronal loss in this
structure (F). *p,0.05 versus vehicle and AF4 (5 mg/kg). No other comparisons were significantly different. AVONA followed by Bonferroni tests.
doi:10.1371/journal.pone.0051324.g003
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administration of vehicle (Veh-HI) or AF4 (AF4-HI). The

remaining half of these animals underwent sham surgery and

served as controls (Veh-Sham and AF4-Sham). Consistent with the

well established induction of pro-inflammatory cytokines by

cerebral ischemia, HI produced a marked elevation of mRNAs

encoding TNFa, IL-1b and IL-6 (Veh-HI; Figure 6A, B and C).

The expression of these genes was reduced to levels approaching

those observed in sham animals (Veh-Sham and AF4-Sham) in the

AF4-HI group. Detection of IkBa mRNA levels was used as a

surrogate for NF-kB activation. HI resulted in a modest but

significant elevation of IkBa mRNA levels that were completely

reversed in the AF4-HI group (Figure 6D).

AF4 modulates the expression of anti-apoptotic genes
following HI in a fashion that is consistent with
neuroprotection

Using RNA from the previous experiment, we next examined

the effects of AF4 on expression of genes encoding the anti-

apoptotic proteins Bcl-2, cIAP1, cIAP2 and XIAP in the dorsal

hippocampus 6 hr following HI (Figure 7A–D). HI increased

mRNA levels for Bcl-2 and cIAP2 (Veh-HI) that were reduced to

values observed in the sham surgery groups (Veh-Sham and AF4-

Sham) by administration of AF4 (25 mg/kg, p.o.; once daily for 7

days) before HI (AF4-HI) (Figure 7A and C). Unlike the gene

expression profiles for these anti-apoptotic genes, XIAP mRNA

levels were elevated in the AF4-HI group relative to Veh-HI

animals. No differences in cIAP1 expression were detected

between the four groups (Figure 7B).

Effects of AF4 on erythropoietin gene expression in the
dorsal hippocampus and striatum after HI

In a fifth experiment, we compared the effects of AF4 (25 mg/

kg, p.o.; once daily for 7 days) on expression of the gene encoding

erythropoietin (EPO) in the dorsal hippocampus and striatum 1

and 6 h after HI. Two groups of mice, composed of 24 animals

each, were treated with vehicle (10 ml/kg, p.o.; once daily for 7

days) or AF4 (25 mg/kg, p.o.; once daily for 7 days). Half of the

animals in these groups were exposed to 50 min of HI 24 h after

the last administration of vehicle (Veh-HI) or AF4 (AF4-HI). The

remaining half of these animals underwent sham surgery and

served as controls (Veh-Sham and AF4-Sham). Total RNA was

extracted from the dorsal hippocampus and striatum 1 and 6 h

after HI. There was a clear statistical trend for the induction of

EPO gene expression by HI in the dorsal hippocampus at 1 h

(Figure 8A, ANOVA, p = 0.065) that reached significance at 6 h

(Figure 8B). Although no statistical differences were detected 1 h

after HI in the striatum, AF4 administration appeared to enhance

EPO mRNA levels in animals that received HI (AF4-HI)

(Figure 8C). At 6 h, EPO mRNA levels were clearly elevated in

animals subjected to HI (Veh-HI and AF4-HI) relative to sham

surgery controls (Veh-Sham and AF4-Sham). Moreover, AF4

administration further enhanced levels of EPO mRNA in animals

subjected to HI (AF4-HI) (Figure 8D).

Figure 4. Dose-dependent reductions of HI-induced striatal neuron loss produced by oral administration of AF4. Five groups of adult
male C57Bl/6 mice received either water (10 ml/kg, p.o.) or AF4 (5, 10, 25 or 50 mg/kg, p.o.) once daily for 3 days followed by 50 min of unilateral
forebrain hypoxia-ischemia (HI) (left hemisphere, panels A, C, E, G, I) 24 h after the last dose. Animals were killed 2 weeks later and brain sections
processed for immunohistochemical detection of the neuron specific marker NeuN. Cell counts revealed that neuroprotection was achieved by the
25 mg/kg dosing regime of AF4 and that increasing the dose of AF4 to 50 mg/kg did not produce a further reduction in neuronal loss in this
structure (F). *p,0.05 versus vehicle and AF4 (5 mg/kg). No other comparisons were significantly different. AVONA followed by Bonferroni tests.
doi:10.1371/journal.pone.0051324.g004
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AF4 reduces the death of primary cultures of mouse
cortical neurons subjected to oxygen glucose
deprivation (OGD)

