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Abstract

Background: Monozygotic twins discordant for type 2 diabetes constitute an ideal model to study environmental
contributions to type 2 diabetic traits. We aimed to examine whether global DNA methylation differences exist in major
glucose metabolic tissues from these twins.

Methodology/Principal Findings: Skeletal muscle (n = 11 pairs) and subcutaneous adipose tissue (n = 5 pairs) biopsies were
collected from 53–80 year-old monozygotic twin pairs discordant for type 2 diabetes. DNA methylation was measured by
microarrays at 26,850 cytosine-guanine dinucleotide (CpG) sites in the promoters of 14,279 genes. Bisulfite sequencing was
applied to validate array data and to quantify methylation of intergenic repetitive DNA sequences. The overall intra-pair
variation in DNA methylation was large in repetitive (LINE1, D4Z4 and NBL2) regions compared to gene promoters (standard
deviation of intra-pair differences: 10% points vs. 4% points, P,0.001). Increased variation of LINE1 sequence methylation
was associated with more phenotypic dissimilarity measured as body mass index (r = 0.77, P = 0.007) and 2-hour plasma
glucose (r = 0.66, P = 0.03) whereas the variation in promoter methylation did not associate with phenotypic differences.
Validated methylation changes were identified in the promoters of known type 2 diabetes-related genes, including
PPARGC1A in muscle (13.966.2% vs. 9.064.5%, P = 0.03) and HNF4A in adipose tissue (75.263.8% vs. 70.563.7%, P,0.001)
which had increased methylation in type 2 diabetic individuals. A hypothesis-free genome-wide exploration of differential
methylation without correction for multiple testing identified 789 and 1,458 CpG sites in skeletal muscle and adipose tissue,
respectively. These methylation changes only reached some percentage points, and few sites passed correction for multiple
testing.

Conclusions/Significance: Our study suggests that likely acquired DNA methylation changes in skeletal muscle or adipose
tissue gene promoters are quantitatively small between type 2 diabetic and non-diabetic twins. The importance of
methylation changes in candidate genes such as PPARGC1A and HNF4A should be examined further by replication in larger
samples.
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Introduction

Type 2 diabetes (T2D) is a heterogeneous and complex disease

resulting from a combination of impaired pancreatic insulin

secretion and insulin resistance in tissues such as skeletal muscle,

adipose tissue, and liver. The etiology of tissue defects causing

T2D is multifactorial. Several gene polymorphisms have been

identified [1–8], which together with environmental factors such as
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an adverse fetal environment, aging and obesity increase the risk of

T2D [9–11].

Phenotypic discordance in monozygotic twins is traditionally

attributed to environmental factors distinct for each individual.

Therefore, paired analyses of monozygotic twins discordant for a

disease phenotype provide an excellent tool for examination of the

environmental contribution to the disease in question.

Epigenetics is traditionally referred to as heritable changes in

gene expression which are not due to any alteration in DNA

sequence. Besides being heritable, epigenetics is altered by

environmental factors and hence represents a potential mechanism

through which the environment may cause phenotypic variation

[12]. Two major classes of epigenetic modifications of the

chromatin exist: methylation of cytosine, mostly at cytosine-

guanine dinucleotides (CpG)s, and histone modifications, notably

acetylations and methylations. The gene promoter regions are rich

in CpG sites, forming CpG islands [13], and methylation of these

cytosines is thought to silence gene transcription [14,15]. Histone

modifications may result in both activation and silencing of genes

[16].

Dietary intervention [17,18] and exercise [19,20] have been

demonstrated to provoke epigenetic modulation in humans. We

previously investigated global differences in methylation of

repetitive intergenic DNA sequences and acetylation of histones

in young and elderly monozygotic twin pairs. Interestingly, each

pair of young twins had essentially similar epigenetic markings,

whereas intra-pair differences were substantial in elderly twins,

suggesting epigenetic changes to accumulate during life [21].

Therefore, epigenetics has been supposed to play a role in the

development of age-related diseases [22]. Data on the role of

epigenetics in T2D are still sparse, particularly in the glucose

metabolic tissues involved in the pathogenesis of insulin resistant

T2D. Increased methylation of PPARGC1A, encoding peroxisome

proliferator-activated receptor (PPAR)c co-activator 1a (PGC-1a),

was first reported in pancreatic islets from type 2 diabetic

individuals [23], and interestingly, similar T2D-related changes

were also found in skeletal muscle [24]. In addition, another gene

involved in mitochondrial function, PDK4, has been shown to have

increased methylation in skeletal muscle from T2D patients [25].

Among the known genes associated with genetic risk of T2D some

have been identified with DNA methylation differences between

type 2 diabetic and healthy individuals including INS [26] and

PDX1 [27] in pancreatic islets and FTO, SLC30A8 and TCF7L2 in

leukocytes [28,29]. Furthermore, a recent epigenome-wide asso-

ciation study of pancreatic islets from type 2 diabetic and non-

diabetic deceased individuals found differential methylation in

several genes not previously associated with T2D, including

NIBAN and CHAC1 which are involved in endoplasmic reticulum

stress [30]. Also individuals genetically predisposed to T2D

through a family history of T2D have been shown to have altered

DNA methylation in skeletal muscle, among others in mitogen-

activated protein kinase pathway genes [20].

Applying an epigenome-wide microarray approach in a unique

population of elderly monozygotic twins discordant for T2D, the

present study aimed to examine whether likely acquired changes in

DNA methylation of gene promoters in skeletal muscle and

subcutaneous adipose tissue (SAT) associate with T2D. We

hypothesized that the genomic identity of the twins would

eliminate genetic causes of T2D-related DNA methylation

facilitating the identification of acquired changes in a paired study

design. On the other hand, the difficulty of obtaining biopsy

material from a larger number of the rare T2D-discordant twin

pairs is a limitation of the study.

Results

Subject Characteristics
The study population included 12 Danish monozygotic twin

pairs discordant for T2D (Table 1). Skeletal muscle and abdominal

SAT biopsies were available from 11 and 5 pairs, respectively. The

non-diabetic co-twin had normal glucose tolerance in 2 pairs and

impaired glucose tolerance in 10 pairs (Figure 1A). Insulin

sensitivity, measured as the glucose infusion rate (GIR), was

significantly lower in twins with T2D than in their non-diabetic co-

twins (Figure 1B). In addition, fasting plasma glucose, blood

hemoglobin A1c (HbA1c) and body mass index (BMI) differed

significantly between type 2 diabetic and non-diabetic twins

(Table 1).

Global DNA Methylation Patterns
In skeletal muscle and SAT, the fractions of low methylated

(,25%) CpG sites on the array were 64% and 65%, respectively,

whereas the fractions of highly methylated (.75%) sites were 13%

and 15%. Twins from a pair were relatively similar regarding

DNA methylation in each tissue type (Figure 2A2B), whereas the

intra-individual methylation difference between skeletal muscle

and SAT was considerable (Figure 2C). The intra-pair methylation

differences were slightly larger in skeletal muscle than in SAT.

Twin pair was a significant predictor of overall methylation

pattern in both skeletal muscle (P,0.001) and SAT (P,0.001),

whereas overall methylation did not differ according to diabetes

status (P.0.1). However, in both muscle (P,0.001) and SAT

(P = 0.009), twin pair interacted with diabetes status. The

variation, expressed as the standard deviation (SD) of absolute

intra-pair methylation differences, was significantly greater in

repetitive LINE1, D4Z4 and NBL2 DNA sequences than in

promoter regions (SD: 10% points vs. 4% points, P,0.001), but

there was no correlation between the degree of variation in these

regions (r = 20.05, P = 0.9, Figure 3A). The largest variation was

found in methylation of LINE1 CpG sites (SD: 13% points), and it

correlated positively with the intra-pair differences in BMI

(r = 0.77, P = 0.007, Figure 3B) and plasma glucose 2 hours after

an oral glucose tolerance test (OGTT, r = 0.66, P = 0.03,

Figure 3C), but not significantly with the intra-pair difference in

GIR (r = 0.52, P = 0.2, Figure 3D). The intra-pair variation in

D4Z4, NBL2 and promoter regions did not correlate with

phenotypic differences in BMI, 2-hour glucose and GIR.

Differentially Methylated CpG Sites in Type 2 Diabetes
In the 49 known susceptibility genes for mono- or polygenetic

T2D represented on the microarray, 136 CpG sites were

examined for differential methylation by a candidate approach.

Among these sites, 25 sites located in 17 genes (8 sites in muscle

and 17 sites in SAT) were differentially methylated between type 2

diabetic and non-diabetic twins (Table 2, Figure S1B,D–E). These

candidate genes were CDKN2A, DUSP9, HNF4A, HHEX, KCNQ1,

KLF11, PPARGC1A and SLC30A8 in muscle and ADCY5, CAV1,

CIDEC, CDKN2A, CDKN2B, DUSP9, HNF4A, IDE, IRS1, KCNQ1,

MTNR1B, TSPAN8 and WFS1 in SAT. Two CpG sites in SAT

(CDKN2A and HNF4A) remained statistically significant after

permutation correction for multiple testing (Padj = 0.02; Table 2,

Figure S1B,D–E). An explorative analysis of all 26,850 array CpG

sites showed that 789 (3%) sites in muscle and 1,458 (5%) sites in

SAT were differentially methylated (P,0.05) in type 2 diabetic

compared with non-diabetic twins before correction for multiple

testing. These CpG sites were located in 768 genes in muscle and

1,389 genes in SAT. One CpG site in muscle (IL8) and 7 sites in

SAT (ZNF668, HSPA2, C8orf31, CD320, SFT2D3, TWIST1,

DNA Methylation Changes in Type 2 Diabetes
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MYO5A) remained statistically significant after permutation

correction (Padj,0.001; Table 3). None of the CpG sites in

repetitive LINE1, D4Z4 and NBL2 sequences differed significantly

in methylation between type 2 diabetic and non-diabetic twins

(P.0.1).

Validation of Array Data
We have recently validated the Illumina DNA methylation

array’s ability to detect methylation differences of approximately

10% points in paired skeletal muscle biopsies from an overfeeding

intervention study [18]. In the present study, five genes (three in

SAT and two in muscle) with larger absolute methylation

differences (.4% points) were selected for validation of the

microarray data in three twin pairs. Bisulfite sequencing (BS) was

used in SAT for MCF2, HNF4A and FAP, and bisulfite

pyrosequencing (PBS) was used in muscle for PPARGC1A and

SLC30A8. The methylation differences for these genes were

successfully validated (Figure S1).

Pathway Analyses
Ingenuity Pathway Analysis software was used to identify

molecular pathways with a significant proportion of genes having

CpG sites differentially methylated between type 2 diabetic and

non-diabetic twins. The analysis was done on genes with at least

one differentially methylated GpC site based on the uncorrected P-

values. Nine muscle pathways were identified, including inflam-

matory (hepatic fibrosis and IL-6), lipid metabolic (PPARa,

PPARc and sphingolipids) and carbohydrate metabolic (pyruvate

and propanoate) pathways (Table S2). In SAT, one carbohydrate

metabolism and one circadian rhythm signaling pathway had a

significant fraction of genes with methylation changes (Table S2).

Discussion

We have previously used a population of twelve monozygotic

twin pairs discordant for T2D to recognize a considerable non-

genetic contribution to glucose metabolic disturbances in genet-

ically identical individuals [31]. In the present study, we used a

similar twin sample for the investigation of genome-wide common

acquired changes in gene promoter DNA methylation in the

primary insulin responsive tissues, skeletal muscle and SAT. We

found that absolute intra-twin pair methylation differences were

relatively small, and most of them did not link significantly to T2D

after correction for multiple testing. The findings altogether

suggest a modest contribution of acquired DNA methylation

differences in skeletal muscle or SAT to the non-genetic

component of T2D.

It has been demonstrated in a prospective study that DNA

methylation changes occur over time, suggesting an influence by

environmental or stochastic events [12]. A study of monozygotic

and dizygotic twins has provided evidence that such epigenetic

changes are more pronounced in non-CpG island than in CpG

island DNA regions [32]. In addition, a clustering of DNA

methylation changes in families indicated that the susceptibility to

a given epigenetic change may have a genetic component [12]. We

hypothesized that the use of genetically identical twins with its

inherent correction for the genetic influence on both disease

Figure 1. Discordance for oral glucose tolerance and insulin sensitivity in monozygotic twins. A Plasma glucose 120 min after a 75-g oral
glucose load in type 2 diabetic and non-diabetic twins (n = 12 pairs, P,0.001). B Glucose infusion rate during a euglycemic-hyperinsulinemic clamp in
type 2 diabetic and non-diabetic twins (n = 9 pairs, P = 0.006). Data are presented as mean6standard error of the mean.
doi:10.1371/journal.pone.0051302.g001

Table 1. Characteristics of monozygotic twins discordant for
type 2 diabetes.

Non-diabetic
Type 2
diabetic P

n (male/female) 12 (6/6) 12 (6/6) .

Age (years) 68.367.7 68.367.7 1.0

BMI (kg/m2) 30.266.3 32.366.4 0.02

Fasting plasma glucose
(mmol/l)

6.460.5 10.562.0 ,0.001

Fasting serum insulin (pmol/l) 78.9655.2 95.6652.3 0.3

Blood hemoglobin A1c (%) 6.060.5 7.761.4 0.001

Data are shown as mean6standard deviation.
doi:10.1371/journal.pone.0051302.t001
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phenotype and DNA methylation would represent the ideal design

to evaluate acquired DNA methylation changes associated with

T2D.

We investigated the methylation percentage of 26,850 gene

promoter CpG sites in skeletal muscle and SAT and found that the

majority of these sites were clustered into two groups with either a

low or a high methylation percentage. This indicates a high

concordance of methylation for the DNA copies present in a

biopsy. Furthermore, co-twins showed a greater degree of

similarity in gene promoter methylation than unrelated individ-

uals. The overall promoter methylation did not depend on T2D

status alone, but interestingly it was significantly associated with

the interaction between T2D status and twin pair. This suggests

that, within each pair, T2D-related DNA methylation differences

might exist.

The intra-individual DNA methylation pattern in gene

promoters differed vastly between tissues, proposing that DNA

methylation changes associated with tissue development greatly

exceed changes occurring in the finally differentiated tissue. Thus,

our data support the notion of a major role of genetics as well as

tissue specificity in determining the methylation pattern of gene

promoters in adults. The intra-pair methylation differences were

slightly larger in skeletal muscle than in SAT. This phenomenon

could reflect a greater environmental influence on DNA methyl-

ation in skeletal muscle, but could also be due to a greater diversity

of cell types in this tissue.

Figure 2. Global gene promoter DNA methylation in monozygotic twins. The DNA methylation was measured as the b-value ranging from 0
(unmethylated) to 1 (completely methylated) at 26,850 CpG sites located in the promoters of 14,279 genes. The plots are shown for a representative
twin pair (#3). A Skeletal muscle (r = 0.95, P,0.001). B SAT (r = 0.97, P,0.001). C Comparison of DNA methylation in SAT and skeletal muscle from the
non-diabetic twin.
doi:10.1371/journal.pone.0051302.g002

DNA Methylation Changes in Type 2 Diabetes
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In contrast to gene promoters, we found a considerable intra-

pair variation in methylation of genome-wide repetitive DNA

sequences. We have previously demonstrated that differences in

DNA methylation of non-coding regions are more prominent in

elderly monozygotic twins who have spent less of their lives

together than those having shared the environment for a longer

period [21]. A novel finding of our present study is that the

variation in methylation levels of repetitive LINE1 DNA, which

makes up 17% of the human genome [33], was largest in twin

pairs being different in BMI and 2-hour plasma glucose. This

result provides evidence that epigenetic variation reflects the

degree of dissimilarity between phenotypes of monozygotic twins.

However, in agreement with a recent study of human pancreatic

islet cells [30] we found no specific methylation changes in

repetitive DNA sequences between type 2 diabetic and non-

diabetic individuals.

