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Abstract

Poly(A)-specific ribonuclease (PARN) is an exoribonuclease/deadenylase that degrades 39-end poly(A) tails in almost all
eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme.
However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation.
Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still
remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the
present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics
analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which
allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of
selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis
based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed
structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the
catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN’s catalytic
mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of
DNP-poly(A) amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-
poly(A) inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of
pharmacophore models as well as novel modulators of PARN with therapeutic potential.
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Introduction

The first and often rate-limiting step in eukaryotic mRNA

turnover is the shortening of the poly(A) tail [1–4]. The process is

known as deadenylation and it occurs both in the nucleus and in

the cytoplasm. In the nucleus it restricts newly added poly(A) tails

to their appropriate lengths. In the cytoplasm, deadenylation

either decreases the total mRNA levels and regulates the

expression levels of specific mRNAs, or modulates the length of

the poly(A) tail. Deadenylation is catalyzed by a family of specific

ribonucleases, known as deadenylases [4–6]. Among these,

poly(A)-specific ribonuclease (PARN) has been involved in key

biological processes, such as development, cell cycle progression,

DNA damage response and cancer. PARN is conserved in many

eukaryotes from yeast and plants to humans. PARN homologs are

found in Schizosaccharomyces pombe (fission yeast) and Anopheles

gambiae (mosquito), but they are notably absent from Saccharomyces

cerevisiae and Drosophila melanogaster [5–7], suggesting that they are

not required by all eukaryotes [5]. Structural and biochemical

studies revealed that PARN is homodimeric and the active site

consists of four acidic amino acids Asp28, Glu30, Asp292, and

Asp382, which are believed to coordinate the catalytically

important divalent metal ions [8–9]. Furthermore, the residue

His377, which is conserved in PARN, has also been proposed to

be essential for catalytic activity, thus classifying PARN as a

DEDDh nuclease [9], named after the five conserved catalytic

amino acid residues. The structure of PARN is composed of at

least three functional domains: the catalytic nuclease domain, and

two RNA binding domains: the R3H domain and the RNA

binding domain or RNA recognition motif (RRM) [9–10] which

have been suggested to contribute to the catalytic activity of the

enzyme [9–12]. The RRM is a unique, multifunctional domain

that is responsible for molecular recognition of the 59 cap structure

[13]. The latter is perhaps the most characteristic feature of PARN

that distinguishes it from all the other known deadenylases. Cap-

binding has been reported to significantly contribute to the

processivity of the enzyme. Apart 59-cap, PARN activity is

regulated by natural nucleotides [14–16] and by several protein

factors. The latter include the cytoplasmic poly(A)-binding protein

(PABPC) [17], the eukaryotic initiation factor 4E (eIF4E) [18] and

the nuclear cap-binding complex (CBC) that negatively regulate

PARN [19], while RHAU helicase [20] and AU-rich element
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(ARE) - binding proteins, including TTP and KSRP are positive

regulators [21–23]. PARN activity is also regulated by factors that

bind cytoplasmic polyadenylation elements (CPEs) including CPE-

binding protein (CPEB) and the atypical Gld2 poly(A) polymerase

[24,25]. Finally, PARN has been shown to be a target of synthetic

nucleoside analogs with anticancer and antiviral potential. These

analogs inhibit PARN activity in a competitive mode [26,27].

Furthemore, PARN mRNA and protein expression levels are

elevated in acute leukemias [28]. These observations suggest that

that enzyme may be a promising biomarker and a target for drug

design [28].

Herein, we present a PARN-specific 3D pharmacophore model

both for de novo design and virtual screening of selective inhibitors.

For the design of the pharmacophore model, we initially used an

in-depth phylogenetic analysis of PARN across species, which

identified structurally conserved residues, important for the

catalytic activity of the enzyme. Using a series of computer-aided

molecular simulations, supported by statistical structure-activity

correlations of our previously reported nucleoside analogs that

inhibit PARN, we established a combined complex-based 3D

pharmacophore model. We applied our in silico model to predict

the effect of the amphipathic DNP-poly(A) substrate as a novel

PARN-interacting molecule, which was then confirmed to

efficiently inhibit the enzyme by kinetic assays.

Results and Discussion

Phylogenetic Analysis of PARN
The complex-based 3D pharmacophore for the specific drug

design of novel PARN inhibitors was based on a) a comprehensive

phylogenetic analysis to identify evolutionary invariant amino

acids across species, b) in silico conformational evaluation of these

residues in the context of the overall structure and the catalytic

mechanism, and c) substrate preferences and results from previous

compounds that inhibit PARN efficiently.

Firstly we performed a comprehensive phylogentic analysis of

PARN. Collectively, 32 homologous PARN protein sequences

were identified in the genomes of species, which represent diverse

eukaryotic taxonomic divisions (according to the NCBI taxonomy

database) [29] (Table S1). Therefore, PARN exhibits a broad

phylogenetic distribution, ranging from protozoa to metazoa

(Fig. 1A).

In agreement with previous reports, PARN homologs were not

found in the arthropod Drosophila melanogaster (fruit fly) and the

fungus Saccharomyces cerevisiae (yeast) [5–7]. Alternative metabolic

pathways may exist in these two organisms for poly(A) degrada-

tion, as in the case for amino acid starvation control [30].

However, putative PARN homologous sequences were detected in

other arthopods and fungi (Table S1).

