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Abstract

Background: The quality of gene expression data can vary dramatically from platform to platform, study to study, and
sample to sample. As reliable statistical analysis rests on reliable data, determining such quality is of the utmost importance.
Quality measures to spot problematic samples exist, but they are platform-specific, and cannot be used to compare studies.

Results: As a proxy for quality, we propose a signal-to-noise ratio for microarray data, the ‘‘Signal-to-Noise Applied to Gene
Expression Experiments’’, or SNAGEE. SNAGEE is based on the consistency of gene-gene correlations. We applied SNAGEE to
a compendium of 80 large datasets on 37 platforms, for a total of 24,380 samples, and assessed the signal-to-noise ratio of
studies and samples. This allowed us to discover serious issues with three studies. We show that signal-to-noise ratios of
both studies and samples are linked to the statistical significance of the biological results.

Conclusions: We showed that SNAGEE is an effective way to measure data quality for most types of gene expression
studies, and that it often outperforms existing techniques. Furthermore, SNAGEE is platform-independent and does not
require raw data files. The SNAGEE R package is available in BioConductor.
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Introduction

High-throughput gene expression data have been generated by

microarrays for over ten years. The technology has, however,

remained plagued with quality issues, to the point that a

consortium (MAQC [1,2]) was created to evaluate the reproduc-

ibility of those data. The conclusions of the consortium were

reassuring, but this is of little help to the researcher who has to deal

with a given data set, whose quality may be very different from

MAQC. This is particularly problematic for data found on public

repositories, as it is difficult to have first-hand information on a

given study or sample.

While quality control metrics are available, they are platform-

specific, and are meant to compare the relative quality of samples.

There are currently no methods to compare different studies or

different platforms. A number of R packages implement those

quality metrics: Affyexpress, simpleaffy [3], and yaqcaffy for

Affymetrix arrays, arrayQuality for spotted arrays and beadarray

[4] for Illumina BeadArray. Once metrics have been calculated,

outliers must be determined either visually using the displays

offered by those packages, or automatically using MDQC [5] or

arrayMvout [6]. The metrics are not comparable from study to

study or platform to platform. They are also not comparable if

samples have been treated with different protocols in the same

study, for instance Affymetrix 1-round and 2-round amplification.

Also, some problems, like scratches on the slides, can be difficult to

detect by array-wide quality measures. Finally, the identification of

problematic samples is dependent on the metrics chosen. For

instance, housekeeping genes are often among the quality metrics

used, but it has been shown that housekeeping genes may be

regulated [7].

A different approach was proposed [8], based on the consistency

of probe intensities in Affymetrix slides. Two different metrics

were defined: relative log expression (RLE) which tests whether the

number of up-regulated genes approximately equal the number of

down-regulated genes, and the normalized unscaled standard

error (NUSE), which tests if the standard deviation of the probe

intensities of a given slide compared to the mean of its study is

higher than average. Both methods rate slides inside their studies,

and are unable to rate individual arrays. To address this

shortcoming, a method was recently developped: GNUSE [9]. It

is similar to NUSE, but instead of comparing the array to other

arrays in the same study, it uses an empirical distribution,

determined from a large compendium of arrays. By counting the

number of problematic samples in a study, GNUSE can be used to

assign quality to studies. A potential issue with those methods is

that they are dependent on the details of the experimental

protocol, as small differences in the methods used can lead to large

differences in some probe average intensities. Another potential

issue for GNUSE is that the samples assessed must be similar to

those in the compendium.
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This shows that there is a need for a quality measure that is

more motivated by the underlying biology. Quality is a vague

term, we propose to define here data quality as the statistical

strength of the biological conclusions the data support. This could

be expressed as the amount of biological signal relative to the

amount of noise, that is a measure of the biological signal-to-noise

ratio (SNR). As microarray studies can be used to answer many

biological questions, possibly unrelated to the ones treated in the

original publication, the strength of the biological signal is not

determined based on sample annotations, but directly using the

values of the microarray experiments. Whether SNR is a reliable

estimate of data quality, in the sense of well-made experiments,

depends on the study type. The signal-to-noise ratio depends not

only on the amount of noise, which could be seen as a direct

measure of quality, but also on the amount of signal. For instance,

a high-quality study comparing a cell line in two different

conditions could have very little variability, and so a low SNR.

However, we show in this paper that SNR is a good proxy of

quality for studies that comprise a large number of diverse

samples, like for instance large studies on cancer tissues, and can

reliably be used to rate comparable studies. It can also be used to

flag problematic samples inside a study.