Despite being relatively small, a number of the intra-pair

methylation differences in gene promoters identified by the

Figure 3. Intra-twin pair variation of DNA methylation in repetitive DNA sequences. The variation is given by the standard deviation (SD)
of the absolute methylation differences between monozygotic twins in skeletal muscle. A SD of methylation differences on all repetitive versus all
promoter CpG sites (r = 20.05, P = 0.9). B SD of methylation differences on LINE1 repetitive CpG sites versus absolute difference in BMI (r = 0.77,
P = 0.007). C SD of methylation differences on LINE1 repetitive CpG sites versus absolute difference in 2-hour plasma glucose (r = 0.66, P = 0.03). D SD
of methylation differences on LINE1 repetitive CpG sites versus absolute difference in glucose infusion rate (r = 0.52, P = 0.2).
doi:10.1371/journal.pone.0051302.g003

DNA Methylation Changes in Type 2 Diabetes
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microarrays were successfully validated by two different bisulfite

sequencing methods. The validation additionally showed that

CpG sites close to the array site were likely to be co-methylated

supporting previous observations [14,17]. Although this technical

validation does not exclude the modest biological differences to

have occurred by chance, it supports the sensitivity of the

microarray to detect methylation differences down to a few

percentage points. Previous studies have reported large methyla-

tion differences between cancer cells and normal cells [15], which

may among others be attributed to the fact that the tumor

comprises a clone of abnormal cells. In the, by comparison,

healthier and non-dividing muscle and SAT tissues of type 2

diabetic individuals, it could be speculated that environmentally

determined methylation changes may take place in only some

cells. Recent studies of IGF2 [34], HNF4A [35] and PPARGC1A

[17,18] methylation in blood or skeletal muscle from individuals

exposed to an adverse intrauterine environment showed that

methylation differences between exposed and unexposed individ-

uals were of a similar size to those found in our study. This was

also the case for reported T2D-associated methylation differences

of PPARGC1A [23], INS [26] and PDK4 [25] in pancreatic islets or

skeletal muscle. mRNA expression of these genes was altered in

T2D and in some cases correlated with DNA methylation [23,26].

However, epigenome-wide DNA methylation profiling studies in

pancreatic islets [30] and skeletal muscle [18] with expression

analysis of a fraction of the differentially methylated genes show

that the relationship between small DNA methylation differences

and gene expression is complicated. Several factors such as

location of the specific DNA methylation site in relation to gene

regulatory regions and co-existence of other regulatory mecha-

nisms complicate the study of smaller methylation differences’

biological impact.

Most known T2D susceptibility gene polymorphisms associate

primarily with b-cell dysfunction making the endocrine pancreas

the likely tissue for T2D-associated DNA methylation changes. A

recent genome-wide study of T2D-associated DNA methylation

differences in a small sample of pancreatic islet biopsies identified

many differentially methylated genes in T2D, but none of the

known susceptibility genes were among these [30]. IRS1 [8] and

PPARGC1A [2] belong to the small group of T2D susceptibility

Table 2. Differentially methylated type 2 diabetes susceptibility genes.

Gene Tissue

CpGs
(changed/
total) Probe target ID

Distance to
TSS
(base pairs)

Type 2
diabetic (%)

Non-diabetic
(%)

Difference
(% points) P Padj

Monogenetic

CAV1 SAT 1/6 cg27242945 295 2.360.5 3.560.3 21.2 0.01 0.7

CIDEC SAT 1/2 cg05684195 168 54.863.4 50.062.4 4.9 0.003 0.3

HNF4A Skeletal muscle 1/2 cg23834593 2521 84.662.8 82.462.3 2.2 0.02 0.8

HNF4A SAT 1/2 cg19717150 437 75.263.8 70.563.7 4.6 0.0003 0.02

KLF11 Skeletal muscle 1/2 cg20389709 621 12.7613.4 9.669.6 3.1 0.04 0.9

Common variety

ADCY5 SAT 1/2 cg13384396 2285 14.262.5 11.762.1 2.6 0.03 1.0

CDKN2A Skeletal muscle 1/9 cg07752420 11.762.9 13.162.3 21.4 0.04 0.9

CDKN2A SAT 2/9 cg10895543 5.460.6 6.060.8 20.6 0.04 1.0

CDKN2A SAT 2/9 cg12840719 12.661.9 16.662.1 24.0 0.0003 0.02

CDKN2B SAT 4/10 cg19481686 52.4612.4 44.769.7 7.7 0.02 0.9

CDKN2B SAT 4/10 cg08390209 54.968.3 50.067.0 4.9 0.008 0.6

CDKN2B SAT 4/10 cg04675937 56.2610.9 48.267.3 8.0 0.03 0.9

CDKN2B SAT 4/10 cg18979223 58.468.8 53.565.5 4.9 0.04 1.0

DUSP9 Skeletal muscle 1/1 cg13915726 321 33.9612.8 24.669.1 9.3 0.01 0.6

DUSP9 SAT 1/1 cg13915726 321 20.0613.4 27.5614.6 27.6 0.009 0.6

HHEX Skeletal muscle 1/2 cg11378840 85 6.462.8 4.361.9 2.0 0.046 0.9

IDE SAT 1/2 cg22812892 247 1.660.2 1.360.1 0.3 0.03 1.0

IRS1 SAT 1/2 cg11620807 122 4.060.3 4.160.4 20.1 0.04 1.0

KCNQ1 Skeletal muscle 1/23 cg17820828 52.1611.1 55.5610.7 23.4 0.04 0.9

KCNQ1 SAT 1/23 cg19728223 18.769.0 11.663.9 7.2 0.05 1.0

MTNR1B SAT 1/2 cg15842276 2141 36.866.9 35.366.9 1.5 0.01 0.7

PPARGC1A Skeletal muscle 1/2 cg04893087 2383 13.966.2 9.064.5 5.0 0.03 0.9

SLC30A8 Skeletal muscle 1/2 cg07459489 2174 69.165.0 73.964.0 24.8 0.01 0.5

TSPAN8 SAT 1/2 cg12965512 2557 46.666.6 39.267.9 7.3 0.04 1.0

WFS1 SAT 1/2 cg09785172 81 1.860.3 2.160.4 20.3 0.04 1.0

The microarray included in total 49 type 2 diabetes candidate genes represented by 136 probes. Each CpG site is identified with Illumina probe target ID. The CpG site
location is given as the base pair distance to transcription start site (TSS) if available. Data are shown as mean6standard deviation. Padj-values are corrected for multiple
testing (136 tests).
doi:10.1371/journal.pone.0051302.t002
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Table 3. Differentially methylated genes.

Subcutaneous adipose tissue

Gene Target ID
Distance to TSS
(base pairs)

Mean type 2 diabetic
(%)

Mean non-diabetic
(%)

Difference
(% points) P Padj

ZNF668 cg09765256 23 3.460.5 2.660.5 0.8 ,0.0001 0

HSPA2 cg01520924 12.161.6 14.861.6 22.7 ,0.0001 0

C8orf31 cg04612566 27 35.166.0 26.965.4 8.1 ,0.0001 0

CD320 cg23963136 266 1.460.4 1.960.3 20.5 ,0.0001 0

SFT2D3 cg11206634 2198 67.963.7 74.563.6 26.6 0.0001 0

TWIST1 cg22498251 2415 10.660.8 12.660.8 21.9 0.0001 0

MYO5A cg23287547 769 2.660.4 3.460.5 20.8 0.0001 0

SULT1A1 cg18530748 22 6.361.2 4.761.3 1.5 0.0001 0.1

PRRX2 cg04713521 618 4.761.1 2.861.1 1.9 0.0002 0.9

TGFA cg07004820 479 3.060.4 4.260.3 21.2 0.0002 0.9

WDR8 cg13501117 60 4.760.5 5.460.5 20.6 0.0002 0.9

ERCC6 cg14343062 504 3.260.7 1.860.6 1.4 0.0003 1.0

HNF4A cg19717150 437 75.263.8 70.563.6 4.6 0.0003 1.0

ZDHHC8 cg25650110 98 4.260.6 5.660.6 21.4 0.0003 1.0

CDKN2A cg12840719 12.661.9 16.662.1 24.0 0.0003 1.0

GNB5 cg14120436 67 36.266.0 43.065.7 26.8 0.0003 1.0

CREBL2 cg09819033 2200 1.760.4 2.560.3 20.8 0.0004 1.0

TMEM79 cg14500718 21283 20.765.1 28.963.9 28.2 0.0004 1.0

VGLL1 cg12384303 2424 58.463.6 69.464.8 211.0 0.0005 1.0

KITLG cg18422443 2148 1.960.4 2.560.5 20.6 0.0005 1.0

Skeletal muscle

Gene Target ID
Distance to TSS
(base pairs) Mean T2D (%)

Mean non-T2D
(%)

Difference
(% points) P Padj

IL8 cg16468729 190 48.167.1 37.368.9 10.8 0.0001 0.0003

GZMB cg08766149 131 85.362.1 88.362.4 23.0 0.0001 0.4

MTUS1 cg22807551 2992 10.463.8 7.863.7 2.6 0.0002 0.4

PNOC cg03642518 354 55.563.5 52.364.1 3.2 0.0004 0.9

PDGFD cg07748540 270 4.861.3 3.460.9 1.5 0.0005 0.9

KLF2 cg04898512 2656 89.761.2 88.261.5 1.5 0.0006 0.9

ZNF160 cg12586262 22 13.562.8 9.961.9 3.6 0.0006 0.9

PCBP3 cg23272214 232 85.862.8 88.162.5 22.3 0.0007 1.0

CDR2 cg23142935 630 3.361.8 2.661.6 0.7 0.0010 1.0

TEKT4 cg05723825 243 54.665.4 59.264.9 24.6 0.0014 1.0

DHCR24 cg10073091 604 13.462.2 15.362.6 22.0 0.0014 1.0

ADAM17 cg24320643 321 14.163.3 11.263.1 2.9 0.0017 1.0

SCARA3 cg26847866 500 52.066.8 61.165.6 29.1 0.0017 1.0

KLHL12 cg04462209 321 3.761.4 2.861.4 0.9 0.0017 1.0

SRPK2 cg00950418 2122 3.561.2 4.561.6 21.1 0.0018 1.0

AMN cg09616556 2348 65.862.9 69.863.0 23.9 0.0018 1.0

FOLR3 cg07676849 21106 58.666.8 50.966.2 7.7 0.0021 1.0

PTPN1 cg15864184 217 10.663.7 7.063.2 3.5 0.0025 1.0

CDH13 cg00806490 295 10.162.7 13.161.5 23.0 0.0026 1.0

PIGR cg02105856 23 38.762.4 30.662.3 8.1 0.0027 1.0

The 20 CpG sites with the lowest P-values for the intra-pair methylation difference between type 2 diabetic and non-diabetic twins are shown for subcutaneous adipose
tissue and skeletal muscle. The total number of differentially methylated CpG sites, without correction for multiple testing, was 1,458 in subcutaneous adipose tissue
and 789 in skeletal muscle. Each CpG site is identified with Illumina probe target ID. The CpG site location is given as the base pair distance to transcription start site
(TSS) if available. Data are shown as mean6standard deviation. Padj-values are corrected for multiple testing (26,850 tests).
doi:10.1371/journal.pone.0051302.t003
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genes which might mediate their effects through insulin resistance

and therefore be relevant in peripheral tissues such as SAT and

skeletal muscle. When the known T2D susceptibility genes

represented on the array were specifically evaluated, we found

that ADCY5, CAV1, CIDEC, CDKN2A, CDKN2B, DUSP9, HNF4A,

IDE, IRS1, KCNQ1, MTNR1B, TSPAN8 and WFS1 had at least one

CpG site differentially methylated between type 2 diabetic and

non-diabetic twins in SAT. In skeletal muscle, CpG sites in

CDKN2A, DUSP9, HNF4A, HHEX, KCNQ1, KLF11, PPARGC1A

and SLC30A8 were differentially methylated. However, only the

maturity-onset diabetes of the young (MODY) gene HNF4A [36]

and the T2D gene CDKN2A [37] in SAT had significant

permutation adjusted P-values. Importantly, the absolute methyl-

ation differences identified were smaller than those predicted to be

found at 80% power, particularly in the adipose tissue samples

obtained from only five twin pairs. This finding contrasts the

methylation differences of ,20–30% points identified in a

similarly sized sample of pancreatic islets from type 2 diabetic

and non-diabetic individuals [30] and could be interpreted as the

endocrine pancreas being indeed the tissue with most pathological

changes in T2D. In addition to the statistical limitation, some of

the differences on low-methylated CpG sites such as in IRS1 had

absolute methylation differences that are probably too small to be

detected reliably by the DNA methylation microarray. The finding

of increased HNF4A methylation in tissues from type 2 diabetic

individuals is interesting considering the recent similar result in

umbilical cord blood leukocytes from newborns with intrauterine

growth restriction [35]. Thus, methylation of this gene could

represent a mechanism linking early intrauterine programming to

development of T2D later in life. Even though the increased

methylation of PPARGC1A in type 2 diabetic individuals was not

significant after correction for multiple testing, the result

corresponds well with previous findings in b-cells [23] and skeletal

muscle from type 2 diabetic patients [24]. To this end, we recently

reported elevated methylation of the PPARGC1A promoter in

skeletal muscle from lean and otherwise healthy young men born

with low birth weight. Moreover, five days of high-fat, high-calorie

feeding increased PPARGC1A promoter methylation in healthy

men with normal birth weight [17]. Thus, increased methylation

of PPARGC1A in skeletal muscle seems to be a consistent finding in

patients with overt T2D as well as in individuals at risk of

developing T2D. The recently discovered T2D susceptibility gene,

DUSP9, is another gene which could be important to insulin

resistance. It encodes mitogen-activated kinase phosphatase-4

which counteracts stress-induced insulin resistance [38]. Interest-

ingly, this gene had methylation changes of 829% points

dependent on tissue which was among the largest found on the

array.

The combination of small absolute methylation differences and

a relatively small sample size made it difficult to identify

statistically significant associations between methylation changes

and T2D by an explorative approach. We found 789 and 1,458 of

26,850 CpG sites which were differentially methylated in skeletal

muscle and SAT, respectively. These approximately 5% of the

CpG sites investigated could be chance findings, and the fact that

only a few CpG sites remained significant after correction for

multiple testing contributes to this interpretation of the results.

Genes for which the permutation corrected P-values were

significant included IL8 in muscle and TWIST1 in SAT. The

inflammatory cytokine IL-8 is expressed in among others skeletal

muscle in response to exercise [39], and the transcription factor

Twist1 regulates expression of inflammatory cytokines in adipo-

cytes [40].

Molecular pathway analyses were used to examine whether the

768 muscle and 1,458 SAT genes which, based on the explorative

analysis, were most likely to have DNA methylation changes

belonged to specific functional pathways. Since the methylation

differences in the vast majority of these genes were not significant

after correction for multiple testing the results should be

interpreted cautiously. We found the genes in muscle to be

predominantly involved in inflammation, lipid metabolism, and

carbohydrate metabolism. Low-grade inflammation is considered

to be an important mechanism in insulin resistance [41], and the

lipid metabolic regulators PPARa, PPARc, as well as PGC-1a
have been shown to play a role in the regulation of insulin

sensitivity [42–44]. In SAT, carbohydrate metabolism and

circadian rhythm signaling pathways had a significant fraction of

genes differentially methylated between type 2 diabetic and non-

diabetic individuals. Recent studies have shown that genetic

variation in MTNR1B and CRY2, involved in circadian signaling,

associate with T2D or related metabolic traits [3,45]. Interestingly,

both of these genes were differentially methylated in SAT from

type 2 diabetic and non-diabetic twins.

In conclusion, common skeletal muscle and adipose tissue gene

promoter DNA methylation differences between monozygotic

twins discordant for T2D were small, but a number of the

differences were found in known T2D-related candidate genes.

Larger study groups, preferably with longitudinal sample collec-

tion and methylation analysis of the entire promoter are needed to

replicate the findings in these genes.

Research Design and Methods

Study Participants
Twelve 53–80 year-old monozygotic twin pairs discordant for

T2D were recruited through the Danish Twin Registry, University

of Southern Denmark. Six pairs had participated in a previous

study [46] where discordance for T2D was recognized based on an

OGTT. These pairs were reexamined for the present study. The

additional six pairs were recruited based on information from the

Twin Registry about known T2D. All study participants had

provided written informed consent, and the study was approved by

the regional Ethical Committee (Southern Denmark, http://

komite.regionsyddanmark.dk) and conducted in accordance with

the principles of the Helsinki Declaration.