Based on the reconstructed phylogenetic tree in Fig. 1A, PARN

sequences from different eukaryotic groups form separate mono-

phyletic clades, supported by relatively high bootstrap values. The

Drosophila and yeast POP2 [31,32] sequences were selected as

outgroups (Fig. 1A). Even though POP2 does not belong to the

DEDDh subfamily of exonucleases and shares only 17% sequence

identity with PARN, the structure of the core nuclease domains of

both enzymes are very similar [9]. The major difference between

PARN and POP2 is PARN’s 59-cap binding specificity, which may

not be required in Drosophila melanogaster and Saccharomyces cerevisiae.

Further, protein motifs were derived from the multiple

alignments of PARN amino acid sequences (Fig. 1B). Apart from

the conserved catalytic motif (Asp28, Glu30, Asp292 and Asp382),

a second motif containing the invariant Arg99 and Gln109

residues was detected only in metazoa (Fig. 1B). Upon careful

examination of the primary amino acid sequence of other species

besides Metazoa, we found that in the neighboring Arg99 region

either there are Arg residues, or Arg has been replaced by the

fellow polar residue Lys. The observation that Arg99 is

evolutionary invariant only in metazoa (Fig. 1B) prompted us to

investigate its structural conservation across non-metazoa species

by homology modeling. Indicatively, the corresponding sequences

for PARN from Arabidopsis thaliana and Trypanosoma brucei were

aligned against human PARN, which was used as template.

Careful inspection of the final homology models, after energy

minimization, revealed that the spatial coordinates of human

PARN Arg99 were identical to the residue Arg89 of PARN from

Arabidopsis thaliana (Fig. S1). On the contrary, the homology model

of Trypanosoma brucei completely lacks the Arg99-corresponding

residue in its 3D structure of PARN.

Collectively, PARN was found in all eukaryotes, but the

arthropod Drosophila melanogaster (fruit fly) and the fungus Saccha-

romyces cerevisiae (yeast). Moreover, a series of invariant residues

were identified, which were subsequently structurally investigated

for any possible involvement in the catalytic regulation of PARN.

Arg99 and Gln109 are Involved in the Regulation of
Catalysis

Based on the phylogenetic analysis, we further focus on the

possible roles of the invariant Arg99 and Gln109 residues. PARN

is a homodimeric enzyme where each monomer harbors an

identical catalytic active site (Fig. 2), and at least in humans,

PARN is only active in its dimeric form [9]. Structural

superposition of the two monomers and the two corresponding

poly(A) oligonucleotides reveal only minor deviations (max Ca

RMSD ,2 Å). Our in silico structural analysis revealed that Arg99

of monomer A (Arg99A) is contributed by the complementary

monomer during catalysis in a symmetric fashion. In particular

Arg99A extends into the catalytic site of chain B, as does Arg99B to

the catalytic site of chain A. These arginine residues establish

hydrogen bonding with the adenine base of the last 39 adenosine

nucleoside of the poly(A) chain. The hydrogen bond is achieved by

electron transfer between the -NH2 group (donor) of the arginine

and the –N = group (acceptor) of the six-member ring of adenine

(Fig. 3A–B). The essential contribution of the Arg99 residue was

also confirmed by mutation studies on a3 helix of PARN, which is

a conformational flexible loop on the counterpart monomer, and

supports Arg99 in the proximity of the catalytic region [9]. MDs of

just one monomer of PARN, indicated that in the absence of the

a3 counterpart helix, the loop carrying the Arg99 residue is not

structurally supported anymore and therefore moved away from

the active site having lost completely its interactions with the

poly(A) oligonucleotide (Fig. 3A).

Moreover, Ile34 establishes hydrophobic interactions with the

conjugated adenine rings of the second nucleotide, thus tethering it

in the conformational space of the active site (Fig. 3). The

hydrogen bonding interaction between the adenine ring of the first

nucleoside and Arg99 of the complementary monomer is much

stronger than the hydrophobic interactions established between

the corresponding conjugated rings of the second base and Ile34.

Subsequently, the involvement of the penultimate scissile bond in

the catalytic mechanism was investigated. It was found that

hydrogen bonding interactions were established between Asn288,

Lys326 and Ser342 residues of PARN and the second scissile bond

of the poly(A) substrate. Interestingly, our phylogenetic analysis

determined that both Asn288 and Lys326 are invariant residues

across species, ranging from protozoa to metazoa. Even though

the catalytic function of these residues remains unclear, this is an

important finding in itself taking into account that they are both
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Figure 1. PARN phylogenetic analysis and sequence motifs. (A) Phylogenetic tree of PARN proteins. Colored boxes identify different
eukaryotic groups. Bootstrap values (.50%) are shown at the nodes. The length of the tree branch reflects evolutionary distance. The scale bar at the
upper left represents evolutionary distance of 0.5 amino acids per position.(B) Sequence logo of the motifs identified in PARN protein sequences. The
amino acid residue numbers (according to human PARN numbering) are indicated at the top. The height of each letter is proportional to the
frequency of the corresponding residue at that position, and the letters are ordered so the most frequent is on the top. The invariant residues are
indicated with dots.
doi:10.1371/journal.pone.0051113.g001
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evolutionary conserved, which makes them key pharmacological

targets. In any case, nucleotides two and three were both less

defined, since they were not rigidly fixated in the 3D conforma-

tional space of PARN’s active site. This is supported by crystal

structure of PARN, where only the first poly(A) nucleotide was

stable enough to return a well defined electron density9.