It has been shown [10] that gene-gene correlations are not

random, but that sets of genes are often found to be similarly

correlated across different studies and biological conditions. This

can be expressed by saying that the gene-gene correlation matrix

has a certain distribution, with some genes likely to be correlated

while others are not. We propose here to use the distribution of the

gene correlations as the basis of an SNR measure for all studies

and platforms. The distribution of the gene correlations is

estimated by using a large number of studies and platforms. The

SNR of a study is obtained by comparing its gene correlations to

the expected gene correlations. The SNR of individual samples is

assessed by observing the difference in the SNR of the study they

are part of when they are removed. The sample SNR is a measure

of the relative contribution by a sample to the signal and noise of

its study, so it is not a ratio, but we still use the term signal-to-noise

ratio as it conveys the idea behind the measure. Working with

gene-gene correlations has many advantages compared to existing

techniques: it is based on a biologically meaningful concept, it

works across studies, protocols and platforms, it can be applied to

both studies and samples, it is sensitive to probe misannotation, it

does not require access to the raw files, and it is fully automated.

The use of gene correlations to assess gene reproducibility has

already been explored [11], to determine which genes are

reproducibly regulated across studies. The reproducibility of gene

correlations across a large number of studies was assessed [10],

and coexpression links that increased the reliability of gene

function inferrences were detected. More recently, probe corre-

lations were used [12] to improve the annotations of Affymetrix

probes, and to remove misleading or uninformative ones. But, to

the best of our knowledge, it has not been used yet to determine

study and sample SNR in a systematic fashion.

The study SNR was calculated on all studies in our database.

This allowed to single out several studies having serious issues. We

also show that studies with lower SNR lead to less significant

biological results. The SNR measure for samples was studied in

several datasets. We show that first it properly flags problematic

samples, and second that statistically less significant results are

obtained on those samples.

Methods

Measure of studies signal-to-noise ratio
We estimate the SNR of a study using correlation of gene

correlations. A study here is a set of hybridizations done as a group

on one platform—if the data relative to a publication consists of

more than one platform, then there are as many studies as there

are platforms.

The expected matrix of gene-gene correlations C is estimated as

the median of correlation matrices calculated across a large

number of studies and platforms. The SNR of a study is obtained

by comparing its gene correlations to C. In practice, instead of

directly comparing the correlations, their atanh are taken, to allow

correction for the number of samples (see below). As correlations

rarely exceed 80%, this modification has little effect on the end

result.

Specifically, data were put on a log scale and normalized, and

multiple probes corresponding to the same gene were averaged

(see the Data section for details). From the data matrix xs
ij of study

s, the Pearson correlation cs
ij between genes i and j in study s is

calculated:

cs
ij~
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where ms
i and ss

i are the mean and standard deviation of gene i in

study s. Let cij be the median of those correlations across all

studies. The SNR Qs of study s is the correlation between

hij~atanhcij and hs
ij~atanhcs

ij , the diagonal excluded:
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where Nt is the total number of gene-gene correlations, sh is the

standard deviation of the gene-gene correlations for the median

matrice, the diagonal excluded, and ss
h is the same for study s.

Correction for the number of samples. The error on the

measure of gene-gene correlations decreases for large studies. If

the data are normally distributed, their atanh are normally

distributed with a variance [13]

s2~
1

N{1
: ð3Þ

Using this estimate of the variance of the gene-gene correlation, it

is possible to disattenuate the correlation (2), that is, to calculate

the correlation that would be obtained on an infinite number of

samples [14]

Qs’~Qs
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s
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Measure of signal-to-noise of samples inside their study
We estimate the SNR of a sample as the difference between the

SNR of its study and the SNR of its study when the sample is

removed. Removing a low SNR sample should increase the SNR

of its study. The SNR of a study with a sample removed can be

calculated efficiently since a sample has a simple additive effect on

the mean, variance and covariance. We used a slightly modified

Gene Correlation-Based SNR of Microarray Data
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SNR measure for this comparison:

Qs~
X
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h
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, ð5Þ

where sso
h is the standard deviation of the original study, with all

samples. Replacing sso
h by ss

h would make (5) equivalent to (2). The

reason for this change is that some problematic samples have a

very large effect on this standard deviation, which can be larger

than the effect on the scalar product and fool the SNR measure.

The SNR qi of sample i is the difference between the SNR of

the complete study and the SNR of the study with that sample

removed: qi~Qs{Qs(i). To make the results easier to under-

stand, qi is normalized: q’i~(qi{median(q))=mad(q), where

mad is the median absolute deviation over all the samples. This

assigns a SNR to each sample, positive for better-than-average

samples and negative for worse-than-average samples.

