
Depth-Variable Settlement Patterns and Predation
Influence on Newly Settled Reef Fishes (Haemulon spp.,
Haemulidae)
Lance K. B. Jordan1*¤, Kenyon C. Lindeman2, