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Abstract

We investigated if the transcriptional response of Salmonella Typhimurium to temperature and acid variations was
hysteretic, i.e. whether the transcriptional regulation caused by environmental stimuli showed memory and remained after
the stimuli ceased. The transcriptional activity of non-replicating stationary phase cells of S. Typhimurium caused by the
exposure to 45uC and to pH 5 for 30 min was monitored by microarray hybridizations at the end of the treatment period as
well as immediately and 30 minutes after conditions were set back to their initial values, 25uC and pH 7. One hundred and
two out of 120 up-regulated genes during the heat shock remained up-regulated 30 minutes after the temperature was set
back to 25uC, while only 86 out of 293 down regulated genes remained down regulated 30 minutes after the heat shock
ceased. Thus, the majority of the induced genes exhibited hysteresis, i.e., they remained up-regulated after the
environmental stress ceased. At 25uC the transcriptional regulation of genes encoding for heat shock proteins was
determined by the previous environment. Gene networks constructed with up-regulated genes were significantly more
modular than those of down-regulated genes, implying that down-regulation was significantly less synchronized than up-
regulation. The hysteretic transcriptional response to heat shock was accompanied by higher resistance to inactivation at
50uC as well as cross-resistance to inactivation at pH 3; however, growth rates and lag times at 43uC and at pH 4.5 were not
affected. The exposure to pH 5 only caused up-regulation of 12 genes and this response was neither hysteretic nor
accompanied of increased resistance to inactivation conditions. Cellular memory at the transcriptional level may represent a
mechanism of adaptation to the environment and a deterministic source of variability in gene regulation.
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Introduction

Natural environments are spatially and temporally complex.

Bacteria interact with the environment responding to changes and

changing the environment in return. Many studies on bacterial

responses to environmental conditions focus on the quantitative

analysis of growth, survival or inactivation of the population [1].

The investigation of the molecular response to the environmental

conditions pursues a better understanding of the system bacteria-

environment.

Hysteresis refers to a process by which a bistable system exhibits

memory. Such systems switch between two distinct stable steady

states, and switching from one state to the other happens when a

stimulus exceeds a threshold. Once switched, the system remains

at that steady state until the stimulus decreases to a level below the

original switching level. In between these two switching stimulus

levels the state of the system depends on the previous history [2].

Hysteresis has for example been described in the expression of

components of the lactose utilization network of Escherichia coli [3].

In the absence of glucose, the lac operon is uninduced at low

concentrations (,3 mM) of the inducer thio-methylgalactoside

(TMG), and fully induced at high TMG concentrations

(.30 mM). Between these switching thresholds, the response of

the system is hysteretic: TMG levels must exceed 30 mM to turn

on initially uninduced cells but must drop below 3 mM to turn off

initially induced cells [3]. Thus, the pattern of lactose consumption

adopted by bacteria is environmentally controlled and the key

determinant is the direction of change of the environmental

inducer [4].

The aim of the current study was to characterize the

transcriptional responses of Salmonella enterica serotype Typhimur-

ium (S. Typhimurium) to heat treatment and pH changes,

specifically if these responses were hysteretic. We quantified the

transcriptional response of stationary non-proliferating cells of S.

Typhimurium to an increase of temperature from 25 to 45uC and

a decrease of pH from 7 to 5. The conditions were maintained for

30 minutes before resetting the original values, and samples were

taken at the end of the environmental stress, immediately after

resetting the initial conditions and again 30 minutes later. Network

science was applied to identify the metabolic pathways and
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functional categories in which the differentially transcribed genes

were involved and confirmed the hysteretic behaviour of the

transcriptional activity. In addition, the resistance to inactivating

conditions of 50uC and pH 3 and the adaptation response to

extreme growth environments at 43uC and pH 4.5 were

monitored during the exposure to the stressing condition and

immediately and 30 minutes after resetting the initial conditions.

Results

Acidification Affected Transcription of Few Genes, While
a Large Number of Genes were Affected by Heat Shock

Only 12 genes were detected as up-regulated in a culture

maintained for 30 minutes at pH 5 when compared with a control

culture maintained at pH 7. Immediately after re-establishing the

original pH value of 7 in the acidified culture, 19 genes were up-

regulated and 1 gene was down-regulated. Thirty minutes after re-

establishing the original conditions, 23 genes were up-regulated in

the culture previously exposed to acidic conditions (Fig. 1). In

contrast with these results, the increase of temperature from 25 to

45uC affected transcription of a much larger number of genes. The

transcription of 293 genes was repressed while 120 genes were

induced in the culture maintained at 45uC for 30 minutes when

compared with control cultures at 25uC. Immediately after the

heat shock ceased, the number of up-regulated genes increased

considerably to 470 while the number of down-regulated genes

decreased to 113. Thirty minutes after the heat condition was

removed, there were still a large number of induced genes, 214,

and a smaller number of down-regulated genes, 127, in the culture

previously exposed to high temperature (Fig. 1). Thus, during the

heat shock, most of affected genes showed repressed transcription

while when the temperature was reset to the initial value,

transcription was mostly induced with respect to control cultures.

The few up-regulated genes during the acid shock were

associated with general metabolic and cellular functions (Fig.

S1). In the acid stress experiment, the transcription of three genes

associated to adaptation processes to atypical conditions ibpB, pspB

and pspC was induced but only 30 minutes after the acid shock

ceased. The induction of the phage shock protein operon,

pspABCE, has been observed in response to a variety of stressful

conditions [5], while the small heat-shock protein, IbpB, has been

reported to stabilize stress-denatured proteins in E. coli [6].

The heat shock in particular caused the induction of genes

encoding for chaperones, including heat shock proteins, and

plasmid genes and the repression of genes involved in pathogen-

esis, energy production and motility. Some general pathways and

functions were detected as both induced and repressed during all

sampling times throughout the heat shock experiment (Fig. S2).

However the majority of specific cellular functions or pathways

included in these general categories had a consistent response

being either up- or down-regulated throughout the experiment

(Fig. S3).

Most of Induced Genes in Response to Heat Stress
Exhibited Hysteresis and Remained Induced after
Resetting the Initial Conditions

From the 120 genes up-regulated in cultures exposed to 45uC
for 30 minutes, 102 genes were still up-regulated 30 minutes after

resetting the temperature to 25uC with respect to control cultures

(Fig. 1). Conversely, none of the 12 genes up-regulated during the

acidic shock was detected 30 minutes after the acidic condition was

removed (Fig. 1).

Thus, while the response to acid stress was very modest, heat

shock caused a major alteration on gene transcription and this

transcriptional response exhibited hysteresis. The majority of

genes induced when cells were exposed at 45uC remained induced

30 minutes after the temperature was reset at 25uC. Among those

genes, there were ten genes encoding for heat shock proteins as

well as numerous genes encoding for other products involved in

protein stabilization and DNA repair (Fig. 2). A significant number

of genes encoded in the three plasmids of S. Typhimurium strain

4/74 also showed a hysteretic response (Fig. 2). Down-regulated

genes throughout the experiment were associated with non-stress

specific responses such as motility, pathogenesis and energy

production (Fig. 2, Fig. S3).

Down-regulation of Genes was Significantly Less
Organized According to Cellular Functions or Metabolic
Pathways than Transcriptional Induction during and after
the Heat Shock

We constructed a genome scale bi-partite network for the

genome and plasmids of S. Typhimurium SL1344 as previously

described for E. coli K 12 [7]. The network was bipartite and thus

edges connected two sets of nodes. Genes constituted one of these

sets of nodes while the other set of nodes included metabolic

pathways and cellular functions. Information was collected from

public available resources and databases specified in the Material

and Methods section. The bipartite sub-networks corresponding to

genes up- and down-regulated during and after the heat shock

were extracted from the genome scale network in order to study if

network properties were affected by the environmental stresses.

The genome scale network was structured in modules or

communities of nodes more connected to the nodes belonging

to the same module than to other external nodes. To quantify

this organization in communities the modularity value, Q [8],

was calculated. The value of Q varies between 0 to a maximum

value of 1. In practice it is found that a value above about 0.3

is a good indicator of significant community structure in a

network [8]. The value of Q was 0.68 for our genome scale

network. The modular or compartmentalized pattern of the

Figure 1. Number of genes up- (green) and down- (red)
regulated in S. Typhimurium under acid and heat stressing
conditions and immediately and 30 min after removing the
stressing conditions. Few genes were affected by acid stress (A)
while transcription of a large number of genes was altered under heat
stress (B). Majority of up-regulated genes under heat stress remained
up-regulated 30 minutes after stress condition ceased. Black numbers
and solid lines show up- and down- regulated genes maintained
throughout the experiment.
doi:10.1371/journal.pone.0051196.g001
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genome network can be understood as a strategy to increase