In a sixth and final experiment, the neuroprotective effects of

AF4, quercetin, quercetin-3-O-glucoside and several major quer-

cetin metabolites (quercetin-39-O-sulphate, quercetin-3-O-glucuro-

nic acid, isorhamnetin-3-glucuronic acid) relative to vehicle were

examined using primary cultures of mouse cortical neurons

subjected to OGD. Mouse primary cortical neuron cultures

(DIV8 cells, E16 Cortical Cultures) were incubated with either

1 mg/ml, 0.1 mg/ml or 0.01 mg/ml of AF4, quercetin, quercetin-3-

O-glucoside (Q3G), quercetin-39-O-sulphate (Q39S), quercetin-3-

O-glucuronic acid (Q3GluA), isorhamnetin-3-glucuronic acid

(IR3GluA) or the corresponding DMSO control (0.1%, 0.01%

or 0.001% DMSO, respectively) for 12 h proceeding, as well as

during the 12-hour period of OGD on DIV9. Neurons were also

incubated in the presence of CPA (1 mM) for equivalent periods of

time. The percent of total possible LDH (100% cell death) release

into serum free/aglycaemic/anoxic (OGD) medium was deter-

mined and used as a measure of total cell death. Treatment with

AF4, quercetin, quercetin-3-O-glucoside or quercetin metabolites

at concentrations of 0.01 or 0.1 mg/ml did not reduce % LDH

release in comparison to the vehicle treatment group (data not

shown). By contrast, treatment with AF4, but not quercetin

quercetin-3-O-glucoside or quercetin metabolites, at a concentra-

tion of 1.0 mg/ml produced a 65% reduction in LDH release in

comparison to the vehicle treatment group (Figure 9). These data

demonstrate that AF4, but not quercetin, quercetin-3-O-glucoside

or quercetin metabolites, directly protected mouse primary

cortical neurons from OGD-induced neuronal cell loss.

Discussion

AF4 reduces neuronal cell loss and motor performance
deficits in a mouse model of HI brain injury: Dose-
response relationships and pre-treatment effects

The primary finding of this study was the ability of oral pre-

dosing with AF4 (25 or 50 mg/kg, once daily for 3 days) to reduce

neuronal cell loss in the dorsal hippocampus and striatum of mice

subjected to a model of HI-induced brain damage. The striatum is

a structure in the basal ganglia that plays an important role in the

control of movement [41]. The preservation of motor performance

in animals that received AF4 (50 mg/kg, once daily for 3 days)

before HI therefore indicates that surviving neurons in this

structure operated properly. Dose-response studies revealed that

the lowest dose of AF4 that produced maximal neuroprotection in

the dorsal hippocampus and striatum was 25 mg/kg (once daily

for 3 days). This dose was used to determine the effects of

administering AF4 (25 mg/kg, p.o.; once daily) 1, 3 or 7 times

prior to HI on neuronal cell survival in these structures. At least 3

days of dosing with AF4 (25 mg/kg, p.o.; once daily) before HI

was required to reduce neuronal cell loss in the dorsal

hippocampus and striatum. At least two mechanisms may account

for the necessity to pre-treat animals with AF4 (25 or 50 mg/kg,

p.o.) for at least 3 days to prevent motor performance deficits and

neuronal cell loss in the HI model. First, 3 days of pre-dosing may

be required for AF4-derived phenols and/or their active

metabolites to reach physiological concentrations that are neuro-

protective. Second, several days of pre-dosing with AF4 may be

necessary to produce adaptive changes in gene expression that

enable various cell types within the brain to resist the injurious

effects of HI. This second explanation is supported by DNA

microarray and protein profiling studies demonstrating that

flavonoid-mediated neuroprotection is closely associated with

adaptive changes in the expression of many genes predicted to

increase resistance to ischemic brain damage [42–49].