The previous observations suggest that having suppressed the

potential degrees of movement for the first two nucleotides by

interactions with their bases, PARN can precisely coordinate the

positioning of the scissile bond towards the catalytic triad (Asp28,

Asp292, Asp382). The optimal catalytic positioning of the scissile

bond is directed by His377, which hydrogen bonds to the –P = O

oxygen of the phosphodiesteric bond. Consequently, since His377

and Arg99 establish hydrogen bonds with the first nucleotide from

different directions, they play a very crucial role in its three-

dimensional stabilization and positioning in the catalytic site of

PARN (Fig. 3B). This is in agreement with the reported

observation that in the crystal structure of PARN, only the first

poly(A) nucleotide was stable enough to return a well defined

electron density [9].

Previous work has revealed that the b5 strand of one protomer

of PARN forms an antiparallel b-sheet with its counterpart from

the other protomer. This orientation allows the side chains of

conserved residues Phe93, Cys108, Phe106, Ile113, Phe123 and

Phe127 from one protomer form extensive hydrophobic interac-

tions with the same set of residues from the other one. Among

these, Phe123 is an invariant residue in PARN across species,

which when mutated to alanine led to loss of activity [9].

Conclusively, Arg99 may represent another important residue as it

links the two monomers, it contributes to overall stability, and

directs the substrate to an optimal position for the cleavage

reaction.

The other invariant residue across species that was identified

from the phylogenetic analysis, Gln109, is located in the two

antiparallel b5 strands of the homodimeric interface region. To

understand the role of Gln109 we performed the Gln109Ala and

Gln109Trp in silico mutations. The Gln109Ala mutation revealed

a significant loss in the packing and association of the two b5

strands (4 fold energetic loss in packing and association), whereas

the Gln109Trp mutation constantly failed, since the bulkier Trp

residue could not be accommodated in the homodimerization

interface region of PARN (Fig. 3A). It is also evident that the bulky

side chain of Gln109 defines the shape and the size of the catalytic

pocket that is available to accommodate the poly(A) substrate.

Figure 2. A representation of the 3D organization of the catalytic site of PARN. The RNA interacting and structurally conserved residues
(Asp324, Thr325, Gly70, Gln68, Leu343, Asn288, Lys326) are shown in an electrostatic cloud, whereas the four evolutionary invariant amino acids that
conformationally support the catalytic residues are shown in specefill representation (labeled as under-layer, Asp324, Thr325, Gln68, Gly70). The
invariant residues that were detected in the PARN protein motifs by our phylogenetic analysis are showing below the 3D structure.
doi:10.1371/journal.pone.0051113.g002
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Insights into PARN’s Nuclease Domain and Interdimeric
Interface

We performed structural molecular modeling study of the

nuclease domain of PARN. The in silico analysis revealed a series of

previously unreported amino acids, which are essential for the

function of the enzyme. A conformational under-layer in its

catalytic site is shaped by Gly70, Gln68, Asp324 and Thr325

residues (Fig. 2); Gly70 and Gln68 provide structural support for

Asp28 and Glu30 catalytic residues, while Asp324 and Thr325

support the poly(A)-interacting Lys326 and His287 residues [9].

The functional role of the PARN under-layer catalytic site amino

acids was consistent with the phylogenetic analysis of PARN,

where Gly70, Gln68, Asp324 and Thr325 residues were found to

be invariant across species. Additionally, in silico mutagenesis

studies followed by molecular dynamics simulations (MDs), to each

one of the Asp324, Thr325, Gly70 and Gln68 amino acids

produced structural conformational changes in the relative

positioning of the supported catalytic residues. More specifically,

in silico mutation of residues Asp324 and Thr325 to either Alanine

(Asp324Ala and Thr325Ala) or to the bulkier Phenylalanine

residue (Asp324Phe and Thr325Phe) resulted in loss of the

hydrogen bonds between the Lys326 and the Asn288 amino acids

with the second scissile bond of the poly(A) substrate (Fig. 3B).

Substitution of Gly70 to either Alanine or Phenylalanine amino

Figure 3. The role of Arg99 in the catalytic mechanism of PARN. (A) PARN - Poly(A) interactions have been calculated for both active sites.
The Arg99 residues have been highlighted while they are H-bonding with the base moiety of the first poly(A) nucleotide. (B) The interaction map of
poly(A) and the catalytic site of human PARN, showing the water mediated bridges of the Aspartic residue attacking the first phosphodiesteric bond,
and the vital contribution of the invariant, structurally conserved His377 residue.
doi:10.1371/journal.pone.0051113.g003
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acid resulted in the shifting of the three Aspartic residues towards

the poly(A) substrate, which consequently pushed the latter away

from the catalytic site, losing the Arg99 hydrogen bonding. Finally,

mutating the Gln68 residue to either Alanine or Phenylalanine

resulted in a slight rearrangement of the 3D positioning of the

Glu30 residue that led to the tilting of the whole poly(A) substrate

and the complete loss of its hydrogen bonding interactions with the

catalytic site of PARN. These findings suggest that an evolutionary

conserved and highly sophisticated under-layer structure in the

catalytic site of PARN is essential for the function of the enzyme

(Fig. 2).

Furthermore, it was observed that although the catalytic triad

was in very close proximity to the scissile bond, it did not seem to

directly interact with it [9]. In depth examination of the active site

revealed a smaller cavity within the active site, which in the

original X-ray structure coordinate file (RCSB entry: 2A1R)

accommodates two water molecules. A MD simulation was set in

the presence of the crystallographic waters, and concluded that

two water molecules had occupied the small pocket in the active

site, now linking Asp28 and Asp292 via a H-O-H bridge to the -P–

O group of the scissile bond, whereas Asp382 now interacted with

via a water mediated bridge with the –P = O group as His377

amino acid (Fig. 3B). This pattern has been observed in many

phosphate hydrolyzing enzymes. Namely, in the crystal structure

of T7 helicase water molecules occupy the 3D space that divalent

metal ions are expected to bind [33]. Strikingly, in the

crystallographic structure of the latter the His465 residue acts as

c-phosphate sensor that directs conformational changes in the

active site, in a similar fashion to the His377 residue of PARN.