network stability, since this property retains the impact of

perturbations within a single module and minimizes their effect

on other metabolic pathways or cellular functions [9]. Modu-

larity was estimated on the sub-networks from the genome scale

network corresponding to genes differentially expressed during

and after the heat treatment (Table 1). To assess the

significance of the differences in the modularity of the sub-

networks of the genes up- and down-regulated during and after

the heat shock, we compared these results with the modularity

measured in 10 random networks, with the same number of

genes as the networks of up- and down-regulated genes but

randomly selected from the genome scale network. Data in

Table 1 shows that the value of the modularity coefficient for

the networks of up-regulated genes during and after the heat

treatment were between 0.75 and 0.8. These modularity values

were slightly higher although not significantly different from

those measured in the correspondent randomly generated

networks. Fig. 3 shows the modular organization of the

networks of genes differentially transcribed during the heat

shock. Plasmid genes formed 3 disconnected modules that

increased the modularity coefficient of the networks of induced

genes (Fig. 3). Removing the modules formed by plasmid genes,

the modularity coefficient of the networks of induced genes

decreased slightly, taking values between 0.73 and 0.77 which

are in the range of those of the random networks. Plasmid

genes were not connected to other functions because the

knowledge on their function is limited. Plasmid genes are known

to be involved in intra-macrophage survival of Salmonella,

antibiotic resistance and increased resistance to phage infection

but their annotation is not public yet [10].

Therefore the modular structure observed in the networks of

up-regulated genes during and after the heat shock was the same

as observed in the random networks derived from the genome

scale network reflecting its organization in metabolic pathways and

cellular functions. However, modularity analysis of the networks of

down-regulated genes during and after the heat shock revealed

that the level of organization of repressed genes in functional

modules was smaller than expected. Networks of repressed genes

showed modularity coefficients in between 0.62 and 0.64 while

randomly extracted networks had significantly greater Q values of

0.74–0.81 (Table 1).

Hysteretic Transcriptional Response to Heat Shock is
Accompanied by Increased Resistance to Inactivation
Conditions of 50uC and pH 3

The stressing conditions, 45uC or pH 5 for 30 minutes, were

selected by choosing extreme environmental conditions that did

not cause inactivation while challenging S. Typhimurium. To

study if these stressing treatments had an effect on the ability of

Salmonella to grow in extreme conditions, we followed the

Figure 2. Fold change of transcript levels of genes during heat stress and immediately and 30 minutes after temperature was set
back at 256C that exhibited hysteresis and encoded for heat shock proteins (A), for DNA repair (B) for products involved in protein
stabilization (C) or were encoded in plasmids (D). Down-regulated genes throughout the experiment were associated with non stress specific
response such as pathogenesis (E) and motility (F). Genes represented in each plot showed a similar tendency; they are listed by the side of each plot
but not differentially represented.
doi:10.1371/journal.pone.0051196.g002
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kinetics of the stressed populations at 43uC and at pH 4.5. On

the other hand, to investigate if the exposure to stress conditions

affected the resistance of the population to inactivation

conditions, the kinetics of the stressed populations were

measured at 50uC and at pH 3.

Cultures exposed at 45uC for 30 minutes exhibited an increased

resistance to inactivation temperatures of 50uC as well as cross-

resistance to inactivation by acidic conditions at pH 3 showing

significantly greater D values than non-heated control cultures

(Fig. 4). The D-values measured in cells exposed at 45uC for 30

minutes were not significantly different from those measured

immediately and 30 minutes after the heat shock was removed

(Fig. 4). Thus, the increased resistance to heat and acid

inactivation conditions in cells exposed at 45uC for 30 minutes

persisted for 30 minutes after the temperature was reset to 25uC.

However, cultures exposed at pH 5 for 30 minutes did not show

increased resistance to either heat or acid inactivation conditions

when compared with control cultures kept at pH 7 (Fig. 4).

The growth parameters, duration of the lag phase and

maximum specific growth rate, measured at either 43uC or at

pH 4.5 were not affected by the previous exposure of the cells to

45uC or to pH 5 (Table 2).

Discussion

The transcripts of the heat or acid shocked S. Typhimurium

cells were compared with those of an untreated control kept at

25uC and pH 7 during the experimental course. We conducted

growth curves to check that the populations used in the

experiments were in early stationary phase after 16 hours at

25uC (data not shown), and thus mostly comprising non-

proliferating cells although eventually some bacterial cells could

divide or die. We targeted the use of non proliferating populations

in order to avoid the interference of division cycle genes in the

transcriptional response and the generation of new bacterial cells,

which may not preserve the cellular memory of their ancestors.