AF4 modulates pro-inflammatory gene expression in a
fashion consistent with neuroprotection in the dorsal
hippocampus

HI produced a robust increase in the expression of genes

encoding the pro-inflammatory mediators IL-1b, TNF-a and IL-6

in the dorsal hippocampus that was suppressed by pre-treatment

with AF4 (25 mg/kg, p.o.; once daily for 3 days). Given the

Figure 5. Effects of 1, 3 or 7 pre-doses of AF4 on HI-induced
neuron loss in the striatum and hippocampus. Four groups,
composed of 8–10 adult male C57Bl/6 mice each, were dosed orally
(p.o.) once a day with water (vehicle, 10 ml/kg) or AF4 (25 mg/kg) for 1,
3, or 7 days. Twenty-four hours after the final dose of AF4 or vehicle all
animals were subjected to 50 min of unilateral hypoxia-ischemia and
sacrificed 2 weeks later. Brains sections from these animals were
processed immunohistochemically to visualize the neuron specific
marker NeuN in the striatum and hippocampus. Cell counts revealed
that neuroprotection was achieved by 3 pre-doses of AF4 and that
increasing the number of pre-doses to 7 did not produce a further
reduction in brain injury. *p,0.05 versus vehicle and 1 pre-dose. No
other comparisons were significantly different. AVONA followed by
Bonferroni tests.
doi:10.1371/journal.pone.0051324.g005
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injurious role played by pro-inflammatory cytokines in ischemic

brain damage [50,51], these findings suggest that AF4 may reduce

neuronal cell loss in part by decreasing the production of IL-1b,

TNF-a and IL-6. Induction of the transcriptional regulating factor

NF-kB drives the expression of many of the pro-inflammatory

mediators that contribute to ischemic brain damage [50–53].

Termination of NF-kB transcription is mediated by NF-kB-

dependent synthesis of the inhibitory IkBa subunit [54,55].

Measurement of IkBa mRNA levels by qRT-PCR has been

shown to be a sensitive and reliable method to quantify the

transcriptional power of NF-kB [56]. Consistent with a role for

NF-kB in the transcriptional activation of genes encoding IL-1b,

TNF-a and IL-6, IkBa mRNA levels were also increased in the

dorsal hippocampus of animals that received vehicle (10 ml/kg;

once daily for 3 days) prior to HI. Similarly, the suppression of HI-

induced cytokine gene expression by AF4 (25 mg/kg, p.o.; once

daily for 3 days) was mirrored by a reduction in IkBa mRNA

levels. In vitro studies support this observation by demonstrating

that AF4-derived flavonoids such as epicatechin and quercetin

block distinct signal transduction events necessary for NF-kB

activation [57–60]. Further neuroprotective benefits of AF4 pre-

treatment in the context of ischemic brain injury may be derived

from the direct inhibition of NF-kB induction within neurons that

would otherwise drive the expression of pro-apoptotic genes such

as p53 [61–64]. Lastly, we examined the effects of AF4 (25 mg/kg,

p.o.; once daily for 3 days) on the expression of toll-like receptors

TLR2 and TLR4 following HI. Cerebral ischemia increases the

central expression of both TLR2 and TLR4 that play opposite

roles in the modulation of ischemic brain injury. Studies that have

utilized mice which lack either TLR2 or TLR4 suggest that,

Figure 6. Effects of 7 days of AF4 pre-dosing on HI-induced pro-inflammatory gene expression in the hippocampus. Four groups of
mice were pre-dosed with vehicle (Veh, 10 ml/kg/day for 7 days) or AF4 (AF4, 25 mg/kg/day for 7 days) and subjected to sham treatment (Sham; Veh-
Sham, AF4-Sham) or unilateral forebrain hypoxia-ischemia (HI) (Veh-HI, AF4-HI) (A–F). The ipsilateral dorsal hippocampus was harvested 6 hours later.
Fold increases in mRNAs encoding TNF-a, IL-1b, IL-6, IkBa, TLR2 and TLR4 were determined by qRT-PCR, n = 6 for each group. *p,0.05 relative to all
other groups. wp,0.05 relative to Veh-Sham and AF4-Sham. No other comparisons were significantly different. AVONA followed by Bonferroni tests.
doi:10.1371/journal.pone.0051324.g006
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following an experimental stroke, increased TLR2 signaling

enhances resistance to ischemic brain damage, whereas TLR4

activation aggravates the injurious effects of cerebral ischemia [65–

67]. These findings are supported by the neuroprotective effects of

the TLR2 agonist Pam3CSK4 in a mouse model of transient

neocortical focal ischemia [68]. In agreement with these distinct

roles for TLR2 and TLR4 in the modulation of ischemic brain

damage, we found that pre-treatment with AF4 (25 mg/kg, p.o.;

once daily for 3 days) preferentially decreased the induction of

TLR4 mRNA levels by HI. The preservation of HI-induced

increases in TLR2 mRNA levels in the dorsal hippocampus of

animals that received AF4 (25 mg/kg, p.o.; once daily for 3 days)

is therefore consistent with a neuroprotective role for TLR2.