Furthermore, in the ATP catalytic site of T7 helicase the only

contribution from the neighboring subunit is Arg522, which is

analogous to the Arg99 amino acid of PARN and also behaves in a

fashion similar to the arginine finger of the Ras GTPase activating

proteins [34].

Insights into Substrate Preference of PARN
The preference of PARN for poly(A) as substrate has been

extensively investigated by biochemical assays using all varieties of

trinucleotide substrates [35]. As this is important for the design of

the pharmacophore, we wished to correlate our in silico observa-

tions with crystallographic and biochemical data. To this end, a

series of poly(U), poly(G) and poly(C) oligonucleotide substrates

were subjected to MD simulations using the structure of human

PARN (Fig. S2). In the case of poly(U), it was found that the

pyrimidine ring of uracil is not long enough to interact with the

Arg99 residue of the neighboring monomer of PARN. However,

even though a crucial bond is lost, the poly(U) molecule still

interacts with the catalytic Glu30, which stabilizes the two

hydroxyl groups of the sugar moiety of the first nucleosides, so

that His377 can interact with the first scissile bond [Fig. S2,

poly(U)]. Accordingly, the penultimate phosphodiesteric bond

interacts with the evolutionary invariant Lys326 and Leu343

residues, which position the poly(U) oligonucleotide in space in a

pattern similar to that of poly(A). That may explain the reduced

(10-fold) activity of poly(U) when compared to poly(A) [35]. On

the other hand, while the cytosine bases in poly(C) are stereo-

chemically similar and of same length to the purine poly(A) chains,

they do not establish hydrogen bonding interactions with the

Arg99 amino acid. According to in silico analysis the base moiety of

the second nucleoside is stabilized by weaker hydrophobic

interactions with Ile34, while the -NH2 group of the same

nucleoside establishes strong H-bonding interactions with Val40

residue. These interactions result in a slight tilt of the axis of the

nucleoside [Fig. S2, poly(C)]. Moreover the Asn340 residue

establishes H-bonding interactions with the N group of the five-

member ring of the first nucleoside. The latter two H-bonds

combined result in a poly(C) conformation that is incapable of

interacting with Arg99 residue of PARN monomer B. The loss of

nucleoside coordination makes the interaction with the catalytic

triad and the His377 amino acid impossible and results to loss of

activity for PARN. Finally, the poly(G) chain produced the smaller

number of interactions with the active site of PARN, upon the

MDs. The Phe31 residue H-bonded to the hydroxyl group of the

sugar moiety of the first adenosine nucleoside, which resulted in

the slight shifting of the first phosphodiesteric bond away from the

His377 residue and the catalytic aspartic acids [Fig. S2, poly(G)].

To summarize, our 3D modelling study of the catalytic site of

the human PARN, successfully confirmed the natural preference

of this enzyme for poly(A) substrates as it has been observed by

in vitro studies, based on a series of biophysical electrostatic and

hydrophobic interactions. A model consisting of a series of

structurally and conserved aminoacids has been constructed to

visualize the poly(A) specificity, which also complies with the

reduced preference of PARN for poly(U) substrates.

3D Pharmacophore Elucidation and the DNP-poly(A)
Substrate

3D Pharmacophore design methods take into account both the

three-dimensional structures and binding modes of receptors and

inhibitors, in order to identify regions that are favorable or not for

a specific receptor-inhibitor interaction [36–39]. The description

of the receptor-inhibitor interaction pattern is determined by a

correlation between the characteristic properties of the inhibitors

and their effect on enzymatic activity [40–42].

The pharmacophore for PARN-specific compounds was based

on a custom designed statistical analysis of structure-activity

correlation patterns (see Text S1, Fig. S3), structural information

from the catalytic site, and substrate preferences, taking also into

account all steric and electronic features that are necessary to

ensure optimal non-covalent interactions with the enzyme. The

pharmacophoric features investigated, included positively or

negatively ionized regions, hydrogen bond donors and acceptors,

aromatic regions and hydrophobic areas.

Concerning previously described structure-activity correlation

patterns, several nucleoside compounds with inhibitory effect on

PARN were used in their in silico docked conformations [26–27].

Compounds were grouped in two clusters as suggested by our

statistical and structural analysis (Table S5 and Table S6): the

adenosine-based (A1, A2, A3, A4, A5, A6, A7), and the uracil-,

cytosine- and thymidine-based (U1, FU1, U2, FU2, C2, C6, T1,

T2). The final pharmacophore was the result of the overlaying of

two different pharmacophores that were then reduced to their

shared features. In this way only the set of interactions common

between the two different pharmacophores were retained. Our

complex-based pharmacophore used a query set that represented

a set of receptor-inhibitor interaction fingerprints, which were in

the form of docked PARN-inhibitor complexes. Firstly, there

should be two electron-donating groups (Fig. 4A, purple color) in

the proximity of the catalytic triad aspartic acids (Asp28, 292, 382).