The bacterial concentration measured at early stationary phase

was not affected during or after the application of the stressing

conditions (Fig. S4).

We found a hysteretic transcriptional response to heat shock

accompanied by an increased resistance to heat and acid

inactivation conditions. The results supports previous observa-

tions that the resistance of S. Typhimurium to heating at 55uC
was enhanced by exposing cells to a previous heat shock at

48uC and this thermotolerance was accompanied by increased

synthesis of heat shock proteins. When cells were shifted from

48 to 37uC, thermotolerance was lost with a variable rate of

decay within the first hour after the temperature shift while the

synthesis of proteins persisted for longer time [11]. Thus,

hysteretic behaviour is detectable at both transcription and

translation and may be one of the reasons for the expression of

apparently unneeded proteins that reduce growth rate of cells

and is known as protein cost or burden [12]. We observed that

the transcriptional response of S. Typhimurium to the acidifi-

cation of the medium was not hysteretic and did not last after

the acidic condition was removed. The decrease of pH from 7

to 5 did not seem to be a challenging stress condition for S.

Typhimurium because it caused a very modest and unspecific

transcriptional response and was not associated with either an

increase of the resistance to inactivation conditions or with

adaptation to extreme growth conditions. It seems that there

was a lack of specific transcriptional response in S. Typhimur-

ium exposed to pH 5. The few differentially transcribed genes

detected at pH 5 may reflect the high variation intrinsic to gene

transcription in bacteria. More than 60 genes have been

reported to exhibit between 2–5 folds difference in the

expression ratios when the strains being compared were grown

in identical conditions but in different batches [13]. We think

that one of the reasons for the different responses of S

Typhimurium to the different environmental stresses may be

that while a pH value of 5 does not challenge Salmonella spp.,

45uC is a more stringent condition close to the limiting growth

temperature. Salmonella spp. is able to grow at pH values below

4, while growth is not detected above 48uC. Moreover,

culturing Salmonella to stationary phase in media containing

Figure 3. Network representation of genes up- and down-regulated during and after the heat shock. Modularity of networks of down-
regulated genes was significantly lower than that of up-regulated networks. The induction of genes belonging to a metabolic pathway or cellular
function was more synchronized than their down-regulation because of the hysteretic transcriptional response or persistence of the induction of the
majority of genes induced by the heat shock once the temperature is set back to 25uC. Different colours represent different modules in each network.
doi:10.1371/journal.pone.0051196.g003

Table 1. Modularity quantification in sub-networks extracted from the Salmonella genome scale network containing those genes
differentially expressed during and after the heat treatment and comparison with random extracted sub-networks with the same
number of genes.

Num genes & Num other nodes Modularity coefficient (Q)1

Up-regulated Down-regulated Up-regulated Random networks
Down-
regulated

Random
networks

End of heat treatment
(45uC-30 min)

93 & 38 211 & 53 0.81 0.7960.0422 0.64* 0.7460.034

Immediately after heat
treatment ceases

373 & 64 94 & 41 0.76 0.7160.037 0.63* 0.8260.040

Thirty minutes after heat
treatment ceases

187 & 61 103 & 43 0.80 0.7860.041 0.62* 0.8160.044

1Modularity coefficient from 0 to 1 (maximum modularity).
2Mean value and standard deviation of the modularity coefficient of 10 random networks.
*Significant: Smaller than the mean value minus 3 times the standard deviation of random networks.
doi:10.1371/journal.pone.0051196.t001
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glucose has been reported to induce acid tolerance response

[14]. Cultures in stationary phase might have an enhanced

transcription of genes involved in acid tolerance response, which

could contribute to explain the lack of differences between the

transcriptional response in control and in acid stressed

populations.

A wide range of stabilities has been observed for individual

mRNAs of E. coli, although approximately 50% of all mRNAs

had half-lives shorter than 3 minutes and all of them shorter

than 15 minutes [15]. Similar results have been observed for

Staphylococcus aureus in stationary phase, although during expo-

nential growth the percentage of mRNAs with a half-life shorter

than 2.5 minutes increased to ca. 85% [16]. An increase of the

turnover time of mRNAs has been reported under heat shock

with the extended half-life of some transcripts being longer than

30 minutes [17,18]. One of these studies reported the effects of

heat shock not on few transcripts but on the global response on

RNA half-lives. During heat shock approximately 60% of log-

phase transcripts of S. aureus had a longer half-life than 5

minutes, but only 7.1% of them were stable for 30 minutes

under heat stress [17]. The increase of the half-life of mRNAs

in response to heat shock is not likely to be the explanation for

Figure 4. Increased resistance to heat and acid inactivation conditions in cultures of S. Typhimurium previously exposed to heat
stressing conditions holds 30 min after resetting the initial conditions. Columns represent D values, time required for a decimal reduction
of the population at the inactivating conditions, while lines represent the previous temperature or pH profile for each culture. Thick strokes are used
for results at stressing profiles, 45uC or pH 5, and thin strokes for control experiments at 25uC and pH 7. D values at 50uC (A) and pH 3 (C) were
significantly greater in cultures exposed to heat shock, 45uC for 30 min (thick strokes), and immediately and 30 min after the temperature was set
back at 25uC than D values of control cultures at 25uC (thin strokes). However D values at 50uC (B) and pH 3 (D) of cultures previously exposed at
pH 5 (thick strokes) were not significantly different from D values of control cultures at pH 7 (thin strokes). Stars indicate those cultures exposed to
stressing conditions with D values significantly different from correspondent controls.
doi:10.1371/journal.pone.0051196.g004

Table 2. Duration of the lag phase and maximum specific growth rate at 43uC and pH 4.5 of S. Typhimurium previously exposed
to heat and acid shock.

436C pH 4.5

Cell history lag (h) (h21) lag (h) (h21)

End of heat shock (45uC-30 min) 2.2460.864* 0.91160.136 20.560.636 0.44460.0745

Immediately after heat shock and resetting
temperature at 25uC

2.3560.856 1.0160.142 21.660.675 0.62760.0804

Thirty minutes after heat shock and resetting
temperature at 25uC

2.3760.817 1.0960.0378 22.160.169 0.68760.0242

Control (25uC-pH 7-0 min) 2.5660.878 1.1260.152 22.160.0834 0.71360.0605

Control (25uC-pH 7-30 min) 2.6760.922 1.0160.079 21.460.0476 0.5760.0331

Control (25uC-pH 7-60 min) 1.960.00354 0.98260.237 21.660.124 0.59860.00135

End of acid shock (pH 5-30 min) 2.5860.921 1.1760.106 21.760.397 0.63660.0472

Immediately after acid shock and resetting
pH value at 7

2.5760.889 1.0960.183 21.660.122 0.59160.0402

Thirty minutes after acid shock and resetting
pH value at 7

2.460.992 0.95160.309 21.860.389 0.61760.0694

*mean6standard deviation of 3 independent replicated experiments.
doi:10.1371/journal.pone.0051196.t002
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the post heat shock detection of transcripts that we are

reporting, and there are basic differences between those studies

and our results. The extension of half-life is reported during the

heat shock and it may be attributable to a failure in RNA

degradation [18], while we are reporting that genes remained

induced 30 min after the heat shock ceased. In addition, while

during the heat treatment only 7% of genes were found to have

a half life longer than 30 min [17], in our work we are

reporting that 96% of the genes induced during the heat shock

were detected immediately when the temperature was reset to

25uC and 85% of them were still induced 30 minutes later.

Thus our results seem to be due to an hysteretic behaviour of

transcription according to the cell pre-history rather than to the

extension of the half-life of the transcripts. However, the

switching levels for the induction/repression of heat shock genes

cannot be determined from our data and it is unknown how

this hysteretic response is affected by cell division, or by other

environmental stimuli impacting on transcription.

The modularity of the structure of the genome scale network

derives from the network construction itself and means that in

general genes can be grouped in functional modules according to

the cellular functions and/or metabolic pathways in which the

proteins they encode are involved. Modularity was estimated on

the sub-networks from the genome scale network corresponding to

genes differentially expressed during and after the heat treatment.

The obtained modularity values were different from the value

exhibited by the genome network; however, this is expected in sub-

networks of smaller dimension extracted from a primary larger

network. Therefore, to assess the significance of the differences in

the modularity of the sub-networks of the genes up and down-

regulated during the heat shock, we compared their modularity

values with those measured in 10 random networks. The random

networks used for comparison had the same number of genes as

the networks of up- or down-regulated genes; the genes were

randomly selected from the genome scale network. The modular-

ity values of the up-regulated network were not significantly

different from those measured in the correspondent randomly

generated networks. Therefore the modular structure observed in

the networks of up-regulated genes during and after the heat shock

was the was not significantly different from that observed in the

random networks derived from the genome scale network,

reflecting its organization in metabolic pathways and cellular

functions. However, modularity analysis of the networks of down-

regulated genes during and after the heat shock revealed that the

level of organization of repressed genes in functional modules was

smaller than expected.

Repressed genes showed a lower level of organization in

metabolic pathways and functional categories than expected while

induced genes maintained the level of modularity expected in sub-

networks derived from the genome scale network. Gene induction,

during and after the heat shock, exhibited hysteresis and was

organized in metabolic pathways and functional categories. On

the other hand, although a large number of genes (293) were

repressed during the heat shock only one third of them remained

repressed immediately and 30 minutes after the heat shock ceased

and the networks of these repressed genes in metabolic and

functional modules were significantly less organized in metabolic

pathways and functional categories. Possibly gene repression is less

synchronised than gene induction as a result of the hysteretic

behaviour of induction. If genes remained induced once stimuli

cease, gene repression which is the complementary event to

induction has to be affected.

The hysteretic behaviour of gene transcription may mechanis-

tically be explained by a dynamic switching threshold that changes

according to the state of the gene. The concentration of inducer

needed to initiate transcription of uninduced genes may be higher

than that needed to maintain transcription of induced genes which

may be coupled with metabolic reaction rates. Bistability can arise

from substrate inhibition or product activation in metabolic

pathways [19]. It is also possible that the switching threshold is not

affected but the signal of the inducer is amplified by the induced

gene in a positive feedback mechanism. In fact, all known bistable

signalling systems contain a ‘‘positive’’ circuit such as the double-

negative feedback in the artificial genetic circuit for E. coli [20], the

positive feedback loop in the genetic network described for

Saccharomyces cerevisiae [21] or in the transcriptional network of

Bacillus subtilis leading to biofilm formation, sporulation and the

generation of multiple distinct phenotypes within an homogeneous

population [22]. However, further studies are needed to explain

the exact mechanism behind the hysteretic responses we have

observed in the current study.

Monitoring transcription at genome scale by microarray

hybridization is usually associated with very high variability

between replicates. In the experiments carried out in this work we

detected 1931 genes significantly differentially regulated at least in

one sample but only 856 (44%) were detected in replicated

samples from independent cultures (data not shown). We

estimated the number of false detected differentially transcribed

genes due to experimental error based on hybridizations of

identical samples. We detected only 60 genes with variable

transcriptional results in 6 hybridizations of identical samples to

slides with printed products for all genes in the genome (.4000).

Thus, experimental error cannot be the cause of 1075 false

detections. Recent studies have focussed on investigating stochastic

fluctuations in gene expression [23,24] describing intrinsic noise

resulting from stochasticity in the biochemical reactions taking

place at the gene level and extrinsic noise originated from

fluctuations in other cellular components involved in gene

expression. The extrinsic component of the noise is dominant

with a major contribution to the variability of gene expression [24]

and being propagated in the gene network to affect expression

fluctuation of its downstream genes [25]. These studies highlight

the importance of stochastic fluctuations on the variability of gene

regulatory networks. In addition, our results suggest that the

hysteretic response associated to the history of cells may also

contribute to explain this large variability of gene regulation. We

have observed that 102 genes associated with response to heat

shock may be either induced or repressed at 25uC, depending on

the previous culture conditions. Regulation of some genes may be

unexpected as a response to current conditions but explicable and

determined by past environments. In addition, due to the network

structure of gene regulation, the variable expression associated

with the hysteretic response can be expected to be amplified when

affecting the regulation of downstream genes contributing

substantially to the large variability of gene expression.

We demonstrated that the hysteretic transcriptional response to

the exposure to 45uC for 30 minutes was accompanied with

increased resistance to heat and cross-resistance to acid inactiva-

tion conditions even 30 minutes after the stress has ceased. Thus,

hysteresis may explain other cross-protection mechanisms against

environmental stresses such as the reported higher thermotoler-

ance of acid-adapted Salmonella cells [26]. This phenomenon could

also explain the dependence of the duration of the bacterial lag

phase on the previous growth conditions [27,28]. Some studies

have reported that non-replicating bacteria also remember

previous environmental conditions and this cell memory seems

to be associated to exposure time. E. coli starved for long periods in

stationary phase maintained anaerobic metabolism, typical of
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stationary phase, during the lag period when inoculated in fresh

media while young stationary cells switched immediately to

aerobic respiration [7]. In another study, Listeria monocytogenes was

incubated at no-growth aw values (0.90) for days and it was

observed that the longer the pre-incubation period, the faster the

initiation of the subsequent growth at also low but growth

permitting aw values [29]. The lack of an adaptation response to

extreme growth conditions involving the lag phase and/or growth

rate in our experiments was most likely due to the short duration,

30 minutes, of the previous exposure to the stressing conditions.

In food and animal feed chains, producers are responsible for

the safety of their products. Thus tracing the origin of accidental or

deliberate microbial contamination of feed and food is essential to

establish corrective actions that prevent this contamination [30].

Hysteretic responses to environmental conditions and stresses

associated with food production and process could be investigated

to infer the time and point of contamination throughout the food

chain. The detection of proteins and/or transcripts associated with

past environments might represent a rapid inferring system for the

reconstruction of the contamination scenario.

Methods

Bacterial Strain, Environmental Culture Conditions and
Sample Preparation

Salmonella enterica subsp. enterica serovar Typhimurium strain 4/74

which is the parental strain of the hisG mutant SL1344 [31] was

subcultured twice in tryptone soy broth (TSB, Oxoid, Basingstoke,

UK) and incubated at 25uC for 24 hours. before being inoculated

in 200 ml of TSB and incubated at 25uC for 16 hours to early

stationary phase. This culture was divided in two parts; one

untreated control culture kept at 25uC and pH 7 while the other

part of the culture underwent stressing conditions either at pH 5

or at 45uC.

The temperature shift was carried out by moving the culture

from a 25uC water bath to one at 45uC. Once the culture reached

45uC, it was left there for 30 minutes before being moved back to

25uC. The change of temperature with time was measured by a

thermocouple applied to a replicate bottle of uninoculated

medium. For the pH stress condition, the pH was lowered to

pH 5 with hydrochloride acid and after 30 minutes changed back

with sodium hydroxide to the original pH. Solutions to adjust the

pH of the media were highly concentrated to avoid the dilution of

the population and the possibility of growth initiation. Samples

from the untreated control populations were processed at the same

sampling times as the stressed cultures.

RNA samples for gene expression analysis and culture samples

for growth and heating experiments were obtained before applying

the stress, after 30 minutes with stress, immediately after the

removal of stress and 30 minutes after the removal of stress. At

each sampling time, 10 ml culture was harvest by adding 10 ml

Ambion RNAlater Tissue Collection solution (Life Technologies,

Taastrup, Denmark) and placed at 4uC overnight and stored at

220uC until RNA extraction. Samples of all cultures were used

straight away for growth and inactivation experiments.

Three independent biological replicates for both pH and

temperature stress were run.

Growth and Inactivation Experiments
One ml of each sample was inoculated in 100 ml of TSB to

reach a concentration of ca. 107 cfu/ml. For extreme growth

conditions experiments, cultures were incubated either at 43uC or

at pH 4.5. Growth was monitored by optical density (OD) at

600 nm. For inactivation experiments, cultures were incubated at

either 50uC or pH 3 and bacterial concentration measured by

plate counts on tryptone soy agar (TSA, Oxoid).

Estimation of Growth and Inactivation Parameters and
Statistical Analysis

The duration of the lag period and the maximum specific

growth rate were estimated by fitting the model of Baranyi and

Roberts [32] to the growth curves recorded as natural logarithm of

OD measurements vs time while D-values, exposure time required

for a decimal reduction of the population at constant inactivating

temperatures, were estimated from the log linear inactivation

curves of cfu/ml vs time.

A one way ANOVA model with one factor was fitted to the

ranked growth and inactivation parameters. The factor of the

model was the history of the cells previous to exposure to

inactivating conditions or extreme growth environments and

included 6 levels. Three levels referred to stressed cells and they

were ‘‘end of stress’’ and ‘‘immediately’’ and ‘‘30 minutes’’ after

initial conditions were reset. The other 3 levels refereed to control

cultures maintained for ‘‘0’’, ‘‘30’’ and ‘‘60’’ minutes at 25uC and

pH 7.

Orthogonal contrasts were set up to investigate if growth an

inactivation parameters of control cultures were significantly

different from those of stressed cultures as well as the significance

of the effect of the time spent at control conditions.