Similar findings have recently been reported for the flavonoids

baicalin and luteolin that reduced infarct volume and neurological

deficits in a manner associated with a down-regulation of mRNA

and protein levels for TLR4 and NF-kB in a model of permanent

focal ischemia [69,70].

AF4 alters the expression of anti-apoptotic genes
following HI

The neuroprotective effects of flavonoids have been linked to

activation of pro-survival signaling mediated by the PI3/Akt and

Erk pathways that stimulate expression of the proto-typical anti-

apoptotic genes Bcl-2 and XIAP [71–78]. HI enhanced the

expression of mRNA encoding Bcl-2 in the dorsal hippocampus

that was completely reversed by AF4 (25 mg/kg, p.o.; once daily

for 3 days). In situ hybridization histochemical studies have

localized increases in Bcl-2 mRNA following transient global

cerebral ischemia to pyramidal neurons in the hippocampus that

are exquisitely sensitive to ischemic injury [79]. Energy depletion

resulting from cerebral ischemia causes the excessive release of

glutamate and over-activation of post-synaptic NMDA receptors

[80–82]. This in turn triggers a massive rise in intracellular

calcium that activates the transcriptional regulating factor CREB

[83,84]. CREB is known to mediate transcriptional activation of

Bcl-2 in many cell types including neurons after cerebral ischemia

[85]. Reversal of HI-induced increases in Bcl-2 gene expression by

AF4 may therefore reflect a reduction in NMDA receptor-

mediated CREB signaling. This hypothesis is supported by the

ability of intravenous administration of a polyphenolic enriched-

extract from red wine to reduce both brain damage and the burst

of glutamate release, as assessed by in vivo brain microdialysis,

produced by transient focal ischemia [86]. HI also increased

mRNA levels for cIAP2 in the dorsal hippocampus. As was the

case for HI-induced Bcl-2 gene expression, these increases were

also attenuated by pretreatment with AF4 (25 mg/kg, p.o.; once

daily for 3 days). Hypoxia is a well accepted trigger for cIAP2

expression that following induction protects epithelial cells from

the injurious effects low oxygen levels [87]. Cytokines induced by

cerebral ischemia such as TNF-a and granulocyte colony-

stimulating factor also increase cIAP2 protein levels and thus

enhance the apoptotic resistance of vascular endothelial cells and

neurons [88–92]. In primary cortical neurons, exposure to high

concentrations of ATP (100 mm, 30 min) reached following

cerebral ischemia enhances cIAP2 expression via the JAK-Stat3

Figure 7. Effects of 7 days of AF4 pre-dosing on anti-apoptotic gene expression in the hippocampus following HI. Four groups of mice
were pre-dosed with vehicle (Veh, 10 ml/kg/day for 7 days) or AF4 (AF4, 25 mg/kg/day for 7 days) and subjected to sham treatment (Sham; Veh-
Sham, AF4-Sham) or unilateral forebrain hypoxia-ischemia (HI) (Veh-HI, AF4-HI) (A–D). The ipsilateral dorsal hippocampus was harvested 6 hours later.
Fold increases in mRNAs encoding Bcl-2, cIAP1, cIAP2 and XIAP were determined by qRT-PCR, n = 6 for each group. A,*p,0.05 relative to all other
groups. C and D, *p,0.05 relative to Veh-Sham and AF4-Sham. No other comparisons were significantly different. AVONA followed by Bonferroni
tests.
doi:10.1371/journal.pone.0051324.g007
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pathway [93]. Taken together, these findings suggest that

