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Abstract

The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human
pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the
chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to
search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein
interaction network (PPI) study which can provide a better understanding of complex protein interactions in biological
system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against
public database of protein or domain interaction for interaction prediction (Interolog Mapping) and developed a dedicated
combined system score to address the predictions robustness. The confidence evaluation of network prediction approach
was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420,
43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted
network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological
potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of
potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the
predicted networks that can be valuable to select new potential biological targets for drug and vaccine development.
Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with
multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition,
around 50% of hypothetical protein present in the networks received some degree of functional annotation which
represents an important contribution since approximately 60% of Leishmania predicted proteomes has no predicted
function.
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Introduction

According to the World Health Organization (www.who.int),

there are roughly 12 million people infected with parasites from

the Leishmania genus, which can cause visceral, cutaneous, or

mucosal leishmaniasis [1], with an annual incidence from one to

two million. Leishmaniasis is considered a neglected tropical

disease responsible for a high estimated burden in Latin America

[2].

For case control and the treatment of leishmaniasis, the major

drugs used are either expensive, toxic, or both, and frequently

require long periods of supervised therapy [2]. In addition, the

pentavalent antimony based drugs that are the major chemical

compounds used for leishmaniasis treatment have many side

effects, such as pain, erythema, edema, abdominal pain, nausea,

thrombocytopenia or leucopenia, and cardiotoxicity [1]. Further-

more, many reports of parasite resistance have been published [3–

6]. It is worth mentioning that there are other medicines against

leishmaniasis, but some of them are not economically feasible for

many endemic countries [1].

To aggravate this situation, there are no effective vaccines for

leishmaniasis. Despite abundant clinical and experimental evi-

dence suggesting that leishmaniasis can be prevented by vaccina-

tion, the only proven vaccine agent in human beings is live

Leishmania major, and it is discontinued because of unacceptable

lesions in some recipients [1].

Therefore, based on the facts cited above, the necessity to

develop new drugs and vaccine approaches is apparent. In order

to reach this goal, new targets should be evaluated and the choice

and evaluation method should consider the many different aspects

of the complex biology of the agents of leishmaniasis. This

challenging task can be achieved by integrating different data sets

(e.g.; genome, transcriptome, proteome) in a systemic approach.

Currently, this biology-based interdisciplinary approach focusing

on the study of complex interactions in the biological system is

called Systems Biology [7].
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One of the main branches of Systems Biology refers to network

studies. Here, there are different types of networks: protein-protein

interaction network, metabolic network, regulatory network, etc.

These networks can provide valuable information about different

characteristics of an organism. More specifically, on a protein-

protein interaction network (PPI) it represents a set of proteins of

an organism, and how they interact with each other [8].

Moreover, the PPIs are undirected networks, in general are

scale-free [9] and modular [10].

Currently, there are many different experimental methods to

predict a PPI, among them we have the yeast two-hybrid method

and affinity purification coupled with mass spectrometry [8].

Nevertheless, they may not be feasible for all proteins for all

organisms, and they are susceptible to systematic errors. Thus, a

number of computational approaches have been developed to

predict protein-protein interactions based on protein or nucleotide

sequence in large-scale [11]. Some of the computational

approaches most known are the Phylogenetic Profile [12,13],

Genome Neighborhood [8], Gene Fusion [13,14], Sequence Co-

evolution [15], and comparison against the interaction public

database or Interolog Mapping [16–19].

In this work, the Interolog Mapping method was used.

Specifically on this approach, it assumes that if two proteins have

a great sequence similarity against two proteins from a public

database, and these latter ones interact, then the former ones

interact too.

Therefore, the main point of this work is to predict a PPI

network for each one of the target organisms, Leishmania braziliensis,

Leishmania major and Leishmania infantum. Ultimately, we intend to

use these networks to identify proteins and protein interactions

that can be used as new targets for drugs and vaccines

development.

Methodology

1– Evaluation of PPI Prediction Approach
In order to evaluate the confidence of our network prediction

methodology and consequently predict PPI networks for Leishmania

sp, a performance evaluation was conducted.

The gold standard positive dataset was extracted from DIP

(Database of Interacting Proteins) [7,20]. The DIP database

contains experimentally determined interactions between proteins,

integrates information from many sources and is manually curated

by experts. Given the information consistency of this database and

taking into account the amount of information concerning PPI

networks, E.coli was selected for the performance evaluation.

Regarding the specific selection of positive pairs, we considered

some points addressed on a recent work of Muley and Ranjan

[21]. In this context, 702 interactions were selected as positive gold

standard dataset.

The negative standard dataset used for the performance

evaluation was built based on the works of [22–26]. In summary,

considering all possible interactions in the model organism and

subtracting the experimentally validated ones, a random selection

was performed and only pairs containing proteins located in

different subcellular localizations were maintained. A ratio of 1:5

between positive and negative interaction pairs was used resulting

into 3,510 negative interactions.