Data
All calculations were done on the 2000 genes that were present

among the most platforms in our database. More precisely, for

each gene the number Np of platforms in which it appeared at

least once was recorded. The genes were sorted in function of Np,

and the 2000 genes with the highest Np were kept.

Most datasets were downloaded from GEO [15], using the

SeriesMatrix files (details about the datasets can be found in Table

S1). No effort was made to ensure a specific distribution of tissue or

study types, the data used reflects that of publicly available studies.

All values were log-transformed if needed. The studies were

normalized using the R function medpolish. Probes with more

than 25% missing values were discarded. Probe annotations were

either obtained using the annotation file from GEO, if available,

or the mapping was done from the platform description file using

the Gene and UniGene databases [16]. When multiple probes

corresponded to a unique gene, their median was taken.

The correlations between genes were calculated for each

platform and each study, giving as many correlation matrices as

there are study/platform pairs, that is 101 in our case. The median

of those matrices was taken, leading to a single 2000|2000 matrix

of correlations.

Validation
The relevance of our SNR measure was shown using methods

detailed below.

Study SNR on NCI60. Four NCI60 studies were taken

(GSE7947, GSE2003, GSE5949 and GSE5720), leading to a total

of 9 study/platform pairs. We considered the 58 cell lines in

common between those studies. SNR were not disattenuated as all

data sets have the same number of samples. For each tissue type,

the fraction of differentially expressed probes at pv10{7 was

calculated using a 2-sided T-test.

Sample SNR. SNAGEE was compared with simpleaffy,

NUSE, RLE, GNUSE and MDQC. Simpleaffy is an R package

that can be used to calculate quality metrics on an array. Those

metrics are based on array-wide measures (e.g. background),

control spots and the behaviour of specific genes. Bad quality

arrays are found by MDQC as outliers in terms of those metrics.

To assess the biological relevance of the sample SNR, a 2-class

classification was performed on a dataset, using a naive Bayes

classifier, with Gaussian distributions and uninformative prior.

Samples were classified in a leave-one-out fashion. The classifier

gives a posterior probability for each assignement. Those

probabilities were ranked and used as a proxy of the sample

qualities, as bad samples should have higher lower posterior

probabilities than average. The average of those ranks on the N
worst samples, as determined by our SNR criterion, MDQC or

GNUSE, was then calculated.

Results

Signal-to-noise ratios were assessed on a compendium of 80

studies on 37 platforms (Table S1), each comprising at least 50

samples and 200 genes, for a total of 101 study/platform pairs. All

analyses were peformed on the 2000 genes that were present

among the most platforms in our database (details are in Methods,

section Data). We first assessed the study SNR, and then the

individual sample SNR.

Study SNR
Studies assigned a very low SNR have severe

problems. We measured the SNR of all studies in our database.

Three had a much lower SNR than expected. All of them had

normalization problems.

The first study was GSE6768 [17], a study of breast cancers on

an academic 2-colors platform, Swegene. The SNR of this study

was very close to 0. Looking at the data in GEO, we realized that

the values reported in the SeriesMatrix file did not fit the values of

the individual samples. As the original GPR files were available,

we reanalyzed the data using the R toolbox marray [18]. This

increased the SNR to 0.15, which is about average for 2-color

platforms.

The second study was GSE8833 [19], a study of cervical cancers

on a 2-color platform, with dye swapping. The SNR of this study

was very close to 0. The data downloaded from GEO contained

81% of values equal to zero, probably an artefact of the

normalization used. As the GPR files were available, we were

able to reanalyze the data. The renormalized data had a SNR of

0.06, an improvement on the original but still a low value. We

checked if dye swapping impacted the SNR measure, by

calculating separately the SNR on the hybridizations with the

reference in channel 1, and on the dye-swapped hybridizations.

The two SNR were 0.05 and 0.06, very close to the original. We

also calculated the SNR of the dataset obtained by merging the

dye-swapped samples. The resulting SNR, 0.07, was marginally

better than the original SNR, presumably because some dye effects

were removed.

The third study was GSE6532 [20], a large study on breast

cancers using the U133A, U133B and U133+ Affymetrix chips. Its

SNR on U133A and U133B seemed too low for those platforms.

This was caused by the normalization, which had been done in

three batches (Figure S1), as stated in the original publication.

Since the original CEL files were available, we renormalized the

data using the R function rma [21]. This increased the SNR from

0.23 to 0.38 on U133A and from 0.05 to 0.11 on U133B, which

are average values for the platforms.