decreased cIAP2 expression in animals that received AF4 may

reflect the ability of this flavonoid-enriched fraction to reduce both

the expression of pro-inflammatory cytokines and extracellular

concentrations of ATP after HI. Unlike Bcl-2 and cIAP2 gene

expression that was induced by HI, mRNA levels for XIAP were

unchanged 6 h after HI. However, relative to animals that

received vehicle (10 ml/kg, p.o.; once daily for 3 days) before HI,

mice treated with AF4 (25 mg/kg, p.o.; once daily for 3 days) prior

to this insult displayed a small but significant rise of mRNA levels

Figure 8. Effects of 7 days of AF4 pre-dosing on erythropoietin gene expression in the hippocampus and striatum 1 or 6 h
following HI. Four groups of mice were pre-dosed with vehicle (Veh, 10 ml/kg/day for 7 days) or AF4 (AF4, 25 mg/kg/day for 7 days) and subjected
to sham treatment (Sham; Veh-Sham, AF4-Sham) or unilateral forebrain hypoxia-ischemia (HI) (Veh-HI, AF4-HI) (A–D). The ipsilateral dorsal
hippocampus (A and B) and striatum (C and D) were harvested from these animals 1 h (A and C) or 6 h (B and D) later. Fold increases in mRNAs
encoding erythropoietin (EPO) were determined by qRT-PCR, n = 6 for each group. B and D, *p,0.05 relative to all other groups. wp,0.05 relative to
all other groups. No other comparisons were significantly different. AVONA followed by Bonferroni tests.
doi:10.1371/journal.pone.0051324.g008

Figure 9. AF4 attenuated OGD-induced death of mouse primary cortical neuron cultures. Percentage of total possible LDH release from
mouse primary cortical cultures treated with vehicle (0.1% DMSO), quercetin, quercetin-3-O-glucoside (Q3G) or quercetin metabolites [Q-39-O-
sulphate (Q39S), Q-3-O-glucuronic acid (Q3GluA), isorhamnetin-3-glucuronic acid (IR3GluA)] or AF4 (n = 12) at a concentration of 1.0 mg/ml and
subjected to 12 h of OGD. Treatment with AF4 but not quercetin, quercetin metabolites or cyclopentyl adenosine (CPA) showed a significant
reduction in % LDH release in comparison to the vehicle treatment group at a concentration of 1.0 mg/ml. *p,0.05 versus all other groups. No other
comparisons were significantly different. AVONA followed by Bonferroni tests.
doi:10.1371/journal.pone.0051324.g009
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for this potent anti-apoptotic protein. The neuroprotective effects

of quercetin against status epilepticus-induced hippocampal

neuronal cell loss in rats are also associated with elevated XIAP

mRNA and protein levels in this brain region [94]. Furthermore,

sex differences in the susceptibility of mice to ischemic brain

damage are conferred by microRNA-mediated translational arrest

of XIAP such that females, which are more resistant to this form of

injury than males, have higher brain levels of XIAP mRNA [95].

These findings suggest that the ability of AF4 to increase XIAP

gene expression after HI may be functionally relevant to the

neuroprotective effects of this flavonoid-enriched fraction.

AF4 enhances the induction of EPO gene expression by
HI

EPO gene expression is activated by hypoxia as part of the

adaptive cellular response to reduced oxygen supply [96,97].

Molecular oxygen is utilized by prolyl hydroxylases to catalyze the

hydroxylation of the alpha subunits for the transcriptional

regulating factors Hypoxia Inducible Factor (HIF)-1 and HIF-2

[98–100]. Once hydroxylated, HIF-1a and HIF-2a are targeted

for degradation by the proteosome [101,102]. Reduced oxygen

levels result in stabilization of HIF-1a and HIF-2a and the

activation of hypoxia-responsive genes. Although HIF-1 was

identified first it is now well recognized that hypoxia-induced

increases in EPO gene expression are mediated by HIF-2a
[103,104]. Quercetin, a major flavonoid component of AF4, has

been shown to inhibit prolyl hydroxylase activity resulting in the

stabilization of HIF-1a and HIF-2a and the activation of hypoxia

response genes [105–108]. In keeping with these findings, AF4

pretreatment further enhanced HI-induced increases in EPO

mRNA expression in the striatum. Quercetin has also been shown

to enhance angiogenesis [106], while consumption of epicatechin

elevates hippocampal angiogenesis and the retention of spatial

memory in mice [109]. The neuroprotective effects of red wine-

derived phenolics in a rat model of transient focal ischemia are

also associated with increased brain artery diameter [86]. These

studies raise the possibility that increased cerebral vascularization

resulting in improved oxygen delivery may contribute to the

neuroprotective effects of AF4. If this protective mechanism had

been in operation, we would have expected expression of EPO, a

hypoxia responsive gene, to be reduced in the dorsal hippocampus

and striatum of animals that received AF4 before HI. However,

this was not the case. HI-induced increases in EPO expression

were unaltered in the dorsal hippocampus and enhanced in the

striatum of animals that received AF4. This strongly suggests that

AF4 did not improve neurological outcome after HI by enhancing

oxygen delivery to the brain. EPO has well established neuropro-

tective effects in models of ischemic and traumatic brain injury

suggesting that this cytokine may have reduced neuronal loss in

the striatum of animals treated with AF4 [110–113]. In view of the

ability of EPO to increase XIAP levels in neurons [114,115], it also

tempting to speculate that increased levels of this cytokine may

have mediated the induction of XIAP gene expression by AF4 in

animals which received HI.