Clinical Examination
Height and weight were measured in light weight clothes for

calculation of BMI. Discordance for T2D was verified by a 75-g

OGTT. Insulin sensitivity was measured in a subpopulation (n = 9

pairs) by a euglycemic-hyperinsulinemic clamp (40 mU

m22 min21) and expressed as the mean GIR during the last

30 min of the clamp period.

Biopsies
Biopsies were excised under local anesthesia (lidocaine) from the

vastus lateralis muscle (n = 11 pairs) and from abdominal SAT

(n = 5 pairs) using a Bergström needle with suction applied. The

tissue samples were frozen immediately in liquid nitrogen and

stored at 280uC until processed further.

DNA Extraction
Genomic DNA was extracted from the biopsies using a DNeasy

Blood & Tissue Kit (Qiagen, Hilden, Germany), and DNA

concentrations were determined by a Quant-IT PicoGreen

dsDNA Kit (Invitrogen, Carlsbad, CA).
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DNA Methylation Microarrays
Methylation was assessed at 27,578 CpG sites primarily located

close to the transcription start site (TSS) in the promoters of

14,475 genes using 12-sample Infinium HumanMethylation27

Bead Chips (Illumina, San Diego, CA). 600 ng DNA was bisulfite-

treated to deaminate unmethylated cytosines to uracil using an EZ

DNA Methylation Kit (Zymo Research, Orange, CA). The array

was scanned by a BeadArray Reader (Illumina), and intensity data

analyzed using GenomeStudio software (version 2011.1, Illumina).

Internal array controls verified the hybridization, staining and

washing procedures. The methylation status on each CpG site was

expressed as the b-value which is the ratio between fluorescent

signal from converted and preserved sequence bead types. DNA

samples from twin pairs were analyzed on the same bead chip to

eliminate a possible influence of batch effect in the subsequent

paired statistical analyses. Due to reruns four pairs of muscle

samples were separated on different chips. Batch effect in the data

set was examined for by unsupervised cluster analysis using MeV

software (version 4.5, available at http://www.tm4.org) and scatter

plots of principal components 1 and 2. Since only minimal batch

effect was found compared to clustering according to twin pair and

sex, no further normalization of the b-values was performed. b-

values for probes where intensity did not exceed the background

level (P$0.05) were omitted (in average 54 b-values per muscle

sample and 23 b-values per SAT sample). All probes were

examined for unique genome alignment and for SNPs affecting the

CpG site using NCBI human genome build 36 FASTA files and

custom PERL (version 5.10.1, available at http://www.perl.org)

scripts. For the analysis of unique alignment, two ‘‘bisulfite-

treated’’ reference genomes were constructed replacing cytosine by

thymine as forward strand reference, and replacing guanine by

adenine as reverse strand reference. The unmethylated bead type

probe sequences were compared to these reference genomes using

the BLAT algorithm [47]. For the SNP analysis, Illumina’s

annotation data were used to mark each target region in a

reference genome containing dbSNP build 130 information. All

corresponding SNP-masked sequences were extracted and

screened for SNPs. 494 probes were excluded due to multiple

alignments, and additionally 234 were excluded due to SNP in the

CpG site. The microarray data have been deposited in the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.

gov/geo, accession number GSE38291) complying with the

Minimum Information About a Microarray Experiment (MIAME)

guidelines.

Validation and Methylation of Repetitive DNA
Array data were validated in three genes in SAT by BS and in

two genes in skeletal muscle by BPS. DNA methylation of LINE1

(interspersed repeat with 8 CpG sites), D4Z4 (tandem repeat with

9 CpG sites) and NBL2 (tandem repeat with 8 CpG sites)

sequences was measured by BPS in the muscle samples. The

repetitive distribution of these sequences means that the DNA

methylation measured is a genome-wide average value.

Bisulfite sequencing. 1 mg DNA was bisulfite-treated as

described previously [48]. Oligonucleotide primers (Sigma-Al-

drich, St. Louis, MO) were designed using Methyl Primer Express

Software (Applied Biosystems, Foster City, CA) to make the PCR

amplicons cover approximately five CpG sites, including the site

analyzed on the array (Table S1). The PCR product was separated

on a 2% agarose gel, and specific DNA bands were cut and

purified by a GFX PCR DNA and Gel Band Purification Kit (GE

Healthcare, Buckinghamshire, UK). The specific amplicons were

cloned in E. coli using the pGEM-T vector system (Promega,

Madison, WI). Twelve positive colonies were collected, and

plasmid DNA was purified by a Perfectprep Plasmid 96 Vac Kit

(Eppendorf, Hamburg, Germany). The plasmid DNA insert was

finally sequenced on an ABI 3100 system (Applied Biosystems).

The number of methylated and unmethylated clones was counted,

and the methylation percentage calculated as the average

methylation of all CpG sites in the amplicon.

Bisulfite pyrosequencing. BPS was performed on bisulfite-

treated DNA using a PyroMark MD pyrosequencing system

(Biotage, Uppsala, Sweden). Specific pyrosequencing primers were

designed to amplify as many CpGs as conditions permitted (1 to 9

sites) using Assay Design Software (version 1.0.6, Biotage, Table

S1). The cytosine methylation percentage was evaluated with the

Pyro Q-CpG program (version 1.0.9, Biotage).

Statistical Methods
The statistical analyses were performed using R software

(version 2.11.1, available at http://www.r-project.org). b-values

are shown in percentages and differences given in percentage point

change (type 2 diabetic twin 2 non-diabetic twin). The differences

were examined for normality using the Shapiro-Wilk normality

test. Only 6% of the CpG sites in adipose tissue and 9% of the

CpG sites in skeletal muscle had P-values ,0.05 suggestive of non-

normally distributed differences, and therefore parametric statistics

were applied.