The SNR of a study is correlated with the statistical

significance of biological findings. We compared the statis-

tical significances of different studies of the NCI60, a set of 60 well-

characterized cancer cell lines. We used 4 studies, totaling 9

platforms. Taking the tissue of origin as the variable of interest, p-

values were calculated for each gene and the fraction of

differentially expressed genes (DEGs) was recorded (see Methods,

section Validation on the NCI60). Studies with higher SNR should

lead to a larger number of DEGs, since the same tests are

performed on the same samples, measured on different platforms.

We plotted for each cancer type the fraction of DEGs relative to

the SNR of the studies (Figure 1). There is a clear correlation

Gene Correlation-Based SNR of Microarray Data

PLOS ONE | www.plosone.org 3 December 2012 | Volume 7 | Issue 12 | e51013



between SNR and the fraction of DEGs for most cancer types. In

agreement with a previous study [22], out of the eight types

represented by at least 3 samples, four (CNS, colon, leukemia,

melanoma) gave a large number of DEGs, one an intermediate

number (renal), two others (breast and ovarian) a small but

significant number while very few genes were selected for lung.

Much clearer results were obtained on types with a large fraction

of DEGs. The correlation between the study SNR and the fraction

of DEGs varied between 72% and 98% for the 4 types with a large

number of DEGs. It remained positive for all other types but lung.

So, SNR is predictive of the statistical significance that can be

obtained from a study.

Random noise decreases both study SNR and statistical

significance. A specific study on the NCI60 cell lines was taken

(GSE5720 on U133A—similar results were obtained with other

datasets), and increasing amounts of Gaussian noise were added.

This was done by fixing a level of noise x, and adding values taken

from a N(0,x) to the gene expression matrix. A number of studies

were created with increasing noise level (x). The resulting SNR

and the resulting fraction of DEGs were compared. The

correlation between the fraction of DEGs and the study SNR

was well over 90% for the cancer types with a large number of

DEGs (Figure 2), even though the relationship was not linear.

Biological outliers increase the signal-to-noise of a

study. The SNR is a measure of the amount of biological

signal divided by the amount of noise. As such, it is increased by

the presence of biological outliers. This stands in contrast with

other quality measures, which search for outliers and so risk

flagging biological outliers as low quality [5]. This was assessed

using GSE7307, a study of normal and diseased tissues, plus cell

lines. Cell lines are biologically very different from in vivo tissues

[23]. We separated the data in two groups, one comprising all

normal and diseased tissues (N~623), and the other comprising

all the cell lines (N~54). The SNR of studies consisting of 200

randomly drawn samples, a small number from group 2 and the

rest from group 1, were calculated (Figure 3A). The addition of a

small number of cell lines increased the study SNR.

We took a study of breast cancers (GSE6532 on U133A) as

another illustration, with less striking outliers. An important

feature of those cancers is the status of the estrogen receptor. An

ESR2 sample is an outlier in a study of only ESR+ samples. The

SNR of studies consisting of 150 randomly drawn samples, a small

number of ESR2, the rest being ESR+, was calculated (Figure 3B).

The SNR slightly increased with the number of ESR2 samples.

Figure 1. Link between statistical significance and study SNR in NCI60 datasets. Statistical significance is estimated as the fraction of
differentially expressed genes (%DEG) between a cancer type and the other cancer types, each panel representing a different cancer type. Higher SNR
leads to higher %DEG, as expected. . are on Affymetrix platforms (GSE5720 and GSE5949), 0 is on NCI dual channel (GSE2003) and % is on Stanford
dual channel (GSE7947). c.c. are correlation coefficients.
doi:10.1371/journal.pone.0051013.g001

Figure 2. Effect of increasing levels of noise on study SNR and
statistical significance. Statistical significance was estimated as the
fraction of differentially expressed genes (%DEG). Noise was added to a
study of the NCI60 on the U133A platform (GSE5720). SNR and %DEG
were calculated on the modified study. Increasing noise lead to lower
SNR and lower %DEG. c.c. are correlation coefficients, which underes-
timate the strength of the relations as those are not linear.
doi:10.1371/journal.pone.0051013.g002
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The difference in SNR is significant with 10 ESR2 samples

(pv10{2) and 20 ESR2 samples (pv5:10{4).

Disattenuation makes SNR independent of the number of

samples. SNR was calculated on random small subsets of the

expO dataset (GSE2109, a dataset of 2149 cancer profiles), using

disattenuation (4) or not. The results (Figure 4) show that

disattenuation corrects to a large extent the effect of the study

size on SNR.

Biological variability allows SNR measures on low signal

studies. Experiments measuring smaller biological signals are

assigned a lower SNR. However, the SNR remains meaningful if

there is some biological variability in addition to the signal. For

instance, GSE1322 [24] is a study of the effect of Japanese humor

on diabetic patients. One would expect the biological signal to be

faint, but the SNR of this study (0.24) was higher than average for

the platform (Agilent 2-colors). This is due to the additional

variability between the patients, which was not the signal of

interest for the original publication.

Comparison with GNUSE. GNUSE allows to determine the

quality of individual samples. By counting the number of such

problematic samples, a study quality can be computed. We

compared this study quality with the SNR determined by

SNAGEE. Quite surprisingly, we found very little overlap between

the two, albeit the five studies with 100% problematic samples, as

determined by GNUSE, had indeed a slightly lower SNR than

average (p~0:02, Mann-Whitney U-test).

A number of studies were given a low SNR while deemed of a

good quality by GNUSE. Looking at those studies (with an SNR

below 0.15: GSE9826, GSE8192 and GSE10063) we found that

they were very targeted: they all consisted of a single cell line

cultivated in a single medium, with different treatments. Such

design, meant to highlight a single biological effect, leads to a low

biological SNR.

A contrario, some studies were given a high SNR while GNUSE

gave them a low quality. The authors of GNUSE could not

pinpoint why some studies had a low quality. Looking at the list of

studies that had over half bad samples from GNUSE but an SNR

over 0.3, we found that half (6/12) used RNA amplification. This

hints that the difference in the RNA preparation leads to sizeable

differences in the raw probe intensities. SNAGEE, being based on

gene correlation, is largely immune to those effects. Another study

flagged by GNUSE but not SNAGEE is GSE9716, a study of

tumor xenografts. It is likely that those tumors contain a mix of

cells from mouse and human. Hybridization efficiency is expected

to be very different between the two species. However, we found

that gene correlations were largely conserved. We did not find a

plausible explanation for the remaining 5 studies.

SNR of the samples
Some problematic samples are similarly detected by

SNAGEE, RLE, NUSE and GNUSE. The SNR assigned by

SNAGEE to each sample was compared to the quality measure of

RLE, NUSE, GNUSE as well as the metrics given by simpleaffy

and MDQC. We first used the breast cancer dataset from MAQC-

II (GSE20194). Table 1 shows a comparison between the different

quality measures. In this case, good agreement was found between

the main methods for the 10 worst slides, as determined by

SNAGEE. We also used a study of 289 breast cancers on

Affymetrix U133A (GSE4922 [25]). The sample SNR on U133A

varied between 274 and +6. Table 2 shows a comparison between

the simpleaffy metrics, and the quality measures. The two clearly

problematic samples in this study were flagged similarly by all

methods. There is also some agreement between the methods for

other samples, although it is not perfect.

Low SNR samples are harder to classify in breast

cancer. Problematic samples can decrease the quality of the

analysis performed. To verify that, we tried to classify samples with

a naive Bayes classifier. Since bad quality samples should not fit

the classification well, the posterior probabilities can be used as a

proxy for sample qualities: bad quality samples should have a

lower probability than average (see Methods). However, low

probability samples are not necessarily of bad quality. There could

be good reasons for the lack of fit to the classification—for

instance, samples could belong to a rare cancer subtype. We

checked here if bad quality samples (as determined by SNAGEE,

MDQC, RLE, NUSE or GNUSE) had lower posterior probabil-

ities than average.

First, we took the breast cancer dataset from MAQC-II [2]

(GSE20194), using all samples. This dataset was chosen because it

has a few samples that were flagged as bad quality and discarded

in the original analysis. We tried to classify the samples according

to their ER status. We found that (Figure 5A) for a moderate

number of problematic samples, SNAGEE was one of the best

pronosticator of difficulty in classification on this dataset, on par

with RLE. With a larger number of samples taken as problematic,

all methods behave similarly. Interestingly, samples given a very

good SNR by SNAGEE (shown in grey) were also more difficult to

classify than average. This makes sense since those samples are

Figure 3. Effect of biological outliers on study SNR. The study
SNRs were calculated in function of the number of biological outliers
added to a study consiting of homogeneous samples. (A) Outliers are
cell lines, original study consists of tumor and normal tissues. (B)
Outliers are ESR2 breast cancers, original study consists of ESR+ breast
cancers.
doi:10.1371/journal.pone.0051013.g003

Figure 4. SNR in function of the number of samples: effect of
disattenuation. Subsets of a very large dataset (expO) were created
by randomly selecting a number of samples. The study SNRs of those
subsets are shown in function of their size, with disattenuation (0) or
without (.). The error bars are the 95% confidence intervals determined
by resampling. The horizontal line is the SNR of the whole data set.
doi:10.1371/journal.pone.0051013.g004
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likely to be biological outliers, that is, samples that do not fit well

with the others but remain biologically plausible.