More precisely, the first electron-donating Pharmacophoric

Annotation Point (PAP) would interact with the Asp282 amino

acid, whereas the second electron donating PAP with both Asp28

and Asp382 residues. Both electron-donating regions indicate a

particular property of the inhibitor and are not necessarily

confined to a specific chemical structure. The same PAP

represents a variety of chemical groups that share similar

properties. Moreover, those two interaction sites may not strictly

represent hydrogen bonds, but water or ion mediated bridges,

In Silico De Novo Design of Novel Anti-PARN Agents
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since the distance from the catalytic aspartic acids varies between

4–6 Å. Also, the base region of the nucleoside compounds should

be occupied by a large conjugated set of one or two aromatic rings

(Fig. 4A, orange color). However the most important factor of the

aromatic PAP was the optimal positioning of this group in the 3D

conformational space of the active site of PARN, rather than the

amount of conjugation in the base moiety. Fig. 4B displays our

most potent nucleoside analog inhibitor, U1 with a Ki of 19 mM, in

total compliance with the pharmacophore. Interestingly, the

complex-based pharmacophore elucidation process identified

two more PAP regions in the catalytic site of PARN (Fig. 4B,

dotted line). Namely, based on the nature and type of the amino

acids that reside in the catalytic site of PARN, a hydrophobic and

a hydrogen acceptor region were suggested.

According to our in silico prediction model, a potent candidate

inhibitor of PARN should satisfy all of the previously described

pharmacophoric features. Therefore, using high-throughput vir-

tual screening techniques (HTVS), the NCI compound database

was screened for compounds that match the criteria set by the

pharmacophore model. The highest ranking compound was found

to be the DNP-adenosine, or DNP-(A) nucleoside, which fitted

accurately our model in its estimated bioactive conformation

(Fig. 4C).

The DNP-(A) analog and the successive DNP-poly(A) polymer

constitute a very promising agent with enhanced drug-likeness

potential, when compared to adenosine nucleotides [43]. The

polymer of DNP-(A) was constructed based on the poly(A)

structure co-crystallized in the active site of the human PARN

enzyme (2A1R). The fact that an adenine based inhibitor substrate

was selected was quite encouraging, given PARN’s increased

affinity for adenine-based oligonucleotides. However, the latter are

too polar to cross the cell membranes and therefore cannot be

used as a platform for the putative design for potential PARN

inhibitors. On the contrary, the DNP moiety of the DNP-poly(A)

Figure 4. The Pharmacophore proposed for the catalytic site of PARN. (A) All known inhibitors were used to elucidate the consensus PARN
Pharmacophore. The three Aspartic acid amino acids of the catalytic triad (Asp28, 292,382) and the Glutamic acid (Glu30) are shown in ball and stick
representation. Purple and blue color correspond to electron donating and accepting groups, orange to aromatic moieties and green to hydrophobic
interactions. (B) Our proposed pharmacophore is in accordance with our most active compound (U1) for PARN. In contrast, U2 and FU2 compounds
are completely inactive, since they are missing the A electron donating position. (C) The DNP-poly(A) compound was identified as a strong in silico
candidate compound that satisfied all pharmacophore 3D annotation points.
doi:10.1371/journal.pone.0051113.g004
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substrate contributes amphipathically to the molecule which

enables it to be more membrane-permeable compared to poly(A)

chains [43]. Macromolecular therapeutic agents bear great

potential as drug candidates but often fail to cross biological

membranes. The DNP-poly(A) substrate was found to be capable

of transporting rapidly and freely through cellular membranes and

viruses, while poly(A) oligonucleotides could not [43]. Further-

more DNP-poly(A) was found to be both nuclease-resistant and to

have strong antiviral and anti-reverse transcriptase properties [43].

The previous support the hypothesis that DNP-poly(A) is a

compound far more versatile than poly(A), since it provides the

platform and the drug-likeness required for the rational design of

anti-PARN agents.

The in silico prediction of the inhibitory activity of DNP-poly(A)

is based primarily on a direct comparison of the latter to poly(A)

polymers. Therefore, a dihedral energy plot was constructed for

the poly(A) monomer (adenine) and for the DNP-poly(A)

monomer (Fig. S4A–B). By calculating the dihedral energy plot

of the rotatable bond linking the sugar to the base moiety it was

determined that the rotation energy for adenosine varies between

0–2,5 Kcal/mole whereas the corresponding energy for NNP-(A)

varies from 0–11,5 Kcal/mole (Fig. S4D), which meant that the

DNP moiety exhibits steric hindrance with the base of the DNP-

(A) monomer for a set of given angles.

The maneuverability of the poly(A) substrate from the crystal

structure of PARN was then compared to a custom made DNP-

poly(A) molecule of the same length in the active site of PARN. It

is clear that the dihedral rotating angles of the DNP-poly(A) chain

are much more constricted than the poly(A) chain. The calculation

was repeated in vacuo in the absence of PARN, where the DNP-

poly(A) molecule appeared more rigid than poly(A). More

specifically, the DNP moiety of the first nucleotide establishes pi-

stacking hydrophobic interactions with the Phe31 residue, which

does not engage in any form of interaction with the poly(A)

substrate (Fig. S5). Notably, the two hydrogen bonds between the

first base of poly(A) and the Arg99 and His377 residues have been

conserved with the DNP-poly(A) substrate too. Conclusively, the

role of this extra pi-stacking hydrophobic bonding is to provide

extra stability and the ideal coordination required for optimal

interaction of the DNP-poly(A) substrate with the catalytic residues

of PARN.

In order to confirm the above findings the Polymer Property

Predictor Tool (PPPT) of MOE suite was used [44]. The

properties predicted by PPPT use the chemical and structural

information per monomer repeat unit to simulate a polymer in an

extended conformation. Connectivity indices alongside with

structural fragment descriptors are used to predict the properties

of monomer repeat unit, which are virtually connected as one

polymer molecule.