Analysis of twin pair similarity. An ANOVA including

methylation of all microarray CpG sites as response variable and

twin pair, diabetes status and their interaction as explanatory

variables was used to evaluate the effect of twin pairs on the overall

DNA methylation similarity. For correlation analyses the intra-

pair variation in promoter or repetitive DNA methylation was

expressed as the SD for the absolute differences.

Analysis of differential methylation by candidate gene

approach. All monogenic and confirmed common variety T2D

susceptibility genes reviewed by O’Rahilly [1] were examined for

differential methylation if represented on the array. In addition,

KCNQ1 [6] and KLF11 [7] as well as the newly discovered genes,

ADCY5, GCK, GCKR, PROX1, DUSP9, HMGA2, KLF14, TP53INP1

and RBMS1 [3–5] were included. PPARGC1A [2] was included

due to an a priori hypothesis of altered DNA methylation in type 2

diabetic individuals [23,24]. Thus, the genes analyzed were

ABCC8, ADAMTS9, ADCY5, AGPAT2, AKT2, BSCL2, CAMK1D,

CAV1, CDC123, CDKAL1, CDKN2A, CDKN2B, CEL, CIDEC,

DUSP9, HHEX, HMGA2, HNF1A, HNF1B, HNF4A, GCK, GCKR,

IDE, IGF2BP2, INS, INSR, IRS1, JAZF1, KCNJ11, KCNQ1, KIF11,

KLF11, KLF14, LGR5, LMNA, MTNR1B, NEUROD1, NOTCH2,

PDX1, PPARG, PPARGC1A, PROX1, RBMS1, SLC30A8, TBC1D4,

TCF7L2, TP53INP1, TSPAN8, and WFS1. These 49 genes were

represented by 136 probes. Comparisons between type 2 diabetic

and non-diabetic twins were performed by paired t-tests. Two-

sided P,0.05 was considered statistically significant, and the P-

values were corrected for multiple testing, Padj, using the Westfall-

Young resampling method [49]. 10,000 simulations with permu-

tations of the sample labels were used to sample the null

distribution.

Analysis of differential methylation by explorative

approach. Comparisons between type 2 diabetic and non-

diabetic twins were performed for all 26,850 array CpG sites by

paired t-tests, and the P-values were corrected for multiple testing

as described above.

Statistical power calculations. The study population size

was limited to the maximal number of Danish T2D discordant

monozygotic twin pairs that could be recruited in a 10-year

period. From previous studies of PPARGC1A, DNA methylation

differences of ,5% points with ,5% points SD have been
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identified [17,23]. Given the 11 pairs of muscle biopsies and a

fixed SD of 5% points the study allowed detecting a 5% point

methylation difference in a single paired t-test at 80% power. The

size of the minimal detectable differences would increase to 10% in

the candidate gene analysis (136 t-tests) and 17% in the genome-

wide analysis (26,850 t-tests) when applying Bonferroni correction.

For the only 5 pairs of adipose tissue biopsies the similar minimal

detectable differences would be 8%, 31% and 117% for single

CpG site analysis, candidate gene study and hypothesis-free

approach, respectively.
Validation of methylation array data. Differences in DNA

methylation levels between three pairs of type 2 diabetic and non-

diabetic twins obtained by BS or BPS were analyzed by paired t-

test. Based on the a priori hypothesis of replicating array findings

one-sided P,0.05 was considered statistically significant.
Molecular pathway analyses. Differentially methylated

genes identified by the explorative approach, without correction

for multiple testing, were included in Ingenuity Pathway Analyses

(version 7.5, Ingenuity Systems, Redwood City, CA). This software

recognized the pathways from the Ingenuity Pathways Analysis

library of canonical pathways (81 metabolic and 283 signaling)

which contained a significant fraction of differentially methylated

genes. Only genes represented on the array were used for the

reference pathways. Fischer’s exact test was used to calculate the

probability that the association between the differentially methyl-

ated genes and the canonical pathway was explained by chance.

These P-values were not corrected for multiple testing.

Supporting Information

Figure S1 Validation of array data. The average DNA

methylation in the gene promoter area surrounding the array site

measured by bisulfite sequencing (BS) or bisulfite pyrosequencing

(BPS) is indicated in type 2 diabetic (black bars) and non-diabetic

(white bars) twins. Three twin pairs were included in the

validations. One-sided P-values are shown for the difference

between type 2 diabetic and non-diabetic twins measured by BS or

BPS. Gene diagrams, including the number of methylated (black)

and unmethylated (white) clones for each CpG site in the

amplicon, are shown for BS results. A MCF2 +226 base pairs

from transcription start site (TSS) in subcutaneous adipose tissue

(P,0.001), B HNF4A 2521 base pairs from TSS in subcutaneous

adipose tissue (P = 0.04), C FAP +80 base pairs from TSS in

subcutaneous adipose tissue (P,0.001), D PPARGC1A 2383 base

pairs from TSS in skeletal muscle (P = 0.006), E SLC30A8 2174

base pairs from TSS in skeletal muscle (P = 0.002). Data are

presented as mean6standard error of the mean.

(PDF)

Table S1 Primer sequences.

(DOC)

Table S2 Molecular pathways with a significant frac-
tion of differentially methylated genes. No overlap denotes

the fraction of genes in each pathway which was not represented

on the array. The direction of methylation change in type 2

diabetic versus non-diabetic twins is indicated by arrows (q:

increased, Q: decreased).

(DOC)
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