Second, a similar analysis was performed on another breast

cancer dataset (GSE4922). Low SNR samples did not fit the

classification well and had lower posterior probabilities (Figure 5B).

Based on the figure, on this dataset SNAGEE and MDQC

perform similarly, while the other methods were not as effective.

Again, high SNR samples also did not fit the classification well.

SNAGEE outperforms MDQC in a muscle disease

study. As another illustration, we calculated the qualities of

the samples from a study of muscle diseases [26] on the U133A

platform (GSE3307). We realized that MDQC assigned a low

quality to all amyotrophic lateral sclerosis (ALS) samples. This was

caused by the use of GAPDH probes in the quality metrics.

GAPDH is commonly used as a housekeeping gene, but has been

shown to be altered in mouse models of ALS [27]. So, GAPDH

was removed for the calculations by MDQC. The qualities

measured by MDQC and the SNR measured by SNAGEE had

very little overlap. The significance of the samples with a low SNR

was assessed with the same technique as for the breast cancer data,

using gender as the variable of interest (Figure 5C). The worst four

samples flagged by SNAGEE were among those harder to classify.

Those flagged by MDQC, RLE and NUSE were no different than

average. Surprisingly, GNUSE outperformed NUSE on this

dataset. We then used the type of muscle disease as the variable

of interest, and tried to classify each type vs. the rest. As statistics

are not directly comparable for diseases having a different number

of samples, and because the posterior probabilities can vary from

group to group, less clear-cut results were expected. As shown

Figure 5D, the first two samples flagged by SNAGEE and GNUSE

were among those harder to classify, while those flagged by the

other methods were no different than average. In this case the best

predictor of the difficulty to classify was the inverse of SNAGEE,

that is the high SNR samples were the hardest to classify.

Low SNR samples are harder to classify on the

NCI60. In the analysis of the relationship between statistical

significance and study SNR (Figure 1), statistical significance for a

cancer type depended not only on the SNR of the study, but also

on the relative SNR of the samples of that type compared to the

rest of the samples. We assessed this on the dual-channel

microarray studies. In GSE7947 (Stanford platform), one breast

sample was given a low SNR, and the %DEG for that study on

Table 1. Comparison of SNAGEE, MDQC, GNUSE and sample quality metrics on the breast cancer study from MAQC-II.

Sample SNR mdqc gnuse nuse rle %pres scale bioB act5

GSM505497 226 5 6 9 3 5 267 276 5

GSM505498 225.3 4 3 4 4 2 264 271 9

GSM505495 224.7 3 7 11 1 3 274 269 6

GSM505499 224.1 2 5 8 2 4 273 263 4

GSM505492 216.6 17 11 10 5 7 263 261 17

GSM505502 215.9 13 9 12 7 8 268 259 10

GSM505500 211.8 15 13 14 6 10 270 265 25

GSM505501 211.2 10 12 17 9 11 266 260 1

GSM505491 210.7 40 15 25 10 13 258 268 132

GSM505496 28.8 11 8 7 8 9 277 277 15

The 10 worst samples as determined by SNAGEE are shown. SNR is the SNR from SNAGEE. mdqc, gnuse, nuse and rle are the rankings of the qualities obtained by MDQC,
GNUSE, NUSE and RLE, 1 being the worse sample. The remaining values are the ranks of some Affymetrix quality metrics, from 1 to 278. Values close to 1 or 278 possibly
indicate outliers.
doi:10.1371/journal.pone.0051013.t001

Table 2. Comparison of SNAGEE, MDQC, GNUSE and sample quality metrics on a breast cancer study (GSE4922).

Sample SNR mdqc gnuse nuse rle %pres scale bioB act5

GSM119943 279.2 1 1 1 1 1 289 289 1

GSM119942 278 2 2 2 2 2 287 288 2

GSM119963 212.5 9 12 7 9 5 260 229 44

GSM119968 210.4 25 9 12 73 8 238 243 167

GSM119945 27.6 12 7 10 14 9 281 253 8

GSM119950 27 5 11 8 6 4 284 286 4

GSM110704 24.3 4 8 6 4 7 268 1 155

GSM119952 23.6 3 4 3 8 3 288 287 89

GSM110820 23.6 15 13 16 44 11 246 144 28

GSM110841 23.1 7 10 9 3 6 286 284 25

The 10 worst samples as determined by SNAGEE are shown. SNR is the SNR from SNAGEE. mdqc, gnuse, nuse and rle are the rankings of the qualities obtained by MDQC,
GNUSE, NUSE and RLE, 1 being the worse sample. The remaining values are the ranks of some Affymetrix quality metrics, from 1 to 289. Values close to 1 or 289 possibly
indicate outliers.
doi:10.1371/journal.pone.0051013.t002
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breast was indeed lower than expected. Another issue with this

study is that a melanoma cell line has been annotated as a renal

cell line (Figure S2), leading to a lower %DEG for the renal tissue.