Using these gold standards datasets and the model organism we

could identify the true positive (TP) or true negative (TN) protein

pairs predicted by our network prediction methodology. The

properly performance evaluation was made using ROC (Receiver

Operating Characteristic) curves using the ROCR package for R

(http://www.r-project.org/) [27]. A ROC curve is a plot of the

False Positive Rate (FPR) against the True Positive Rate (TPR or

sensitivity) for a given approach prediction. A random prediction

will give value of 0.5 for the area under the ROC curve (or AUC)

and a perfect prediction method would have an AUC value equal

to 1 [21].

2– Data Filtering
Before starting with the network prediction, a filtering was

performed on the predicted parasite proteomes to remove possible

annotation errors. The proteome versions utilized here were

version 2, final version, and version 3 for L. braziliensis, L. major and

L. infantum, respectively. The following three criteria were utilized

in this filtering. First, protein sequences should start with the

methionine amino acid. Second, protein sequences should not

have illegal characters such as X, B, Z, U, and ‘‘*’’ that are

ambiguous or do not represent any of the 20 amino acids. Third,

they should be bigger than 100 amino acids.

3– Predictions of Protein-Protein Interaction Pairs
To predict the protein-protein interaction pairs for the three

organisms (L. braziliensis, L. major and L. infantum), the Interolog

Mapping method was used. To apply the approach, we used four

public databases namely: Domine [28], PSI-Base [29], IntAct [30],

and String [31]. Here, it is worth mentioning the String database

are not limited to direct, physical interactions between two

proteins. Indirect interactions between proteins also exist such as

genetic and metabolic interaction. Nevertheless, according to the

last work describing the String database [32], most association

currently can not be specified with much precision in terms of their

mode of interaction. Thus the fundamental unit stored in String is

the ‘functional association’. In addition, the String has flat files

which have some degree of description about the interactions. If

we consider in these files the term ‘‘binding’’ as physical

interaction, we obtain nearly 94% of all interactions present in

String. Besides, the other terms present in these files do not

guarantee that the interactions are not physical interaction.

Therefore, the impact of indirect interactions in our networks is

minor. The first step here was to download all the interactions and

all the protein sequences present in those databases. After that, the

sequences from the predicted proteomes of the three protozoa

were compared against the protein sequences from the databases

and vice versa. To perform this comparison, we used the blastp

from the BLAST software package [33] for searching sequences

from PSI-Base, IntAct, and String. For the Domine database, the

sequence comparisons were made by hmmpfam (sequence against

HMM) and hmmsearch (HMM against sequence) from the

HMMER software package [34], since the Domine uses the

HMMs (Hidden Markov Models) present in the PFAM database

[35] to describe its proteins.

Therefore, a protein ‘‘X’’ from a database is only considered as a

homolog to protein ‘‘A’’ from one of the three organisms if protein

‘‘X’’ is the best hit for protein ‘‘A’’, and protein ‘‘A’’ is the best hit

for protein ‘‘X’’. This is called the Best Bidirectional Hit (BBH).

For each BBH, several measures were extracted. When a BBH

came from blastp result, we extracted from it the minimum

identity, minimum similarity and minimum alignment score

between two sequences. In addition, the alignment coverage was

extracted. When a BBH came from HMMER software, we

extracted just minimum alignment score. In summary, the

following formulas were applied:

PPI Networks in Leishmania Genus
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identity(AX )~

(minfmax
i,:::,k

identity((A/X )i), max
j,:::,l

identity((A?X )j)g)

similarity(AX )~

(minfmax
i,:::,k

similarity((A/X )i), max
j,:::,l

similarity((A?X )j)g)

coverage(AX )~

(minfmax
i,:::,k

coverage((A/X )i), max
j,:::,l

coverage((A?X )j)g)

alignScore(AX )~

(minfmax
i,:::,k

score((A/X )i), max
j,:::,l

score((A?X )j)g)

Here, ‘‘A’’ is a protein from a target organism, ‘‘X’’ is a protein

from a database, k is the number of results from the comparison

made using ‘‘X’’ as a query and ‘‘l’’ is the number of results from

the comparison made using ‘‘A’’ as a query. From each

comparison, the maximum values of each measure were taken.

Afterward, just the minimum values from the two comparisons

were used further. In addition, these measures were calculated for

each database if the e-value for each comparison was smaller than

10285 for String and IntAct results, 10245 for Domine and 10210

for PSI-Base.

We then mapped the interactions present in the databases on

the three proteomes. To do that, we firstly knew that ‘‘X’’ and ‘‘Y’’,

which are proteins from a database, interact. Second, we knew

that ‘‘X’’ was the BBH for ‘‘A’’, which is a protein from a target

organism, and ‘‘Y’’ was the BBH for ‘‘B’’, which is also a protein

from the same target organism of ‘‘A’’ protein. Hence, we assumed

that A and B interact.

In general each database has a confidence score for its

interactions, thus these scores were used to compose the final

combined score. In our case, we were not able to find this kind of

score for PSI-Base repository. In the end, for each database, the

score for each prediction was calculated according to the

followings:

scoreSTRING~

similarity(AX )zsimilarity(BY )
2

� �
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scoreDo min e~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
alignScore(AX )|alignScore(BY )

p
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2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
alignScore(AX )|alignScore(BY )

p

4– Calculating Confidence Score for Protein-Protein
Interaction

In order to attribute a confidence score for the predicted

interactions, we adopted the same rational described by [16,36]

and built a dedicated interaction combined score for our

methodology. This combined score takes into account the

prediction scores obtained from Domine, PSI-Base, IntAct and

String Databases from each protein interaction and is calculated

according to the formula shown below:

scorecomb(AB)~1{ P
i[E

(1{Si),

where score_comb(AB) is the combined score for the interaction

between proteins ‘‘A’’ and ‘‘B’’, E is all the methods that were used

to predict the interactions, and Si is the score normalized by the

biggest value calculated for the method i.

Many observed networks fall into the class of scale-free

networks, meaning that they have power-law (or scale-free) degree

distributions and this does not occur with random networks. Thus,

after the calculation of score_comb, the three predicted PPIs were

tested against the scale-free model for PPIs suggested by Barabasi

and Oltvai [37] and the hierarchical model suggested by Ravasz

et al [10]. The evaluation was made using Network Analyzer

Version 2.7 [38] plug-in at Cytoscape Version 2.8.3 [39,40].

Besides, our networks had their Clustering Coefficient and Mean

Shortest Path compared against 1,000 random networks produced

by Random Network Version 1.0 (http://sites.google.com/site/

randomnetworkplugin/) plug-in at Cytoscape. For that, the

empirical P-values were calculated.

5– Gene Ontology Annotation
For the functional annotation attribution we adopted the

classification vocabulary defined by the Gene Ontology Consor-

tium [41] (GO - http://www.geneontology.org/). The ontology

covers three domains: cellular component, the parts of a cell or its

extracellular environment; molecular function, the elemental

activities of a gene product at the molecular level, such as binding

or catalysis; and biological process, operations or sets of molecular

events with a defined beginning and end, pertinent to the

functioning of integrated living units: cells, tissues, organs, and

organisms.

The GO annotation schema adopted in this work came from

the public Kinetoplastid database TriTrypDB version 4.1 (http://

tritrypdb.org/tritrypdb/) [42]. This database provides for each of

three GO ontologies two kinds of evidence of annotation, one is

called annotated and the other predicted. In order to guarantee a

higher confidence on the functional annotation, when possible the

annotated terms were used for further analysis.

PPI Networks in Leishmania Genus
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6– Predicting Functional and Conserved Modules
At this part of the work, our goal was to identify functional

modules that are conserved in the predicted networks. Functional

modules can be understood as a group of proteins functionally or

physically linked that work together to reach a distinct function

[43]. Moreover, according to Ravasz et al [10], PPIs in general

have a modular or hierarchical architecture.

Then, to perform this prediction, we chose the networkBLAST

program [44] that performs two basic tasks: a) the comparison of

multiple PPI networks; and b) the prediction of functional

modules. The algorithm also combines interactions along with

sequence information in order to produce a network alignment

graph. Each node in this graph defines a group of similar proteins

whereas links between nodes defines putative complexes that are

evolutionarily conserved across the three predicted networks.

Interactions reliability scores are assigned using a probabilistic

model and the similarity information necessary for that is obtained

from a comparison of all versus all sequences present in the

predicted PPI networks.

Afterwards, in order to characterize the clusters or modules

found, a functional annotation schema is required. As described in

an earlier section, the GO functional annotation was used.

Following the functional annotation described above and

considering the Biological Process ontology, a GO term enrich-

ment analysis was performed using the GO::TermFinder [45] for

each cluster. In this approach, the statistical significance is

determined using the hypergeometric distribution to calculate

the P-value:

P~1{
Xk{1

i~0

M

i

� �
N{M

n{i

� �

N

i

� �

here, N is equal to total number of proteins in the background

distribution, which is the number of proteins in a PPI network that

received at least one GO term, M represents the number of

proteins within that background distribution that are annotated

(either directly or indirectly) to any GO term of interest. n is the

size of the list of proteins of interest (in our case it is the number of

proteins in the module of interest). Finally, k is the number of

proteins within that list or module which are annotated to the GO

term of interest. Besides, as we were dealing with multiple

hypotheses test, a correction for each P-value should be applied.

