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Abstract

The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT
is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell
motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an
early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome
signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering
the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we
report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment
modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type.
GES of EMT induced via transforming growth factor-b and tumor necrosis factor-a treatment yielded uniformly defined
clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified
those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well
known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core
gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this
meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into
the mechanisms that are governing carcinoma progression.
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Introduction

The epithelial to mesenchymal transition (EMT) has been

originally described as an essential process of metazoan embryo-

genesis [1]. In the past decade, EMT has been realized as a critical

event in carcinoma progression as epithelial tumor cells acquire a

mesenchymal phenotype that allows them to detach from the

primary tumor and to invade into the local tissue [2]. In general,

polarized epithelial cells are organized by cell-cell junctions and

cell-anchoring complexes to form apical and basolateral surfaces.

In contrast, mesenchymal cells form irregularly shaped structures

in the absence of tight adhesions to the neighboring cells and

reduced cell contact to the substratum. Mesenchymal cells have an

elongated shape compared to epithelia and display an anterior-

posterior polarity that enables enhanced migration through

reduced adhesion forces. While epithelial cells invade collectively

in clusters, mesenchymal cells show individual cell movement that

allows them to disseminate from bulk cells [3]. In addition, a

partial EMT displaying different levels of E-cadherin expression

has been observed that might still lead to collective cell invasion

[4].

EMT has been classified into three subtypes [5]. Type 1 EMT is

required for embryogenesis to provide gastrulation and formation

of neural crest cells that differentiate into various cell types without

systemic spreading. Type 2 EMT is involved in tissue regeneration

and fibrosis of different organs such as the kidney, liver, lung and

intestine leading to the accumulation of connective tissue. Type 3

EMT associates with a gain in malignancy of carcinoma cells.

Neoplastic epithelial cells induced to undergo EMT are frequently

localized at the invasive front of the primary tumor and initiate the

cascade of tumor cell dissemination by local cell invasion which is

followed by the entry into the vasculature. Notably, EMT

represents a transient and reversible process that can lead to a

mesenchymal to epithelial transition (MET) upon metastatic

colonization [5,6]. Cycles of EMT and MET are assumed to be

involved in metastasis formation at distal sites [3]. Yet, the

molecular basis for the changes in epithelial plasticity by EMT and

MET is still an open issue and its role in cancer patients is a matter

of debate. Signaling molecules and inducers of type 3 EMT confer

the resistance of cancer cells to apoptosis and oncogene-induced

senescence as well as chemoresistance [6]. Recent findings indicate

that EMT provides mesenchymal cells with stem cell features that

enable carcinoma cells to generate metastasis at secondary sites

[3]. These cancer stem cells, also termed cancer initiating cells,
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share phenotypic and functional characteristics with migratory

embryonic cells displaying a mesenchymal phenotype [6].

Profiling of the transcriptome using microarrays has been widely

used to elucidate the expression patterns during EMT under

different conditions which revealed novel biomarkers and molec-

ular mechanisms from single studies. A meta-analysis usually

describes the combination of a large number of studies from

different samples and tissues or the comparison of own data with

published data [7,8]. Recent progress in the establishment of gene

expression datasets enables to identify new markers and relevant

mechanisms which were underestimated in single studies but

emerged from a meta-analysis. By now, a plethora of gene

expression studies (GES) covering a wide variety of cell types

undergoing EMT together with various modes of induction are

available. Yet to our knowledge, no meta-analysis dealing with

these EMT studies has been performed so far.

Changes in a biological system require a concerted alteration of

gene expression sets. Bioinformatic enrichment analysis tools

investigate gene expression sets for such changes. These tools

examine the overrepresentation of gene sets in comparison to the

whole genome, map an input list of genes to biological categories

in online databases and statistically assess the overrepresentation of

genes for each biological category or annotation such as Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways and gene

ontology (GO) terms [9]. The use of several single enrichment

tools for the same input list and the consideration of only

consistently enriched categories have been reported to be a very

promising strategy [10,11].

We gathered data from 18 published and independent GES of

EMT and extracted gene lists of significantly up- and downreg-

ulated genes for cluster analysis. This approach revealed gene

clusters according to treatment modalities rather than to cell type.