It was determined that for the same molecular repeat unit of

each nucleoside, the DNP-poly(A) has larger Van der Waals

volume, higher steric hindrance parameter and higher molar

stiffness (Fig. S4C and Table S4). However, since the DNP

moiety is expected to be incorporated in one every five

nucleosides [43], it was decided that for the purposes of the

molecular dynamics simulations only the adenosine nucleotide

that fits our pharmacophore model, would be converted to DNP-

(A) in the catalytic site of PARN. The MDs equilibrium energy

for the PARN-substrate complex, was found to be three times

higher for DNP-poly(A), compared to the corresponding

equilibrium energy for the natural substrate, the poly(A). All of

the above explain the reduced activity observed for DNP-poly(A)

when compared to poly(A).

DNP-poly(A) is a Competitive Inhibitor of PARN
To evaluate our prediction of the inhibitory properties of DNP-

poly(A), we performed biochemical assays of PARN activity.

Detailed kinetic analysis of the assays revealed that DNP-poly(A)

behaves as a competitive inhibitor of PARN (Fig. 5). The

calculated Ki value is 9865 mM, which is an approximately

three-fold increase when compared to poly(A), whose KM value is

,30 mM and in total proportion with the corresponding predicted

MD equilibrium energies (PARN/poly(A): 210500 Kcal/mole

and PARN/DNPpoly(A): 23000 Kcal/mole, Fig. S4D). Our data

show that the predicted DNP-poly(A) can efficiently suppress

PARN activity. Taken together with our previous reports, DNP-

poly(A) reveals Ki value significantly improved when compared

with some of the most efficient PARN inhibitors (Table S5). In

fact, it is the second best inhibitor, after the slow-binding U1

competitive inhibitor. Importantly, the kinetic analysis supports

the prediction of our pharmacophore that DNP-poly(A) may

efficiently inhibit PARN, thus suggesting that it may be used for

effective specific inhibitors with therapeutic potential, taking also

into account the improved characteristics of the compound, such

as cell permeability, and nuclease resistance.

Conclusions
We developed a 3D pharmacophore model for PARN, due to

its emerging potential as a biomarker and a pharmaceutical target

suitable for drug design. We performed an in-depth phylogenetic

and structural analysis of the catalytic mechanism of human

PARN that rationalizes the available in silico and biochemical data.

The pharmacophore predicted DNP-poly(A) as such a candidate

and the kinetic analysis verified that the compound behaves as an

efficient competitive inhibitor of PARN. The present work opens

the field for the design of novel compounds with improved

biochemical and clinical characteristics in the future.

Methods

Coordinate Preparation
3D coordinates were obtained from the X-ray solved, crystal

structures of PARN with RCSB codes: 2A1S and 2A1R. The

2A1S entry is the full length, unbound form of PARN, whereas

the 2A1R entry contains the catalytic domain of PARN, in

bound form with a 3-mer poly(A) chain. The resolution of both

X-ray structures is 2.6 Å overall. All the important parts of both

structures, including the catalytic site and the underlying layer,

are very clear in their electron densities. For the purposes of

this study, the dimeric form of PARN was used in all

calculations.

Energy Minimization
Energy minimizations were used to remove any residual

geometrical strain in each molecular system, using the

Charmm27 forcefield as it is implemented into the Gromacs

suite, version 4.5.5 [45–48]. All Gromacs-related simulations

were performed though our previously developed graphical

interface [49]. An implicit Generalized Born (GB) solvation was

chosen at this stage, in an attempt to speed up the energy

minimization process.

Molecular Dynamics Simulations
Molecular systems were subjected to unrestrained Molecular

Dynamics simulations (MDs) using the Gromacs suite, version

4.5.5 [45–48]. MDS took place in a SPC water-solvated,

periodic environment. Water molecules were added using the

truncated octahedron box extending 7 Å from each atom.
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Molecular systems were neutralized with counter-ions as

required. For the purposes of this study all MDS were

performed using the NVT ensemble in a canonical environ-

ment, at 300 K, 1 atm and a step size equal to 2 femtoseconds

for a total 100 nanoseconds simulation time. An NVT ensemble

requires that the Number of atoms, Volume and Temperature

remain constant throughout the simulation.

Sequence Database Search
A combination of key terms and BLAST searches were

employed in order to identify homologous PARN protein

sequences. The names and/or accession numbers of the charac-

terized PARNs, including human [9], cattle [17], Xenopus laevis

[50] and Arabidopsis thaliana [51] PARN, were used to retrieve their

corresponding amino acid sequences from UniProtKB [52].

Subsequently, these sequences were used as probes to search the

non-redundant databases UniProtKB [52] and GenBank [53] by

applying reciprocal BLASTp and tBLASTn [54]. This process was

reiterated until convergence.

Phylogenetic Analysis
The retrieved PARN peptide sequences were searched against

the InterPro database [55] to identify the boundaries of the

catalytic nuclease domain. In order to optimize the sequence

alignment, the predicted core nuclease domain was excised from

the full-length protein and was used in our phylogenetic

analysis. Subsequently, these trimmed sequences were aligned

using CLUSTALW [56]. The resulting multiple sequence

alignment was then submitted to ProtTest [57] in order to

determine the optimal model for protein evolution. Then, a

phylogenetic tree employing a maximum-likelihood method

implemented in PhyML [58] was reconstructed using the LG

amino acid substitution model [59] with four substitution rate

categories; the gamma shape parameter (a) and the proportion

of invariable sites were estimated from the data. Bootstrap

analysis (500 pseudo-replicates) was performed to test the

robustness of the inferred tree. The phylogenetic tree was

visualized with Dendroscope [60].