Neuroprotective and anti-inflammatory effects of the
phenolic constituents of AF4

The major flavonoid constituents of AF4 are the quercetin

glycosides (quercetin-3-O-galactoside, quercetin-3-O-rutinoside,

quercetin-3-O-glucoside and quercetin-3-O-rhamnoside) that ac-

count for about 70% of the total phenolic content of this fraction

(Table 1). Numerous studies have reported that the administration

of these constituents individually (quercetin aglycone, quercetin-3-

O-rutinoside or quercetin-3-O-galactoside) or as a mixture derived

from natural sources (Fagopyrum esculentum, Abelmoschus manihot)

reduce brain damage and neurological deficits in rodents following

cerebral ischemia [93,116–122]. Because quercetin, quercetin-3-

O-rutinoside and quercetin-3-O-galactoside have low oral bio-

availability [15,123,124], the neuroprotective effects of these

compounds are typically examined following injection by the

intraperitoneal or intravenous route (for review see [125]).

Nevertheless, prolonged oral administration of quercetin-3-O-

rutinoside (25 mg/kg; once daily for 21 days) prior to an

experimental stroke produced by transient occlusion of the middle

cerebral artery has been found to reduce infarct size and

neurological deficits [116]. To the best of our knowledge, the

neuroprotective effects of quercetin-3-O-rhamnoside and querce-

tin-3-O-glucoside have not been examined individually using an

animal model of ischemic brain damage. However, quercetin-3-O-

rhamnoside as well as quercetin and quercetin-3-O-rutinoside

exhibit neuroprotective properties in an ex vivo model of

methylmercury-induced neurodegeneration [126]. These observa-

tions coupled with the high concentration of several quercetin

glycosides in AF4 suggest that all of them may contribute to the

neuroprotective effects of this flavonoid-enriched fraction. The

next most abundant phenolic in AF4 is chlorogenic acid (about

10% of the total phenolic content, Table 1). Chlorogenic acid has

well established anti-oxidant, anti-inflammatory and neuroprotec-

tive properties [24,127], which are thought to account for its

ability to reduce behavioural deficits in a rabbit model of embolic

stroke [128]. The flavan-3-ols (catechins), represented here by

epicatechin and catechin, composed just less than 10% of the total

phenolic content of AF4. Nevertheless, oral administration of

epicatechin or catechin protects against ischemic brain damage

suggesting these compounds may contribute to the neuroprotec-

tive effects of AF4 [129,130]. Finally, the anthocyanin cyanidin-3-

O-galactoside and dihydrochalcone phloridzin were responsible for

the remaining 7% of the total phenolic content for AF4. To the

best of our knowledge, the neuroprotective effects of cyanidin-3-O-

galactoside or phloridzin in a model of cerebral ischemia have not

been reported, however, oral administration of cyanidin-3-O-

glucoside shortly after transient focal ischemia produces a modest

reduction in infarct volume [131,132]. The post-dosing efficacy of

cyanidin-3-O-glucoside [132] and quercetin [119] in focal models

of stroke suggest that administration of AF4 shortly after cerebral

ischemia might also improve functional outcomes such as motor

deficits and infarct size.

Flavonoid constituents of AF4: Bioavailability and
pharmacokinetic properties in rodents and humans

In relating our findings to humans, it is important to consider

the bioavailability and pharmacokinetic properties of flavonoids

that comprise AF4 in animals and humans. Following ingestion,

flavonoids undergo extensive transformation resulting in metab-

olites with distinct pharmacodynamic and pharmacokinetic

properties [35,133]. In both rodents and humans, quercetin

glycosides (quercetin-3-O-glucoside) and catechins (catechin and

epicatechin) are better absorbed than galloylated catechins

(epigallocatechin) and anthocyanins (cyanidin) [124,133–135].