We subsequently extracted an EMT-core list consisting of 130

genes with official gene symbols and names which was further

investigated by enrichment analysis with several single enrichment

tools. Notably, selected genes from the EMT-core list significantly

correlated with impaired pathological complete response (pCR) in

breast cancer patients. This analysis proposes that the EMT-core

gene list is relevant for the recognition of the molecular

mechanisms of EMT. In addition, the cluster analysis shows novel

insights into the relationships of EMT processes across different

cell types and induction modes.

Results

Data collection of gene expression studies (GES)
To assess the similarities between published GES and define a

core gene list of human EMT, we analyzed 18 independent GES

of EMT. These 18 independent and published GES consisted of

24 datasets in total (Table 1). Several authors reported EMT

Table 1. Gene expression studies of EMT used for meta-analysis.

First author Acc. Ref. Cell type Cell origin Treatment modality Platform Samples*

Ke E-TABM-949 [28] EP156T/EPT2 Prostate high cell densitya Agil WHG 4644K
G4112F

2

Andarawewa GSE8240 [61] MCF10A Breast TGF-b+irradiationa Affy HTU133A 3

Takahashic GSE12548/GSE15205 [12] ARPE19 Retinal pigment TGF-b+TNF-aa/TGF-b or
TNF-aa

Affy U133Plus2 3

Tay GSE13759 [62] HCT116/E1 Colon serial transplantationb Affy U133A 3

Drake GSE14405 [63] PC-3/TEM4-18 Prostate transendothelial
migrationa

Affy U133Plus2 2

Hwang GSE14773 [19] CRC Colon spheroid formationa Affy U133Plus2 2

Sartor GSE17708 [64] A549 Lung TGF-ba Affy U133Plus2 3

Papageorgis GSE18070 [65] MCF10CA1h Breast H-Ras+carcinomab Affy U133Plus2 3

Hills GSE20247 [66] HK2 Kidney TGF-b+Cpepa Illum HWG-6 v3.0 3

Leshem GSE22010 [67] PrEC-hTERT Prostate AR+T/ERGa Affy HG 1.0 ST 4

Micalizzi GSE23655 [20] MCF7 Breast Six1 vectora Affy HTU133A 6

Maupin GSE23952 [68] Panc-1 Pancreas TGF-ba Affy U133Plus2 3

Taubed GSE24202 [13] HMLE Breast TGF-b1; Snail1, Twist, Gsc
vectors; siRNA against E-
Cadherin a

Affy HTU133A 3

Baniwal GSE24261 [21] PCa C4-2B/Rx2dox Prostate Runx2 vectora Illum HR-8 v3.0 4

van Zijl GSE26391 [26] 3p/3sp Liver tumor cell recoveryb Affy HG 1.0 ST 2

Ohashi GSE27424 [29] EPC2-hTERT Esophagus Notch3 knock-down
(shRNA)a

Affy U133Plus2 3

Hesling GSE28448 [69] HMEC-TR Breast TGF-b+siRNA against
TIFca

Affy U133Plus2 2

Wang GSE28799 [70] OVCAR-3 Ovary spheroid formationa Affy U133Plus2 3

*, lowest number of samples per class (control or test subject).
a, in vitro;
b, in vivo;
c, consists of two studies with three datasets in total; d, consists of five datasets.
Abbreviations: Affy, Affymetrix; Agil, Agilent; AR, androgen receptor; Illum, Illumina; sh, small hairpin; si, small interfering; T/ERG, TMPRSS2/ERG; TGF, transforming
growth factor; TNF, tumor necrosis factor.
doi:10.1371/journal.pone.0051136.t001
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kinetics of different cell types or dose-dependent effects of EMT

inducers within single studies. Nevertheless, only the particular

testing point showing the strongest effect or EMT phenotype, as

reported by the authors, has been selected. Takahashi et al.

published two related GES, of which one consisted of two datasets,

resulting in three datasets of one independent study [12]. Taube et

al. reported 5 datasets published within one GES with similar

expression patterns and different modes of EMT induction [13].

Processed data (normalized and generally logarithmized data)

were downloaded from the Gene expression Omnibus (GEO) and

ArrayExpress (AE) databases and annotated with BioConductor

and NetAffx. Numerous GES, available on GEO and AE, were

excluded as they either did not provide processed data or did not

contain replicates or have not been published. Due to the variety

of microarray formats as well as different normalization and

filtering methods used in the literature, we used processed instead

of raw data in order to maintain the quality criteria applied by the

authors during the data preprocessing. Two-tailed Student’s t-test

was used to compute p-values. Significantly up- and downregu-

lated genes were selected to meet a fold change greater than 2 or

lower than 0.5 and a p-value below 0.05.

GES cluster analysis
We generated a matrix containing gene symbols across the

analyzed GES (n = 14,113) that are all uniquely reported.

Significantly up- and downregulated genes of each GES were

transferred into the matrix according to their type of regulation.

Upregulated genes were labeled with 1, downregulated genes with

21 and not differentially regulated genes with 0 (Table S1). This

data distribution consisted of 88.22% not differentially regulated

genes and 11.78% up- or downregulated genes and is significantly

different to a binomial distribution with those parameters

(p,0.0001). In order to determine a cutoff for the number of

GES sharing a particular gene used for cluster analysis, the

binomial distribution function provided by R as well as the

preliminary hierarchical clustering results of each cutoff option

were analyzed (data not shown). From this we decided to

investigate the clustering of genes shared between at least 10

datasets (n = 365; p,0.0001; Figure 1). In addition, this analysis

showed clusters of GES according to the mode of EMT stimulus

rather than to cell type (Figure 2A). Interestingly, a more stringent

clustering of genes shared between at least 14 of the analyzed GES

datasets provided similar clusters, despite the fact that this list

contains only 41 genes (Figure 2B and Figure S1).

Generation of the EMT-core gene list
Based on the cluster analysis of the GES, we aimed to define a

meaningful EMT-core gene list which describes the majority of the

involved genes across the analyzed GES. The cluster analysis of

the genes shared between at least 10 datasets contained 365 genes

(Table S2). However, it does not show whether a gene is up- or

downregulated across different GES. Therefore, the list was

filtered to keep only genes which were either up- or downregulated

in at least 10 of the GES datasets. The resulting list contained 130

genes of which 67 are up- and 63 are downregulated (Table 2 and

Table S3). This selection of genes could be further classified into

five categories ((i) cell adhesion and migration, (ii) development,

cell differentiation and proliferation, (iii) angiogenesis and wound

healing, (iv) metabolism, (v) others or unclassified) according to

single enrichment analysis as described below. Several genes were

also present in more than one of those categories (Table S3). In

conclusion, this resulting EMT-core gene list contains 130 genes

which were derived from a multitude of cell types and EMT

initiation methods.

Consistently enriched KEGG pathway and GO term
analysis of the EMT-core gene list

To further analyze the EMT-core list consisting of 130 genes, a

rigorous single enrichment analysis combined with stringent

selection criteria was performed. First, an enriched KEGG

pathway or GO term had to contain at least 5 genes from the

input list and a p-value below 0.05 to be considered significant. An

enumeration of significantly enriched terms and pathways is

shown in Table 3. Second, a significantly enriched KEGG

pathway or GO term had to be observed in at least 4 out of 5 used

bioinformatic tools. Third, a consistently enriched KEGG

pathway or GO term had to be identified in both the EMT-core

gene list and the 365 gene list. Using these criteria, we obtained 6

KEGG pathways, 20 GO biological processes and 15 GO

molecular functions consistently enriched in both lists (Table 4).

The KEGG pathways consisted of the MAPK signaling pathway,

axon guidance, focal adhesion, ECM-receptor interaction, regu-

lation of actin cytoskeleton and pathways in cancer. The GO

biological processes could be grouped into processes involved in

tissue development, wound healing, cell migration or cell

proliferation. The GO molecular functions consisted of ECM

and cytoskeleton constituents, peptidase inhibitors and the binding

of collagen, growth factors, heparin and integrin. As expected, the

list with 365 genes comprised all significantly enriched pathways

and GO terms from the 130 genes EMT-core list except for 2 GO

biological processes (ECM organization and lung development).

Several more KEGG pathways, GO biological processes and

molecular functions could be identified in the list with 365 genes

(Table 3 and 4). All these pathways, biological processes and

molecular functions are well known to be involved in EMT [5,14–

16], and thus confirm the integrity of our EMT-core gene list. In

addition, both the EMT-core list and the list with 365 genes

display comparable enrichment ratios of KEGG pathways and

GO biological processes (Figure 3) as well as GO molecular

functions (Figure S2). Therefore, the list containing 365 genes may

be considered as an amelioration of the EMT-core list by

containing additional genes that might have an ambiguous role

in EMT. In summary, our EMT-core list of 130 genes and its

amelioration containing 365 genes show strong enrichment of

EMT-relevant processes.

Clinical relevance of the EMT-core gene list
The EMT-core gene list contains several genes with yet

unidentified roles in cancer progression and/or EMT. We aimed

to investigate the clinical relevance of this selection of genes.

Therefore, we correlated their expression with overall survival of

patients suffering from squamous cell lung carcinomas (SCC) [17]

and pathological complete response (pCR) of breast cancer

patients [18]. From the downregulated genes of the EMT-core

gene list, low FXYD3 expression showed a trend to poor overall

survival of SCC patients (p = 0.17) and low expression of LAD1

(p = 0.00074), SLC7A5 (p = 0.0093) and SLPI (p = 0.043) signifi-

cantly correlated with worse pCR of breast cancer patients. From

the upregulated genes of the EMT-core gene list, high PTX3

expression tends to poor overall survival of SCC patients (p = 0.16)

and high expression of NID2 (p = 0.0091), SPOCK1 (p = 0.038)

and SULF1 (p = 0.00029) significantly correlated with impaired

pCR of breast cancer patients. These correlations demonstrate

that the comparison of different data sets is a powerful tool to

identify novel relevant target genes that do not emerge from single

studies.

Meta-Analysis of EMT Signatures
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Discussion

Over the past decade a considerable number of GES that deal

with EMT have been accumulating in the literature. These cover a

variety of cell types which display EMT and include different

modes of EMT induction. So far, these resources have only been

partially used to compare single findings with those in the

literature [8,19,20]. To our knowledge, no attempt has been made

to investigate the majority of the independent GES of EMT for

their relations to each other. Although we are aware that gene

expression data of EMT are not complete, we analyzed the

currently available GES to generate an EMT-core list of genes

altered most frequently during the EMT process, as depicted in

the flow chart (Figure S3).

Cluster analysis of genes shared between at least 10 GES

datasets revealed clusters of GES with the same or a similar

treatment type. The GES in which EMT was induced by TNF-a
either alone or in combination with TGF-b, by TGF-b alone or by

different transcription factors consistently grouped together. These

clusters persisted when genes shared between at least 14 datasets

were used for cluster analysis. A clear clustering of different types

of EMT induction, however, would have only been possible if an

adequate number of GES on each of these EMT initiation

methods existed. Since several treatment modalities are only

represented once in the literature, such GES cluster to their most

related treatment type.

One cluster predominantly emerged from GES of TGF-b-

induced EMT which consisted of 13 datasets. Interestingly, the

cluster includes the exogenous expression of Six1 (Micalizzi et al;

GSE23655; [20]) which has been shown to enhance tumor-

promoting TGF-b signaling, and Runx2 (Baniwal et al;

GSE24261; [21]) that acts downstream of TGF-b signaling [22–

25]. Hence, this supports the clustering of these studies together

with others using TGF-b as EMT initiator. The study by van Zijl et

al. (GSE26391; [26]) described the analysis of epithelial and

mesenchymal hepatocellular carcinoma cells derived from the

same tumor patient. The clustering of this study along with other

studies with TGF-b-induced EMT suggests an involvement of

TGF-b signaling during the establishment of the mesenchymal cell

line.

The cluster of GES with TNF-a as EMT inducer contained the

study by Takahashi et al. which analyzed the ARPE19 cell line

treated with either TNF-a alone (GSE15205_TNFa), TNF-a
together with TGF-b (GSE12548) or TGF-b alone

(GSE15205_TGFb) in order to induce EMT [12]. The two

datasets with TNF-a treatment formed a consistent cluster.

However, the third dataset which was obtained from the exclusive

treatment with TGF-b clustered to other GES describing EMT

initiation by TGF-b. Hence, these data suggest a stronger impact

of the EMT stimulus on the clustering rather than the cell type.

One cluster consisted mainly of the datasets from Taube et al.

(GSE24202; [13]) who reported the induction of EMT in HMLE

cells using overexpression of Twist, Snail, Goosecoid and TGF-b
as well as the knockdown of E-cadherin. Consistent with the data

reported by Taube et al, the datasets from Snail- and Twist-

induced EMT were the most similar within this cluster. This

Figure 1. Cluster analysis of genes shared between at least 10 GES datasets shows distinguishable and significant clusters. Genes
shared between at least 10 out of 24 datasets were used for Manhattan hierarchical clustering. The type of regulation within a particular study was
visualized via heatmap. Columns: genes shared between at least 10 datasets (n = 365); rows: analyzed GES (24 datasets in total); green:
downregulated genes; red: upregulated genes; black: genes not regulated. GSE: Gene expression omnibus (GEO) series record; E.TABM: ArrayExpress
(AE) series record; TGF, transforming growth factor; TNF, tumor necrosis factor.
doi:10.1371/journal.pone.0051136.g001
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finding is concordant with the fact that Twist is a direct target of

Snail [27]. The high number of datasets in this study might lead to

an overrepresentation within the cluster analysis. Furthermore, the

use of the same cell line as well as transcription factors with similar

targets such as Twist and Snail might lead to a high level of

similarity within the datasets of this particular study.

The cluster comprising of Ke et al. (E-TABM-949; [28]) who

utilized high cell density culturing of EPT2 cells and Ohashi et al.

(GSE27424; [29]) who described a NOTCH3 knock-down in

EPC2 cells displays a low level of relation to other clusters due to

the unique types of EMT induction. It appears likely that on the

one hand these GES form a cluster due to the lack of relationship

Figure 2. Gene expression studies cluster according to the mode of EMT initiation rather than to cell type. The cell type and treatment
modality of EMT was annotated and revealed clustering according to the mode of EMT induction. The clustering persisted when genes shared
between at least 14 GES datasets were used for the analysis. (A) Hierarchical clustering of 365 genes shared between at least 10 datasets. (B)
Hierarchical clustering of 41 genes shared between at least 14 datasets. The legend indicates cell type and treatment modality (right panel). *,
Transcription factor vectors: Runx2, Six1, Snail, Twist and Goosecoid. GSE: Gene expression omnibus (GEO) series record; E.TABM: ArrayExpress (AE)
series record; TGF, transforming growth factor; TNF, tumor necrosis factor.
doi:10.1371/journal.pone.0051136.g002

Table 2. EMT-core list of 130 genes shared between at least 10 GES datasets.

Upregulated Downregulated

Cell adhesion and migration ADAM12, CDH11, CDH2, COL1A1, COL3A1, COL5A1, COL6A1, COL6A3,
CTGF, CYP1B1, DLC1, FBLN1, FBLN5, FGF2, FGFR1, FN1, HAS2, LUM,
MMP2, MYL9, NID2, NR2F1, NRP1, PLAT, PPAP2B, PRKCA, RECK,
SERPINE1, SERPINE2, SPOCK1, TGM2, TNFAIP6, TPM1, VCAN, WNT5A

CD24, CDH1, CXADR, CXCL16, DSG3, ELF3,
EPCAM, EPHA, JUP, MPZL2, OVOL2, PLXNB1,
S100P, SLC7A5, SYK

Development, cell differentiation
and proliferation

CDKN2C, EMP3, FBN1, IGFBP3, IL1R1, LTBP1, MME, PMP22,
PTGER2, PTX3, SRGN, SULF1, SYNE1, TAGLN, TUBA1A, VIM, ZEB1

ABLIM1, ADRB2, ALDH1A3, ANK3, BIK CA2,
CTSL2, FGFR2, FGFR3, FST, GJB3, IFI30, IL18,
KLK7, KRT15, KRT17, LSR, MAP7, MBP, OCLN,
PKP2, PPL, PRSS8, RAPGEF5, SPINT1

Angiogenesis and wound healing DCN, LOX, TFPI no gene with a major classification*

Metabolism ABCA1, GALNT10, SLC22A4 GPX3, SLC27A2, SMPDL3B, SORL1, ST6GALNAC2

Others or unclassified C5orf13, CDK14, EML1, FSTL1, LTBP2, MAP1B, RGS4, SYT11, TMEM158 AGR2, C10orf10, CDS1, FAM169A, FXYD3, KLK10,
LAD1, MTUS1, PLS1, PRRG4, RHOD, SERPINB1,
SLPI, TMEM30B, TPD52L1, TSPAN1, ZHX2,
ZNF165

Categories have been chosen according to the GO classifications of the enrichment tools. Genes may be present in more than one category.
*see Table S3 for more information.
doi:10.1371/journal.pone.0051136.t002
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to the other clusters. On the other hand, it might also suggest a

relation of their types of EMT initiation as well.

We found a variety of well-known markers of EMT upregulated

in our EMT-core gene list such as CDH2, CDH11, COL1A1,

COL3A1, FBLN5, FN1, HAS2, LOX, MMP2, PLAT, SER-

PINE1, VIM, WNT5A and ZEB1 [15,30,31]. Furthermore, we

detected downregulated genes reported to be reduced in EMT

such as ANK3, CDH1, CXADR, PRSS8 and SYK [15,32–34],

several downregulated epithelial cell markers such as EPCAM,

JUP, KRT15, KRT17, OCLN, PKP2 and PPL [5,15] and a

number of downregulated tumor suppressors such as KLK10,

MTUS1, OAS1 and SERPINB1 [35–38]. Together, these genes

provide a solid verification of our EMT-core gene list. Besides

those genes confirming the integrity of our gene list, however,

genes with unknown functions as well as an unknown or unclear

relation to cancer and/or EMT emerged which are novel

candidates for further investigation. Upregulated genes include

MAP1B, NID2, PTX3, SPOCK1, SULF1, TAGLN and

TMEM158 while downregulated genes comprised ABLIM1,

Figure 3. The 130 genes EMT-core list and the 365 genes list exhibit comparable enrichment ratios of GO biological processes and
KEGG pathways. The enrichment ratio is the number of observed genes divided by the number of expected genes for a given term or pathway.
Enrichment ratios were obtained from WebGestalt or calculated with data from FatiGO. GO, gene ontology; BP, biological process; KEGG, Kyoto
encyclopedia of genes and genomes.
doi:10.1371/journal.pone.0051136.g003

Table 3. Number of enriched terms and pathways in all lists detected by the enrichment tools.

Tool 130 gene list 365 gene list GSE13195 core list GSE24202 core list

BP MF KEGG BP MF KEGG BP MF KEGG BP MF KEGG

ConsensusPathDB 305 31 9 558 61 31 62 10 6 247 34 8

FatiGO 178 28 9 452 72 36 0 0 2 172 28 10

GeneCodis 34 16 8 155 45 46 59 17 4 240 48 7

ToppFun 241 21 1 610 45 5 0 0 1 127 14 0

WebGestalt 40 28 6 40 40 37 5 4 4 40 30 8

The numbers of enriched terms and pathways found by the particular enrichment tools are displayed. BP, GO biological process; MF, GO molecular function; KEGG,
KEGG pathway. GSE13195 core list of Choi et al., GSE24202 core list of Taube et al. [13,39].
doi:10.1371/journal.pone.0051136.t003

Meta-Analysis of EMT Signatures

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e51136



Table 4. Consistently enriched GO terms and KEGG pathways and their occurrence in the analyzed gene lists.

Term ID Category Term size* 130 gene list 365 gene list GSE13915 core list GSE24202 core list

Tools Genes Tools Genes Tools Genes Tools Genes

GO biological process

GO:0048646 anatomical structure formation
involved in morphogenesis

390 4 24 4 62 0 - 4 22

GO:0001525 angiogenesis 189 4 16 4 38 0 - 4 14

GO:0007596 blood coagulation 182 4 13 4 29 0 - 3 13

GO:0001568 blood vessel development 288 4 25 5 54 0 - 5 20

GO:0007155 cell adhesion 953 5 36 5 76 2 19 5 41

GO:0016049 cell growth 226 4 13 4 34 0 - 4 14

GO:0016477 cell migration 405 5 32 5 67 1 13 5 35

GO:0048870 cell motility 484 4 33 4 69 1 13 5 35

GO:0006928 cellular component movement 666 4 36 5 73 1 16 5 41

GO:0009790 embryo development 619 4 18 4 46 0 - 3 20

GO:0008544 epidermis development 218 5 16 4 32 2 6 5 26

GO:0007507 heart development 230 5 15 4 28 1 6 3 10

GO:0009887 organ morphogenesis 800 5 21 5 54 0 - 5 34

GO:0042127 regulation of cell proliferation 823 4 28 5 81 1 14 5 37

GO:0050793 regulation of developmental
process

1005 4 34 4 88 0 - 4 32

GO:0009611 response to wounding 776 5 31 5 85 0 - 4 34

GO:0001501 skeletal system development 394 4 14 4 35 0 - 5 20

GO:0009888 tissue development 808 4 38 4 93 1 12 5 52

GO:0001944 vasculature development 294 4 25 4 56 0 - 5 20

GO:0042060 wound healing 270 4 20 5 50 0 - 3 19

GO molecular function

GO:0005509 calcium ion binding 1033 4 22 4 55 0 - 4 34

GO:0030246 carbohydrate binding 380 4 15 4 29 1 7 4 14

GO:0005518 collagen binding 40 4 5 5 12 0 - 0 -

GO:0004866 endopeptidase inhibitor activity 179 4 9 4 19 0 - 4 9

GO:0004857 enzyme inhibitor activity 327 4 10 4 26 2 8 4 13

GO:0005201 ECM constituent 105 5 7 5 12 0 - 4 7

GO:0005539 glycosaminoglycan binding 146 4 13 5 24 0 - 5 10

GO:0019838 growth factor binding 127 4 13 4 26 0 - 5 14

GO:0008201 heparin binding 108 4 9 4 17 0 - 3 7

GO:0005178 integrin binding 57 4 6 5 9 0 - 4 7

GO:0030414 peptidase inhibitor activity 192 5 9 5 20 0 - 4 9

GO:0030247 polysaccharide binding 165 4 14 4 27 0 - 5 13

GO:0032403 protein complex binding 199 4 11 4 20 0 - 2 8

GO:0004867 serine-type endopeptidase
inhibitor activity

118 4 9 4 14 0 - 3 7

GO:0005200 structural constituent of
cytoskeleton

92 5 8 5 10 0 - 5 13

KEGG pathway

map04360 axon guidance 126 4 6 4 11 0 - 4 6

map04512 ECM-receptor interaction 92 5 7 5 18 0 - 1 5

map04510 focal adhesion 207 4 9 5 23 0 - 3 8

map04010 MAPK signaling pathway 289 3 7 4 15 0 - 0 -

map05200 pathways in cancer 329 4 11 5 28 1 5 2 8

map04810 regulation of actin cytoskeleton 209 4 7 4 16 0 - 2 6

*According to FatiGO category size in genome.
The maximum number of genes from the category present in the input list is displayed. ID, identity; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and
genomes. GSE13195 core list of Choi et al., GSE24202 core list of Taube et al. [13,39].
doi:10.1371/journal.pone.0051136.t004
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LAD1, FAM169A, FXYD3, SLC7A5, SLPI, TMEM30B and

TPD52L1.

Two meta-analyses of EMT in breast cancer considering

different cell lines or types of EMT induction have been reported.

These have identified EMT-core gene lists with 200 and 251 genes

[13,39], however, overlapping with approximately 10% only. Our

EMT-core list containing 130 genes shows a poor overlap of 7%

with the list of Choi et al. [39] but an overlap of 55% with Taube et

al. [13]. Both the lists by Choi et al. and Taube et al. contain

unmapped identifiers (IDs) such as array IDs, expressed sequence

tags and locus IDs. We used consistently enriched pathway

analysis to further investigate these gene lists. Notably, our EMT-

core list displayed more enriched KEGG pathways and GO terms

than the gene lists of Choi et al. and Taube et al. (Table 3 and 4).

Upon reducing the stringency of analysis to two genes within an

enriched category, the enrichment for the list of Choi et al. did not

improve whereas nearly all KEGG pathways and GO terms

enriched in our EMT-core list could be observed in the list of

Taube et al. (data not shown, Table 4).

The EMT-core list contains several genes with unknown

functions and relations to cancer and/or EMT. We were able to

show that FXYD3 and PTX3 expression is associated with poor

overall patient survival in SCC patients and LAD1, SLC7A5,

SLPI, NID2, SPOCK1 and SULF1 correlated significantly with

impaired pCR in breast cancer patients. FXYD3 has been shown

to be involved in tumor cell proliferation and to be downregulated

by TGF-b signaling [40,41]. PTX3 has been reported to be a lung

cancer biomarker [42]. NID2 has been shown to be elevated

during phorbol 12-myristate 13-acetate-induced invasion of

several human tumor cell lines and as a potential tumor biomarker

[43,44]. SPOCK1 has been reported to be involved in neuronal

attachment and matrix metalloproteinase activation [45,46].

SULF1 has been shown to be a potential biomarker for gastric

cancer which can be induced by TGF-b1 [47,48]. LAD1 is an

adaptor protein involved in ERK5 and JNK pathways [49]. SLPI

has been reported to act anti-tumorigenic for certain tumors as

well as to promote migration and invasion in others [50–52].

Hence, these genes seem to be promising candidates for further

investigation. Taken together, we propose that the EMT-core list

of 130 genes is highly relevant for EMT and the cluster analysis

represents a useful overview on the relationships of currently

available GES of EMT.

Materials and Methods

Data collection and annotation
Processed microarray data were downloaded from the websites

of GEO (available: http://www.ncbi.nlm.nih.gov/geo/) and AE

(available: http://www.ebi.ac.uk/arrayexpress/) by using ‘‘EMT’’

as keyword for published GES until February 2012. The

downloaded GES were annotated to retrieve official gene symbols,

EntrezID and gene names using BioConductor 2.9 (available:

http://www.bioconductor.org/; accessed: 2012 Jan 02) [53] and

the online tool NetAffx (available: http://www.affymetrix.com/

analysis/index.affx; accessed: 2012 June 25). BioConductor was

used within the R environment [54]. Annotated data was

imported to MS-Excel 2010 and log2 transformed. Subsequently,

fold changes and p-values using two-sided Student’s t-test were

calculated. Significantly up- and downregulated genes were

selected and separated from each other when showing a fold

change greater than 2 or below 0.5 and a p-value below 0.05.

Upregulated genes were ordered from highest to lowest fold

change. Vice versa, downregulated genes were arranged from

lowest to highest fold change. Duplicates were removed after-

wards. Gene symbols have been used for further analysis and will

be referred to as genes.

Cluster analysis
The up- and downregulated genes from each study were

summarized, ordered and duplicates were removed to obtain a list

of all uniquely reported genes across all studies. Upregulated genes

were labeled with 1 and downregulated genes were labeled with

21. Genes that were not significantly deregulated within a GES

and genes which were found to be both up- and downregulated

within a study were labeled with 0. The distribution of the

observed number of up- and downregulated genes was tested

against a binomial distribution with parameter p = 11.78% by

means of a chi-squared test. We calculated the possibilities of

drawing each cutoff option for cluster analysis (.1, .2, .3, and

so forth) by chance with the binomial distribution function

provided by R (probability = 11.78%). The possibilities to draw

each cutoff option by chance were compared to preliminary

cluster analyses of each cutoff option in order to determine a

suitable cutoff. The clustering was performed in BioConductor 2.9

embedded in R 2.14.1 (64 bit) with the packages gdata [55], gplots

[56] and heatmap.plus [57] using hierarchical heatmap clustering

with Manhattan distance function.

Consistently enrichment of KEGG pathways and GO
terms

The gene lists were analyzed using five different bioinformatic

enrichment tools. A comprehensive overview of the used tools and

their characteristics is shown in Table S4. The tools FatiGO and

GeneCodis were used on the Babelomics 4 platform [58], which

provided access to both programs at once. The selection criteria

for significantly enriched pathways were a p-value or FDR below

0.05 and a minimum of 5 genes of the input list within an enriched

category. Furthermore, consistently enriched GO terms and

KEGG pathways were identified in at least 4 of 5 programs in

both the EMT-core gene list and the 365 gene list. Enrichment

ratios (number of observed genes divided by the number of

expected genes for a GO or KEGG category) have been obtained

by WebGestalt, or alternatively, have been calculated as described

by Zhang et al. with the data from FatiGO [59].

Correlation of the EMT-core list with clinical data
Microarray and clinical data for patients with squamous cell

lung carcinomas (n = 130) reported by Raponi et al. [17] with the

accession GDS2373 were downloaded from GEO. Microarray

and clinical data for breast cancer patients (n = 133) reported by

Hess et al. [18] were downloaded from the MD Anderson Cancer

Center website (available: http://bioinformatics.mdanderson.org/

pubdata.html; accessed 2012 Sep 07). Patients were divided into

high and low expressing groups for selected genes within the

EMT-core list. The p-values were computed using two-sided

Student’s t-test. Survival analysis for the data by Raponi et al. was

performed with the chi-squared test of equality using the survival

package in R [60]. P-values below 0.05 were considered

significant.

Supporting Information

Figure S1 Cluster analysis of genes shared between at
least 14 GES datasets shows persistent and distinct
clusters.

(PDF)
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Figure S2 The 130 genes EMT-core list and the 365
genes list exhibit comparable enrichment ratios of GO
molecular functions.
(PDF)

Figure S3 Flow chart depicting the generation of the
EMT-core gene list.
(PDF)

Table S1 Matrix containing significantly up- and downregulated

genes across the analyzed GES datasets.

(XLS)

Table S2 List of 365 genes significantly regulated in at least 10

GES datasets.

(DOC)

Table S3 EMT-core gene list of 130 up- or downregulated genes

shared between at least 10 GES datasets.

(DOC)

Table S4 Enrichment tools used in this study and their

properties.

(DOC)
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