Here, GO::TermFinder applied the Bonferroni correction.

7– Topological Analysis
The metrics used in order to extract biological information from

the predicted PPIs were calculated using the CytoHubba Version

1.6 plug-in [46] at Cytoscape. In this work we used Degree and

Maximal Centrality Clique (MCC). According to CytoHubba

developer site (http://hub.iis.sinica.edu.tw/cytoHubba/

supplementary/index.htm), the MCC topological index showed

the highest overlap with known essential proteins of PPI network

of Saccharomyces cerevisiae. The reported overlap was 80% for the top

10 proteins and 70% for the top 100 proteins of the network.

Considering this outstanding performance, we use the MCC index

to rank the top 20 proteins from the three predicted PPI network.

Moreover, the variability of the top ranked proteins was also

assessed based on the ortholog group information present in the

TriTrypDB. In this database, the proteins of the Kinetoplastids

are clustered in groups based on OrthoMCL database information

(http://www.orthomcl.org/cgi-bin/ OrthoMclWeb.cgi). Thus, for

each ortholog group associated with the top ranked proteins a

multiple sequence alignment was performed using MAFFT [47]

and the mean identity evaluated with the alistat program from

HMMER package.

Complementarily, the immunologic potential of the selected top

ranked proteins was addressed using BCPred12 [48], which is a

predictor for potential epitopes recognized by B cells, NetCTL

[49] and NetMHCII [50] which are predictors for potential

epitopes with affinity binding to MHC class I and II alleles

respectively. Finally, the predicted proteomes of Mus musculus

(mouse), Canis lupus familiaris (dog) and Homo sapiens (human) were

downloaded from NCBI repositories (http://www.ncbi.nlm.nih.

gov/) on August 24, 2012 and used to address the sequence

similarity between these genomes and the top 20 proteins ranked

by MCC.

8– Evolutionary Analysis
It has been described that the proteins with high Degree (the

degree of a node in a network is the number of connections it has

to other nodes) probably are proteins more conserved and ancient

[51–53]. Then, in order to assess this assertion, we compared

Degree and the nucleotide diversity index (p) [54] of the proteins

present in the predicted PPI networks. This measure was obtained

first by defining a Degree range in the predicted networks. The

ranges were 2 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, and

greater than 50. The selected proteins jointly with their orthologs

extracted from the TriTrypDB were aligned using MAFFT, and

then the p was calculated for each ortholog group using the

Variscan program [55].

9– Hypothetical Proteins Analysis
In the strict sense, hypothetical proteins are defined as proteins

computational predicted from nucleic acid sequences that have not

been shown to exist by any experimental evidence. Furthermore,

these proteins are characterized by low identity to the known

annotated proteins in public domain databases.

The term ‘‘conserved hypothetical proteins’’ is also broadly

employed and describes a fraction of genes in sequenced genomes

that are found in organisms from several phylogenetic lineages but

that have not been functionally characterized and described at the

protein chemical level.

Trypanosomatids genomes are known to have a large amount of

hypothetical proteins (,60%) [56,57], and these might be involved

in essential cellular processes. Therefore, due to the importance

and amount of these proteins in the genomes that we are working

with and the possibility to use the PPI network to infer a function

for them, we decided to apply an approach called FS-Weight [58]

to try to obtain a clue on the possible functions for the hypothetical

proteins.

The FS-Weight method, which stands for Functional Similarity

Weight, is based on direct and indirect functional association using

PPI networks as the main input. Either direct or indirect neighbors

of a protein may share some physical or biochemistry features that

allow them to bind to this protein. Therefore, this method has as

an advantage that it does not use only direct interaction partners,

which would limit prediction to proteins that have at least one

interaction partner with known annotation, actually, FS-Weight

also uses indirect interaction partners which increases the chance

of predicting a protein function [58]. Furthermore, it calculates a

functional similarity between two proteins, not necessarily from

direct partners, based on the topological context of both proteins

and the reliability of the interactions they do. This calculation is

applied in order to reduce the effects of including erroneous

interactions. Hence, the more common proteins exist interacting

PPI Networks in Leishmania Genus
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with two any proteins the chances that these two proteins share

some biological function are higher. In addition, FS-Weight gives

greater weight to common neighbors than non-common ones [58].

It is also worth mentioning that the FS-Weight performance was

not re-evaluated for Leishmania species. The work that described

the approach utilized data of S. cerevisae to validate the method.

Therefore, some caution must be taken in using the function

predictions made for hypothetical proteins present in our

networks.

Moreover, to apply this annotation approach it is necessary to

use an annotation schema that has already been used for the

proteins with known functions. For this purpose we used the three

GO ontologies already described.

Results

1– Evaluation of PPI Prediction Approach
As detailed at Methods section, in order to evaluate the

confidence of our network prediction methodology, gold standards

positive and negative datasets were built from DIP database using

the protein interaction data from E.coli, used here as model

organism. This high quality control dataset that integrates 702

positive protein pairs and 3,510 negative protein pairs was used in

the performance evaluation made by Receiver Operating Char-

acteristics (ROC) graphs.

The accuracy of the proposed methodology measured by the

area under the ROC curve can be addressed on Table 1 and

through the plot presented on Figure 1. The AUC value of 0.94

obtained for score_comb indicates the robustness of the approach

adopted. However, this result should be considered carefully since

the databases used for the interolog-mapping contain many E. coli

interactions. This might lead the evaluation of the confidence of

our networks to some degree of bias.

2– Filtering of Data and PPIs Prediction
As mentioned earlier, a filtering step was performed on the three

proteomes in study in order to select sequences that were correctly

annotated. A small percentage of proteins were excluded from our

analyses since they presented possible errors. Then, the predicted

proteome of L. braziliensis, L. major and L. infantum lost 4.33%,

2.95%, and 4.78% of proteins, respectively (Table 2).

Subsequent to the filtering process, the three proteomes were

used for PPIs prediction. These predictions were made based on

different databases, such as Domine, PSI-Base, IntAct and String.

Using these evidences, we proposed and calculated a combined

score for the interactions predicted in the PPIs which ranged from

0 to 1. Afterwards, it was possible to demonstrate the wellness of fit

of scale-free models for the three predicted PPIs (Table 3).

The PPIs predicted were then compared against 1,000 random

networks. The Clustering Coefficient and the Mean Shortest Path

were compared (Table 3). The values of the Clustering Coefficient

of the PPIs are much greater than the random networks adding an

extra layer of credibility for the predicted networks.

As a result, the predicted PPIs incorporated 23%, 24%, and

25% (Table 4) of the proteins from the filtered proteomes of L.

braziliensis (Table S1), L. major (Table S2) and L. infantum (Table S3)

respectively. Figure 2 shows one of the three networks.

Furthermore, we used GO terms to try to draw a function

profile of the networks. For this analysis, we used the predicted

terms present in TritrypDB database instead of annotated terms.

The rationale underlying this choice was associated with the small

number of GO terms annotated for L. braziliensis that would

prevent its comparison against the other two leishmanias. The

three ontologies (Biological Process, Cellular Component, and

Molecular Function) were applied and similar results were found.

Considering a frequency larger than 2 for a given GO term, it is

worth pointing out that the total intersection among the predicted

networks was 79%, 84%, and 75% for Biological Process, Cellular

Component, and Molecular Function, respectively. In fact, from

the top 10 most frequent GO terms for each ontology, 8 of them

for Biological Process, 7 of them for Molecular Function and all of

them for Cellular Component are the same for the three networks.

3– Evolution Analysis
In order to obtain information relative to the correlation

between the number of interactions that a protein does and its

conservation degree, we compared the number of interactions of

the proteins of our networks against the nucleotide diversity of the

genes that encode them (Figure 3). Based on this analysis, as the

proteins increase the number of interactions that they participate

in, their diversity degree, measured here by p (nucleotide diversity

index), decrease. From the results obtained for the three predicted

networks we can suggest the existence of an evolutionary pressure

for the maintenance of a lower diversity in proteins with a high

number of interactions.

4– Characterizing Modules
At this point, the algorithm networkBLAST was used to identify

the modules in the PPIs. The number of conserved modules

shared by the three species of Leishmania was 199. Despite over

millions years of proposed divergence for the analyzed species, this

result is not surprising considering that a high synteny was already

observed and reported between all sequenced Leishmania species

[59].

Subsequently, as detailed in Methods section, a function

annotation assignment to the network modules was performed

using the Biological Process hierarchy of the Gene Ontology and

the Perl programming modules GO::TermFinder. This approach

allowed the identification of 153 modules which had GO terms

with a frequency higher than the expected. In that cases where a

given network module received more than one GO term, the most

significant one characterized by the smallest P-value in the

enrichment analysis was chosen. A complete description including

the results obtained for all 153 networks modules annotated can be

found in the Table S4. It worths to mention that differently from

standard clustering algorithms the networkBLAST approach can

produce overlapping modules which makes sense from the

biological point of view since one protein can belong to more

than one network module.

It is also important to highlight that only 57 unique GO terms

were used to describe the 153 network modules predicted and the

most frequent terms were assigned to modules which are likely

involved in biological processes related to protein folding,

translation, tRNA aminoacylation for protein translation, energy

Table 1. Performance evaluation of approach used to predict
PPI networks.

Measure of confidence AUC value

Developed method 0.94

Geometric mean of score 0.74

Geometric mean of evalue 0.57

Maximum evalue 0.55

doi:10.1371/journal.pone.0051304.t001
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derivation by oxidation of organic compounds and carbohydrate

metabolism.