For GSE2003 (NCI platform), two leukemia samples were given a

low SNR, and the %DEG for that study on leukemia was indeed

lower than expected.

Biological outliers are assigned a higher SNR. We

studied the behavior of SNAGEE on biological outliers using the

study on muscle diseases (GSE3307). The SNR for each sample

was first measured. Each disease was then taken in turn, and all

samples from that disease were removed but one. That sample was

then in the situation of being a biological outlier. The SNR of that

sample was calculated. As can be seen Figure 6, for most diseases

the SNR of the samples taken as biological outliers is higher than

their SNR in the whole study. For some diseases (e.g. BMD or the

LGMDs), the SNR were essentially identical. This is because those

diseases are not outliers compared to the rest of the data—for

instance, the 3 LGMDs are similar diseases with different genetic

causes, so their gene expression profiles are similar.

For a more dramatic effect, we used the study of normal and

diseased tissues, plus cell lines (GSE7307). The same analysis as

with the muscle diseases was made, using the cell lines as the

biological outliers. As shown Figure 6N, the SNR of the cell lines

were much larger when measured as biological outliers.

Discussion

We have shown on the NCI60 datasets that SNAGEE ranked

the studies in a statistically relevant manner, in that more

significant results were found on studies with a higher SNR. This

was the case even though p-values were calculated at the probe,

not the gene, level, and did not take gene annotations into

account. We have also shown in a controlled setting that SNAGEE

gives a direct measure of the added noise. This shows that the

study SNR measure of SNAGEE is useful to compare studies with

similar samples.

SNAGEE is a signal-to-noise ratio. As such, it increases if the

signal—the variation in the data—is increased. This fits the

concept that higher SNR studies hold more information, but must

be kept in mind when comparing studies with different experi-

mental contents. This is why we studied extensively the behavior of

SNAGEE relative to biological outliers. SNAGEE gave them

consistently a higher SNR than warranted. This means that the

measure of SNR for a sample is not a measure of quality, but a

measure of the added biological diversity brought by a sample to

its study. A biologically plausible sample (a biological outlier) will

be given a high SNR even if it has moderate technical issues, while

an average sample with moderate technical issues will be given a

low SNR. This is in contrast with results from MDQC, which gave

a low quality to a category of biological outliers in the muscle

disease study. SNAGEE also gave a higher SNR to complex

studies, with different types of samples, than to more focused

studies, all other things being equal.

A main limitation of SNAGEE is that it is dependent on the

biological variation between samples. The signal-to-noise ratio at

the core of SNAGEE is a proxy for quality only if there is some

biological variablity between the samples. Very focused studies, for

instance comparing only two cell lines, or one cell line treated with

small stimuli under very controlled conditions, have often very low

biological variability, and may be assigned a low SNR. In this case,

the low SNR is telling of the experimental conditions and not of

study quality. Similarly, studies with only few different conditions

cannot be reliably assigned an SNR, since gene-gene correlations

have to be calculated on a fair number of different samples. In

particular, it was not possible to apply SNAGEE to MAQC, the

benchmark for quality control of microarrays, as it consists only of

two cell lines measured in many replicated ways. Typically,

SNAGEE gave reasonable estimate of the quality of studies above

20 samples, unless those samples are replicated measures of a few

well-controlled conditions, like MAQC.

The SNR given by SNAGEE is an estimate of the amount of

biological information available in the gene expression measure of

a study. A higher SNR does not necessarily means that a study is

more adequate to answer a given biological question than another

study. This depends largely on the samples measured and the

quality of their annotations, which are beyond the scope of

SNAGEE. For instance, in the case of cancer tissues, a study with

carefully dissected samples could have less biological variability

than another study with samples contaminated by adjacent tissues.

The first study may be more informative about the state of the

cancer, while the latter would have a higher SNR. Practically,

however, for similar studies the variation in SNR is mostly due to

the noise, not the signal, which explains why SNAGEE gave a

reasonable estimate of study quality in the cases presented.