The long in vivo half-life of quercetin and catechin metabolites in

rodents, dogs and humans favours plasma accumulation with

repeated dosing [124,133,136]. This may account in part for the

necessity to dose mice with AF4 for at least 3 days prior to HI in

order to achieve neuroprotection. Furthermore, several in vivo

metabolites of quercetin and catechins exert anti-oxidant, anti-

inflammatory and neuroprotective activities [35]. Taken together,

these findings not only support the importance of quercetin
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glycosides and catechins for the neuroprotective and anti-

inflammatory effects of AF4 in mice but also their relevance for

humans.

Possible synergistic interactions between flavonoids that
comprise AF4

The neuroprotective effects of AF4 were also examined by

determining whether primary cultures of mouse cortical neurons

treated with this fraction were rendered more resistant to death

produced by oxygen-glucose deprivation (OGD) than cultures that

received vehicle. This model is known to induce the death of

neurons by a variety of pathogenic mechanisms implicated in

neurodegenerative disorders such as stroke, Alzheimer’s disease,

multiple sclerosis and Parkinson’s disease including excitotoxicity,

oxidative stress, calcium over-load, protease activation and

apoptosis [137,138]. Relative to primary cultures of mouse cortical

neurons treated with vehicle, addition of AF4 (1 mg/ml) to mouse

cortical cultures reduced OGD-induced cell death by over 60%.

This finding raises the possibility that the neuroprotective effects of

AF4 in the HI model may be mediated by direct effects of this

fraction on the brain. In support of this hypothesis neither

quercetin nor quercetin-3-O-glucoside, nor several major AF4

metabolites (quercetin-3-O-sulphate, quercetin-3-O-glucuronic ac-

id or isorhamnetin-3-glucuronic acid) protected cortical neurons

against OGD at a concentration of 1 mg/ml. These results also

suggest that the ability of AF4 to protect cortical neurons against

OGD may derive from the combined effects of multiple flavonoids

contained within this fraction that work in synergy. For instance,

compared to the present experiment, a much higher concentration

of quercetin (40 mg/ml) has been reported to be only modestly

protective (30% decrease in cell death) against a considerably

shorter period of OGD (50 min) [139]. In the case of cyanidin-3-

O-b-D-glucopyranoside (10 mg/ml), concentrations 10 times high-

er than that of AF4 (1 mg/ml) reduced cell loss by only 15%,

resulting from a short period of OGD (2 h versus 12 h used by the

present study) [131]. Neuroprotection produced by the flavones

baicalin and luteolin in the OGD model also require concentra-

tions that exceed 10 mg/ml [140–142]. In other models of

oxidative stress-induced cell death such as that produced by

exposure to hydrogen peroxide [143] or oxidized low-density

lipoproteins [144], protection only occurs at 10–15 fold greater

concentrations (10–15 mg/ml) for individual flavonoids than AF4

(1 mg/ml). Nevertheless, by combining different flavonoids such as

catechin (5 mg/ml), epicatechin (5 mg/ml) and epigallocatechin

gallate (0.5 mg/ml) it is possible to see benefits on biochemical

correlates of cell injury in the OGD model that are not observed

with 2–10 fold greater concentrations of these flavonoids

individually [145]. Taken together, these findings suggest that

the high neuroprotective potency of AF4 may be derived from

optimization of the flavonoid composition necessary to prevent the

deleterious effects of OGD.

Conclusions

In summary, we have demonstrated that repeated oral

administration of the flavonoid-enriched fraction AF4 (25–

50 mg/kg, once daily for 3 days) prior to an experimental stroke

produced by unilateral forebrain hypoxia-ischemia prevents motor

performance deficits and markedly attenuates neuronal cell loss in

the dorsal hippocampus and striatum. These profound neuropro-

tective effects were associated with a near complete suppression of

HI-induced increases in mRNA levels for genes encoding the pro-

inflammatory mediators IL-1b, TNF-a and IL-6 implicated in

ischemic brain injury. HI-induced increases in mRNA levels for

IkBa (a surrogate marker for NF-kB activation) were completely

suppressed in animals that received AF4 prior to HI. The ability of

different flavonoids found in AF4 [flavonol (quercetin) and flavan-

3-ols (epicatechin)] to inhibit distinct signaling events necessary for

NF-kB activation may account for the high degree of inhibition

achieved by AF4 pretreatment against HI-induced NF-kB

activation and the expression of genes such as IL-1b, TNF-a
and IL-6 that are driven by this transcriptional regulating factor.