Motif Construction
Peptide sequences of the PARN family were aligned and edited

by employing Utopia suite’s CINEMA alignment editor [61].

Sequence motifs were excised from this alignment and were

submitted to Weblogo [62] in order to generate consensus

sequences for these motifs.

Calculation of Molecular Descriptors
A molecular database consisting of our previously reported

inhibitors (Table S5) was designed. Then a conformational search

was carried out on each one, using the CHARMM27 forcefield as

implemented within the MOE package, in order to acquire the

global energy minimum of each structure. Finally, the atomic

contributions of a total of 330 molecular descriptors were

calculated (for a full list of the descriptors used please refer to

Table S2) using the implemented descriptor calculator module, as

implemented in MOE suite [44].

2D Structure Activity Relationships and Statistical
Analysis

Structure Activity Relationships (SAR) were calculated based on

the coefficients of determination R2 and the Pearson’s contingency

coefficients C between the Ki activity and the molecular electronic

properties. R2 measures how well a regression line represents the

data, whereas C measures the relative strength of association

between two variables. The R2 values vary between 1 (strong

linear association between the two variables) and 0 (weak linear

association). The C values vary between 0 (uncorrelated) and 1

(strong correlation). In order to filter the descriptors with

important contribution to the observed biological activity of each

inhibitor, descriptors with R2.0.2 and C.0.6 were selected

(coloured in red in the full list of descriptors presented in Table

S3). Notably, most selected descriptors were quantifying the

electronic, steric and hydrophobic properties of the 15 inhibitor

compounds. These properties have been previously found to be

important characteristics that explain the deadenylase activity of

PARN and similar catalytic activities of relative enzymes [16,26].

Data patterns between the different modules were then

identified in the filtered, based on the above coefficients, data

using hierarchical clustering. Additionally, Principal Components

Analysis (PCA) was employed on descriptors with non-zero values.

All statistical analysis for the estimation of SAR relationships has

been conducted using the R statistical software [63].

Hierarchical Clustering
Hierarchical clustering with resampling was applied to the

filtered data to estimate clusters of compounds based on their

correlations structures. The pvclust hierarchical clustering algo-

rithm was employed as implemented within the R package [64].

For each cluster the algorithm calculates p-values via multiscale

bootstrap resampling to test the robustness of the inferred

clustering and report how strongly the cluster is supported by

the data. By default pvclust performs hierarchical clustering K6B

times, where K = 10 different data sizes and B = 1,000 denotes the

number of bootstrap sample [64]. The algorithm provides two

types of p-values, the Approximately Unbiased (AU) which are

computed by multiscale bootstrap resampling and the Bootstrap

Probability (BP) values which are computed by normal bootstrap

resampling. Clusters with AU$95% were selected, which are

strongly supported by the data.

Principal Component Analysis
Principal Components Analysis (PCA) was employed to identify

a subspace that captures most of the variation in the data, and

suppress information which is not presented [48,65]. PCA is useful

to distinguish between samples with multiple measurements. We

performed PCA using the prcomp algorithm as implemented in R,

to extract uncorrelated principal components by linear transfor-

mations of the original variables (descriptors) so that the first

components account for a large proportion of the variability (80–

90%) of the original data. The prcomp algorithm automatically

centers the data. Correlation coefficients between the PC scores

and the original variables measure the importance of each variable

in accounting for the variability, whereas the loadings, or

eigenvectors, indicate how variation in the measurements is

aligned with variation in the PC axes.

Figure 5. DNP-poly(A) is a competitive inhibitor of PARN. (A). Double reciprocal plots 1/v versus 1/[substrate] for PARN activity in the
presence or absence (N) of DNP-poly(A) are shown. The DNP-poly(A) concentrations are 0.1 (&), 0.3 (X) and 0.9 (m) and 1.8 (.) mM. Representative
plots of at least three independent experiments. Substrate concentrations range from 0.1–0.6 mM poly(A). (B). The slopes (KM

app/Vmax) of the double
reciprocal lines are plotted versus the DNP-poly(A) concentration used to calculate the Ki value. The intercept of line on x-axis represents –Ki.
doi:10.1371/journal.pone.0051113.g005
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Drug Likeness Correlation
Drug likeness was calculated based on Lipinsky’ s rule of five

[66]. Molecular weight, number of donor/acceptor atoms and the

logP of each compound (Table S3) were estimated using MOE

suite. Furthermore, the drug potential of our training set was tested

by an assessment of the toxicity or mutagenicity of the ligand using

a rule-based method [67] and an estimated ease of synthesis as a

percentage of heavy atoms traced to starting materials after

retrosynthetic analysis, as implemented in MOE. Compounds that

were either predicted to be toxic or hard to synthesize were

neglected from the SAR statistical correlation.

Pharmacophore Elucidation
We used all, of our previously published, nucleoside-analog

inhibitors, alongside the current 2D statistical analyses for the

Pharmacophore design of PARN [16,26]. The biological evaluation

of those compounds produced quite diverse results, ranging from

highly potent inhibitors (i.e. U1, Ki = 19) to rather inactive or even

activating ones (i.e. A7, Ki.1 mM). The atomic contributions

calculated above (as molecular descriptors) were applied to the whole

structure of each compound. The ‘‘Complexed-based’’ pharmaco-

phore module of MOE suite was used in this study, incorporating the

docking conformations of our compounds as previously described

[16,26]. Initially, a series of Pharmacophore Annotation Points

(PAPs) were made for each compound. Then PAPs common among

the most active compounds were retained, whereas PAPs in least

active ones were discarded. The highest ranking 3D pharmacophore

hypotheses, as a grouped 3D arrangement of PAPs was selected, since

it presented the best correlation to the pharmacological activities of

our inhibitor compounds.