Taking into consideration the biological significance of this

functional analysis, these results were overlapped with topological

analysis.

5– Topological Analysis
According to our proposed methodology, two topological

indexes (Degree and MCC) were utilized to study the interaction

networks predicted here (Table S5). Then, we sorted the proteins

present in the PPIs using the MCC index, and we obtained a list of

proteins that are central for different cliques (subgraphs) and with

high interaction degree (Table S6).

The following analyses were conducted for that list of proteins:

a) amino acid variability present in orthologs groups; b) degree of

conservation against proteins of three potential hosts (M. musculus,

C. lupus familiaris and H. sapiens); and c) epitope computational

prediction.

Regarding the variability of these proteins, our results revealed

an average identity of 80% between the top 20 proteins ranked by

MCC index and their orthologs. Therefore, it was possible to

Figure 1. Performance evaluation of approached used to predict PPI networks using the ROC curve. Here the predictions were
compared against a gold standard data of interactions extracted from DIP database for E. coli (see text for details).
doi:10.1371/journal.pone.0051304.g001
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notice that these proteins were relatively conserved among the

Kinetoplastids.

On the other hand, only two proteins, LbrM22_V2.0510

(proteasome regulatory ATPase subunit 1) and LmjF36.1650

(proteasome beta 5 subunit), from L. braziliensis and L.major

respectively, had identity higher than 60% when compared against

the host proteomes. In addition, L. infantum presented 2 proteins

with identity higher than 60%, they are LinJ36_V3.1730

(proteasome beta 5 subunit) and LinJ22_V3.0490 (proteasome

regulatory ATPase subunit 5).

In this context, we can suggest that the low identity presented by

the great majority of the top ranked proteins can be interesting for

drug and vaccine studies.

The rationale in suggesting that these proteins could be used for

medical purposes can be reinforced by the predicted function of

the network modules that they are inserted in. We noted that the

most of modules were involved in protein turnover which is known

to be involved in responses to vaccination [60]. In addition, we

found a total of 9 GO terms describing these modules and 7 of

them are shared by the top 20 ranked proteins of each predicted

PPI network.

Finally, in respect to immunological potential for these proteins,

all of them had more than 5 epitopes predicted for B cells

receptors. For the epitope prediction for MHC class I, 12 different

alleles were tested and all tested proteins had at minimum of 2

predicted epitopes with potential binding affinity to at least 11

alleles. The last analysis was for epitope predictions of MHC class

II. The predictor used for this analysis provides along with the

epitope prediction a measure of binding affinity between the

epitope and the receptor, and this measure is divided in two

categories: weak binding (WB) and strong binding (SB). We

selected just predictions which were categorized as SB. Thus, all

proteins have at least 2 epitopes with binding affinity to at

minimum of 1 allele tested. The total of tested alleles was 17.

6– Annotation Prediction for Hypothetical Proteins
In order to address the usefulness of the predicted network to

assign some level of functional annotation to hypothetical proteins,

we decided to use an approach called FS-Weight that takes into

account both direct and indirect neighbors as detailed at Method

section. From the total number of proteins covered by the

networks, approximately 21% were originally annotated as

hypothetical. From this set of proteins, nearly 40%, 48%, and

55% of them received some GO term based on the FS-Weight

approach (Table 4). In addition, it is important to point out that

this approach provides a score for all annotation prediction that

ranges from 0 to 1, and that just GO terms which received a score

equal to 1 were considered. Furthermore, when we crossed the

information on modules against the hypothetical proteins that

received a putative function it was possible to note that for the

three networks the hypothetical proteins are more frequently

present in modules involved in RNA metabolism. All proteins that

received a functional annotation are available in Table S7.

Discussion

Based on the results obtained regarding the accuracy of the

proposed approach for network prediction (AUC value equal to

0.94), we can state that the prediction methodology is relatively

reliable (Figure 1), and the predicted protein interactions own a

good confidence. However, as it was said on Results section, the

databases used for the methodology have many interactions of E.

coli. This might make the performance evaluation a practice of

circular reasoning, and thus lead it to some degree of bias.

In addition, we compared our interaction score schema against

others previously published [61]. It is clear from the obtained

results (AUC values presented in Table 1) that the score schema

we used outperformed the others. Therefore, we applied our

interaction score schema for leishmania PPI networks predictions.

Furthermore, the lost associated with the filtering step (detailed

in results) was small and this result reflects the quality of genome

Table 2. Number of proteins in the predicted proteome of the target organisms before and after the filtering.