DNA Microarray Hybridizations
Total RNA was purified from the RNAlater solution using the

RNeasy Mini Kit (Qiagen, Copenhagen, Denmark) according to

the manufacturer’s instructions (‘‘RNeasy Mini Protocol for

Isolation of Total RNA from Bacteria’’) with minor adjustments;

for lysis, a 15 mg/ml lysozyme solution with proteinase K was

used and on-column DNase digestion was performed. The quality

of the RNA was checked using the NanoDrop (Fisher Scientific,

Slangerup, Denmark). Labeled cDNA was synthesized from total

RNA using the FairPlay III Microarray Labeling Kit (Agilent

Technologies, Hoersholm, Denmark) according to manufacturer’s

instructions without the Spike-in step. cDNA from the untreated

cultures was labeled with Cy5 and cDNA from the stressed culture

was labeled with Cy3. The labeled cDNA from the two cultures

were mixed together and competitively hybridized on an 8615 K

Agilent microarray slide constructed for Salmonella Typhimurium

strain SL1344 (deposited with GEO database ref. number:

GPL15227) at 65uC for 17 hours, washed and scanned according

to the ‘‘Two-Color Microarray-Based Prokaryote Analysis Proto-

col’’ (Agilent Technologies). The scanning was done using an

Axon GenePix 4200A Microarray scanner (Axon, Foster City, CA)

and the feature intensities were quantified using GenePix Pro 6.1

software (Axon, Foster City, CA).

Microarray Data Analysis
Data normalization and analysis was carried out using the

program ArrayLeaRNA (freely available at http://www.ifr.ac.uk/

safety/ArrayLeaRNA/) which implements a Bayesian inference

method based on the variability of the hybridization to internal

controls probes in each array and operon predictions if available

[33]. Genes detected as up- (down-) regulated at least in two of the

three replicated samples were considered as differentially

expressed for a given sampling time. In addition, genes up-

(down-) regulated in only one replicate of a given sampling time

were considered as differentially expressed if detected in at least

two of the three replicates of the other two sampling times (Tables

S1 and S2).
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Microarray datasets have been deposited with GEO database

(series accession number: GSE37636).

Network Analysis
A bi-partite network was constructed for the genome and

plasmids of S. Typhimurium SL1344 as previously described for E.

coli K 12 [7]. Edges connected two sets of nodes. Genes constituted

one of these sets of nodes. The genome composition was obtained

from the Genome Project NCBI database [34]. The other set of

nodes included metabolic pathways and cellular functions,

according to the KEGG database [35], the CMR-TIGR database

[36] and the COGs (Clusters of Orthologous Groups of proteins)

functional categories obtained from the Genome Project NCBI

database [34]. The number of nodes was 5153, from which 4717

were genes and the remaining 436 nodes represented metabolic

pathways and cellular functions. There were 11626 edges between

these two sets of nodes.

The genome scale network was used to extract the bipartite

networks corresponding to genes up- and down-regulated during

and after the heat shock. Only functional categories and metabolic

pathways connected to a significant number of genes up or down-

regulated were included in these networks. The significance was

statistically evaluated assuming that number of genes up(down)-

regulated belonging to a metabolic pathway or cell functional

category follows the commonly assumed hypergeometric distribu-

tion as previously described [7].

For networks representation we used the program Cytoscape

[37]. Networks modularity was estimated with the program

implementing the fast modularity maximization algorithm [8].

Supporting Information

Figure S1 Metabolic pathways and cellular functions
associated with those genes up-regulated during acid
shock, immediately after acid shock ceased and 30
minutes after acid shock ceased. Columns had positive

values if functions were up-regulated and negative if down-

regulated.

(TIF)

Figure S2 Main metabolic pathways and general cellu-
lar roles with a significant (p,0.1) proportion of genes
up- or down-regulated during heat stress (During),
immediately (After) and 30 minutes (Later) after heat

stress ceased. Columns had positive values if functions were up-

regulated and negative if down-regulated.

(TIF)

Figure S3 Specific metabolic pathways and cellular sub-
roles with a significant (p,0.1) proportion of genes up-
or down-regulated during heat stress (During), imme-
diately (After) and 30 minutes (Later) after heat stress
ceased. Columns had positive values if functions were up-

regulated and negative if down-regulated.

(TIF)

Figure S4 Bacterial concentration (closed symbols)
during and after the exposure to stressing conditions:

A) heat shock at 45uC 30 minutes and B) acidification of the

medium at pH 5 for 30 minutes. Concentrations were also

measured immediately after the cease of the stressing conditions

and 30 minutes after resetting the original conditions as well as in

untreated control populations maintained at 25 uC and pH 7

during the experimental course (C). Significant variation of the

bacterial concentration was not detected in any population under

any condition.

(TIF)

Table S1 Number of replicated samples in which genes
were up- or down- regulated because of heat stress
(456C).
(PDF)

Table S2 Number of replicated samples in which genes
were up- or down- regulated because of acid stress
(pH 5) and comparison with results of expression under
heat stress in Table S1.
(PDF)
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