HI also elevated mRNA levels for TLR4 that are thought to reflect

the activation of pro-apoptotic signaling pathways through this

receptor, resulting in neuronal cell death. These increases were

suppressed in animals that received AF4. By contrast, the

induction of TLR2 and EPO mRNAs levels by HI, associated

with enhanced pro-survival signaling, were not suppressed by AF4.

In the case of the striatum, AF4 pretreatment enhanced the

induction of EPO gene expression by HI suggesting that increased

production of this pro-survival cytokine may contribute to the

neuroprotective effects of AF4. Similarly, the enhanced induction

of mRNA levels for the potent anti-apoptotic protein XIAP by HI

in AF4 pretreated animals may also play a role in the

neuroprotective effects of this flavonoid enriched fraction. These

transcriptional mechanisms may explain, at least in part, the need

to repeatedly administer AF4 (25–50 mg/kg, once daily for at least

3 days) prior to HI in order to prevent subsequent brain damage.

Lastly, pre-incubation with AF4 (1 mg/ml) protected primary

cultures of mouse cortical neurons from OGD-induced death,

whereas this concentration of the major AF4 constituent

quercetin-3-O-glucoside or several major metabolites of this

flavonoid were ineffective. This finding is in keeping with our

hypothesis that the profound effects of oral administration of AF4

against HI-induced brain damage are achieved by co-operative,

perhaps even synergistic, actions between different phenolic

compounds in this fraction that interact with functionally distinct

targets.

Supporting Information

Table S1 The Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE)
guidelines. This table was adapted from MIQE guidelines

(Bustin SA et al (2009) Clin Chem 55: 611–622). Our compliance

to the MIQE guidelines is presented in column C. (E) Essential

information and (D) desirable information.

(XLS)

Table S2 Context sequences for each primer/probe
pair. TaqManH Gene Expression Assays were provided by

Applied Biosystems Inc. (Carlsbad, California). The supplier also

provided the interrogated reference sequences as well as locations

of the anchor nucleotide, and the amplicon lengths. Context

sequences were calculated according to established guidelines

(Bustin SA et al. (2011) Clin Chem 57: 919–921). In the listed

context sequences, the anchor nucleotide is highlighted in bolded

text.

(XLSX)

Figure S1 Quality analysis of extracted RNA using the
Experion automated electrophoresis system. Ten months

following RNA extraction and storage, three random samples

from each experimental group (Veh-Sham, Veh-HI, AF4-Sham,

AF4-HI) were assessed for RNA purity using an ExperionTM RNA

StdSens Analysis Kit (Bio-Rad Laboratories (Canada) Ltd;

Mississauga, Ontario). Samples were removed from 280uC
storage and prepared according to instructions from the

manufacturer. One ml of each sample was loaded for analysis. A)
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All samples were classified as Green (pass) or Yellow (acceptable)

using established RNA quality indicator (RQI) standards (http://

www.gene-quantification.org/Bio-Rad-bulletin-5761.pd). No sam-

ples were classified as Red (unacceptable). B) The virtual gel

visualizing the electropherogram data shows that 28S:18S ratios

are consistent between samples and that there was negligible

degradation of RNA 10 months after processing and storage.

(PPTX)

Figure S2 Determination of reference genes for qRT-
PCR normalization. Random samples of total RNA extracted

from the striatum of 3 animals in each experimental group (Veh-

Sham, Veh-HI, AF4-Sham, AF4-HI) were analyzed by qRT-PCR

for relative quantities of mRNAs produced by three reference

genes [b-Actin, Glyceraldehyde 3-Phosphate Dehydrogenase

(GAPDH), and Hypoxanthine Phosphoribosyltransferase 1

(HPRT1)]. Reverse transcription, PCR amplification and fluores-

cence detection were performed in duplicate for each reference

gene using a CFX96 TouchTM Real-Time PCR Detection System

with a C1000 TouchTM thermal cycler with analysis by CFX

Manager 3.0 (Bio-Rad Laboratories (Canada) Ltd; Mississauga,

Ontario). A) Relative quantities of mRNA for each reference gene

from each sample. B) geNorm report. Pairwise variations and M-

values were calculated from the relative quantities of mRNAs for

each reference gene using geNorm 3.5 software as described

previously (Vandesompele J, De PK, Poppe B et al. (2002)

Genome Biol 3: RESEARCH0034). b-Actin and HPRT1 both

generated M-value scores of ,0.5, indicating their acceptability as

reference genes.

(PPTX)
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