The study quality measure being dependent on the study type,

and the natural variation between its samples, it should only be

used to compare similar studies. The exception for this is studies

where problems are suspected, as a very low SNR (below 5%) is

telling of serious quality problems, and SNR much below those

usual for the platform may be telling of systematic issues, like for

instance the normalization by batches that was shown.

A strength of SNAGEE compared to available quality metrics is

that it works across platforms. However, if the goal is to compare

studies on the same platform, or to compare samples, the use of a

Figure 5. Comparison of quality metrics with Bayes classifier
posterior probabilities. Samples were classified by a naive Bayes
classifier. Bad quality samples should not fit the classification well, and
have lower probabilities. The average of the ranks of the posterior
probabilities of the N lowest quality samples is shown. Quality of the
samples was determined with SNAGEE (solid line), MDQC (dashed line),
GNUSE (dotted line), NUSE (grey dotted line) and RLE (dash-dot line).
Classification was done on breast cancers according to ER status
(A:GSE20194 and B:GSE4922); on muscle disease samples according to
gender (C) or to the muscle disease type (D), one class vs. the rest. The
solid grey line uses the samples assigned the highest SNR (and so likely
to be biological outliers) by SNAGEE.
doi:10.1371/journal.pone.0051013.g005
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platform-specific gene-gene correlation matrix could be an

improvement. This would improve the accuracy of SNR

determination by getting rid of the probe annotation problem.

Since a large number of studies are necessary to reliably determine

the gene-gene correlation matrix, this could only be done on

popular platforms.

SNAGEE was compared to other methods for the detection of

problematic samples. Some samples, among which the most

problematic ones, were flagged similarly by all methods, while

other samples were ranked differently. We used the posterior

probability of a naive Bayes classifier to assess the validity of those

rankings. On the examples shown, SNAGEE was shown to

outperform the existing methods. It was shown in particular that

all methods can fail if the experimental setup interferes with the

quality metrics, as in the muscle disease where GAPDH is

regulated for MDQC, or mRNA amplification for GNUSE, or

very simplified experimental setup for SNAGEE. This highlights

the danger of using only one method for quality control.

Furthermore, those methods cannot be used blindly, and their

limitations must be taken into account. Hence, the three methods

are complementary on Affymetrix slides. SNAGEE is however the

only one available across platforms.

We have shown that SNAGEE flags samples that are harder to

classify and so are of bad quality. It could be reasoned that samples

can be harder to classify because they are biological outliers, but as

SNAGEE gives biological outliers a high SNR this is not the case.

Samples flagged by SNAGEE, and other methods are not always

the same, though, which further shows that the techniques are

complementary.

It could come as a surprise that average gene-gene correlations

allow for the determination of SNR, since those correlations are

expected to vary from study to study. We believe it works because

gene-gene correlations have a distribution which is meaningful for

any study, being largely based on genes that belong to the main

cellular processes (e.g. respiration, cell-cyle, proliferation). Biolog-

ical variability, independantly of the experimental protocol,

slightly up- or down-regulates those processes in every sample.

This is sufficient to ensure the presence of gene correlations. Of

course, some genes behave differently in each biological system,

but we showed that this does not prevent the successful use of

SNAGEE.

In conclusion, we have presented a new biology-motivated

signal-to-noise ratio measure for studies and samples. It is the first

signal-to-noise ratio measure for complete gene expression studies.

It was shown to work for a wide range of platforms. It was also

shown to be resilient to changes in the experimental design, like

dye-swapping, and in the number of samples.

Supporting Information

Figure S1 Values of the two probes for gene CRH in
study GSE6532 platform U133A, using (A) data from
GEO or (B) renormalized data. A batch effect is present
is (A), but not in (B).

(PDF)

Figure S2 Clustering of the NCI60 from GSE7947
(black), GSE5949 (dark green, prefaced by an X) and
GSE5720 (green, prefaced by an O), using Ward linkage
and correlation. Cell lines duplicated between the three studies

cluster together, with the exception of A498 (red) which clusters

with LOXIMVI (blue) only in GSE7947.

(PDF)

Table S1 List of platform / study pairs. Platforms ID are from

GEO. Studies of the form GSExyz were downloaded from GEO.

Others were downloaded from SGDI or the author web site.

(XLSX)
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Figure 6. SNR of samples as biological outliers. The SNR of the samples within the complete study (x-axis) are compared with their SNR when
removing all similar samples (y-axis). A–M. Muscle diseases, N. Cell lines vs. normal and diseased tissues.
doi:10.1371/journal.pone.0051013.g006
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