Organism Total of proteins Total of proteins after filtering
Relative number of lost
proteins (%)

L. braziliensis 8310 7950 4.33

L. major 8408 8160 2.95

L. infantum 8216 7823 4.78

doi:10.1371/journal.pone.0051304.t002

Table 3. Fitting results for scale-free model, and Clustering
Coefficient and Mean Shortest Path for PPIs compared against
the same measure extracted from 1000 Random PPIs.

Leishmania braziliensis

Scale free model Correlation R2

0.941 0.816

Random model

Measure Modeled PPI Random PPIs P-value

Clustering Coefficient 0.433 0.15960,003 p,0.05

Mean Shortest Path 2.877 2.57960,004 p,0.05

Leishmania major

Scale free model Correlation R2

0.925 0.815

Random model

Measure Modeled PPI Random PPIs P-value

Clustering Coefficient 0.430 0.15760.003 p,0.05

Mean Shortest Path 2.914 2.58460.004 p,0.05

Leishmania infantum

Scale free model Correlation R2

0.940 0.829

Random model

Measure Modeled PPI Random PPIs P-value

Clustering Coefficient 0.424 0.16060.003 p,0.05

Mean Shortest Path 2.886 2.57360.004 p,0.05

doi:10.1371/journal.pone.0051304.t003
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Table 4. General features of the three predicted PPI Networks.

Organism Number of Nodes (Proteins) Number of Interactions
Number of hypothetical
protein

Number of hypothetical
protein annotated (%)*

L. braziliensis 1818 39420 381 153 (40%)

L. major 1947 43531 416 200 (48%)

L. infantum 1959 45235 415 229 (55%)

*Proteins were annotated following the methodology described in the text.
doi:10.1371/journal.pone.0051304.t004

Figure 2. Protein-Protein Interaction for L. infantum visualized using Cytoscape 2.8.3 and the Edge-weighted spring embedded
layout.
doi:10.1371/journal.pone.0051304.g002
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annotation for the three different leishmanias, which is valuable

since our main input data was the protein sequences and the final

results depended on the quality of them.

Still on the computational prediction quality issue, in our results

we described the assessment of the PPIs based on some known

network models such as scale-free model [9] to guarantee their

confidence. It is possible to suggest that the PPI networks predicted

are consistent as they present features which are common for

biological networks currently described. In addition, when the

PPIs were compared to random networks (Table 3), it was possible

to notice that the values of the Clustering Coefficient of the PPIs

are much greater than the random networks, a find that once

again suggests the PPIs prediction strength and the absence of

spurious interactions. Both results can be used to illustrate the

confidence of interolog mapping approach and to reinforce the

result found for its evaluation performance, even when there might

be a possibility of bias on the evaluation.

In terms of the number of proteins present in the PPIs, our

findings are comparable to those found for L. major by Flórez 2010,

which found nearly 16% of the L. major predicted proteome in a

predicted PPI. According to the authors, the reason for the small

number of proteins mapped in PPIs is a reflection of low levels of

similarity between leishmania species and the used database

content. On the other hand, the differences between the predicted

number of interactions observed in our work and Flórez 2010 can

be explained by the different sources of information and

approaches used.

Following the network assessment, the first analysis performed

in the three PPIs was a Gene Ontology functional annotation.

Moreover, it is also noteworthy that the most frequent terms for

the three networks regarding Molecular Function ontology are

related with binding function, which makes sense since the

proteins present in the PPIs are predicted to interact with each

other. On the other hand, about the Cellular Component

category, we observed terms associated with protein complexes

such as proteasome and ribosome. Again, this was somehow

expected since a set of interacting proteins possibly are going to

form complexes. However, for Biological Process, we obtained a

higher diversity of terms that can be hypothesized to be explained

by the fact that the same protein can participate in many different

processes in a cell.

Figure 3. Degree versus diversity analysis. Graph of median of Nucleotide Diversity (p) measure (Y axis) versus Degree range (X axis) of three
PPIs.
doi:10.1371/journal.pone.0051304.g003
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We also performed an evolution analysis in order to verify

whether there was any trend related to the number of interactions

and protein sequence diversity. Our results indicate that the

number of interactions and diversity are inversely proportional,

meaning that as the diversity increases, the number of interactions

decreases. In protein-protein interaction networks, proteins

presenting several interactions (high degree) are generally called

hub nodes and genome-wide studies [62,63] have shown that the

deletion of a hub protein is more likely to be lethal than the

deletion of a non-hub protein (centrality-lethality rule). In

addition, this finding makes sense because these proteins probably

are involved in different biological process within a cell with

relative success and, in this context, if a random mutation

happens, it will likely produce a negative outcome.

Therefore, the points raised herein show that the predicted PPI

networks are biologically consistent. Otherwise, we had a trend of

proteins with a wide diversity of conservation as hubs.