Homology Modelling
The homology modelling of the Arabidopsis thaliana and Trypano-

soma brucei PARN enzymes was carried out using Modeller [68]. The

crystal structure of the human PARN was used as template (RCSB

entry: 2A1R). Subsequent energy minimization was performed

using the Gromacs-implemented, Charmm27 forcefield. Models

were structurally evaluated using the Procheck ulitily [69].

Synthesis of Poly[29-O-(2,4-dinitrophenyl)]poly-(A), DNP-
poly(A)

DNP-poly(A) was synthesized as previously described [43]. In

brief, the synthesis was based on poly(A) (supplied by Sigma;

average size 300 adenosines, A300, equal to a molecular weight

105). The average molecular weight of DNP-poly(A) was estimated

to be 1.1?105 according to the previously determined DNP-to-

adenine ratio [43]. The difference in the molecular weights A300

and DNP-poly(A) indicates that approximately 60 out of 300

adenosines bear a DNP moiety, thus 1 every 5 adenosines is

converted to DNP-adenosine.

PARN Activity Assay and Kinetic Analysis
The enzymatic activity was determined by the spectrophotometric

methylene blue assay as described before [70]. Deadenylation rates as

a function of time were determined with time-course assays. The

reactions were performed using 0.01–0.02 mM recombinant PARN

and the substrate concentration [poly (A)] varied from 0.1 to 0.6 mM

[16]. DNP-poly(A) concentrations varied from 0.082 to 3 mM.

Supporting Information

Figure S1 The homology models of Arabidopsis thaliana
and Trypanosoma brucei PARN monomers in ribbon

representation, superposed on the human PARN (RCSB
entry: 2A1R). The human PARN is colored orange, the

Arabidopsis thaliana PARN is in cream color and the Trypanosoma

brucei PARN monomer is colored blue. R99 of human PARN and

R89 of the Arabidopsis thaliana PARN share the same spatial

coordinates, which confirms the structural conservation of that

amino acid in the Arabidopsis thaliana PARN too.

(TIF)

Figure S2 Ligplot interaction maps of the four oligonu-
cleotides: poly(A), poly(U), poly(C) and poly(G) in the
same catalytic site of human PARN. Only the PARN-

poly(A) complex managed to incorporate the crystallographic

waters that could be occupying the site where divalent M2+ metal

ions are expected to bind, as well as establish H-bonding

interactions with the Arg99 residue.

(TIF)

Figure S3 Identification of correlation structures and
measures variability among the 15 compounds examined.
(A) Hierarchical clustering of the compounds based on the pairwise

correlations of the filtered data. Values on the edges of the clustering

are AU (red) and BP (green) p-values. Clusters with AU$95% are

indicated by rectangles. (B) PCA loading plots showing the data

relative to the first three PCs. In accordance with A, the members of

the non-adenosine inhibitors are forming a single group in both

instances. (C) Density plots of Ki activity, Molecular Weight and

LogP with respect to the adenosine inhibitors. The plot demonstrates

evident association relationships between the three measures.

(TIF)

Figure S4 DNP-poly(A) polymer as a novel anti-PARN
agent. (A) The poly(A) and DNP-poly(A) monomers. The four

atoms participating in the dihedral energy plots are highlighted

with arrows. (B) Dihedral angle plots for poly(A) and DNP-poly(A)

in vacuo and the active site of PARN (C) Normalized polymer

comparison between poly(A) and DNP-poly(A). (D) Molecular

dynamics simulation of the PARN - poly(A) and PARN - DNP-

poly(A) complexes.

(TIF)

Figure S5 The arrangement of the first scissile bond
and the first nucleotide of the poly(A) substrate in the
catalytic site of PARN. (A) The poly(A) substrate is fixed with

hydrogen bonding interactions with the Arg99 and His377 amino

acids. Phe31 residue is in close proximity but doesn’t interact with

the poly(A) substrate. (B) The DNP-poly(A) substrate interacts with

the Arg99 and His377 amino acids by hydrogen bonding and the

Phe31 residue by pi-stacking hydrophobic interactions.

(TIF)

Table S1 Phylogenetic distribution of the PARN pro-
teins analyzed in the present study. The Drosophila

melanogaster and Saccharomyces cerevisiae POP2 sequences are shown

in green.

(DOCX)

Table S2 List of the 330 molecular descriptors and the
calculated values that were used in our statistical
analysis. Indicated with red colour are the inhibitors most

highly correlated with Ki based on R2 and C coefficients.

(DOCX)

Table S3 Drug likeness properties of our previously
reported nucleoside analog inhibitors of PARN, includ-
ing the consensus score of drug likeness, a toxicity
measure and an ease-of-synthesis approximation.
(DOCX)

In Silico De Novo Design of Novel Anti-PARN Agents

PLOS ONE | www.plosone.org 11 December 2012 | Volume 7 | Issue 12 | e51113



Table S4 Poly(A) and DNP-poly(A) polymer properties
prediction values.

(DOCX)

Table S5 Summary of the compounds and their corre-
sponding inhibition constants used in our statistical
analysis and pharmacophore design.

(DOCX)

Table S6 Summary of the inhibitor compounds of table
S5 and their corresponding interaction energies with the
catalytic site of PARN. Interaction energies (Int. E.) are

represented in Kcal/mole units and have been calculated using the

potential energy module of MOE.

(DOCX)

Text S1 Statistical evaluation of structure activity
relationships.
(DOCX)
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