Another point addressed in our analysis was the network

modularity of the predicted PPIs. Modularity is one measure of the

structure of networks and many previous works have reported that

biological networks are modular [10,37,43,64]. This feature is

important for their robustness since a modular architecture

guarantees that a system failure is isolated [37]. Thus, if we are

interested in destabilizing the PPIs for drug or vaccine purposes,

we need to know the modules present in the networks.

In this context, aiming to measure modularity, a clustering

analysis was performed in order to identify conserved modules. As

it was stated in results section, we found 153 conserved modules

which had a function assigned by the enrichment analysis, and

these modules can be grouped in 57 different functions.

Based on these findings, it is possible to note that there are many

protein complexes (modules) that are essential for the studied

organisms. Thus, it is worth to explore in more details these

complexes along with the topological information of the network

proteins with the potential to elect new potential proteins targets

for vaccine and drug development.

In addition, other sources of information were integrated to

topological analysis, such as immunological potential, degree of

protein sequence conservation among orthologs and degree of

identity compared to proteins of potential parasite hosts (human,

dog and mouse).This information integration provides a better

understanding that can be valuable to select new potential

biological targets.

Using this rationale, we suggested a list of proteins (Table S6)

that can be attractive for medical purposes. These proteins have a

low identity against proteins from hosts, they are potentially

recognized by B cells and T cell receptors and are highly

conserved compared to their orthologs. In addition, they seem to

be central for many biological processes as they have high values of

MCC and degree indexes, thus if they are neutralized all the

system of protein interaction might suffer severe damage.

Moreover, those proteins do not have high level of identity

against the proteins from host proteomes, a desirable characteristic

for proteins that will be selected for vaccine development and/or

drug therapy. Consequently, side effects can be avoided. Other

important feature is the high level of conservation of them when

compared against their orthologs; this can guarantee a wide

spectrum of action. In the end, they have several potential epitopes

which are fundamental for the most important kinds of

immunological responses.

Finally, we are interested in using the PPI network information

in an annotation framework to assign a putative function to the

currently predicted hypothetical proteins. Within the Trypanosa-

matids context, the study of hypothetical proteins has huge

importance, since some organisms, which comprise a part of this

group such as the ones that are targets of this work, have around

60% of their predicted proteomes composed of uncharacterized

proteins [56,57]. This scenario is kept current even within the

‘omics’ age because the majority of studies often focus on already

well understood and established molecular scenarios. Therefore,

the opportunity to expand knowledge further than the known and

expected is rarely attempted [65].

Furthermore, the majority of researchers are not interested in

investigating the molecular data that are hard to interpret in the

light of current biological knowledge, i.e. data on hypothetical

proteins [65]. However, the Systems Biology approaches can help

to improve these numbers. Thus, there is a group of methods in

the Systems Biology context that aims at exploiting information

derived from networks to elucidate functional prediction. Hence,

various classification methods allow for general function predic-

tions utilizing ‘homology-free’ protein sequence features [65].

An example of the application of a network study to elucidate a

function of an uncharacterized protein can be found in the work of

Cui et al where they built a protein-protein interaction network for

Mycobacterium tuberculosis using an homology protein mapping

approach [66]. In this study, a hypothetical protein with a high

degree of interaction was found and evidence for its function came

from the fact that it interacts with the same group of ABC

transporter ATPase subunits as does a known protein [66]. Thus,

this rationale of assigning a function based on the neighbors of a

protein can be extremely useful.

In our results, around 50% of the hypothetical proteins present

in the networks received some functional annotation. Moreover,

the most frequent modules, where those proteins are present, are

related to RNA metabolism. This could be interesting as there is

currently a huge amount of studies involving different types of

RNA and their roles in distinct biological phenomena.

Finally, our group is involved in analysis concerning ‘‘Intrinsi-

cally Unstructured Proteins’’ (IUPs) and our previous results (still

unpublished) link many features of this group of proteins with the

group of hypothetical proteins in Trypanosomatids (data not

published). This should be investigated in the future since there are

many articles showing how important the IUPs are for the protein-

protein interaction networks [67–70].

Conclusion
This work was the first to predict three protein-protein

interaction networks for three different species of Leishmania and

to compare them to each other. A new interaction score schema

was proposed and proved to be reliable. Using this strategy, we

observed that it is possible to extract important information related

to the biology of the studied organism. In addition, using the

topological information, we can select proteins that are potential

targets for drugs and vaccine development. However, since

vaccine and drug prediction represent a complex and multifacto-

rial problem, more data, such as structural data, expression data,

etc could be added in order to choose the proteins for future

studies in a more efficient way.

In addition, addressing the network information, it was possible

to infer some clues regarding some hypothetical proteins that did

not have any information related to their molecular functions in

the cell.

In summary, based on the evidences reported here, we believe

that the networks modeled are biologically consistent and can be

useful as tool for different kinds of studies on these organisms.
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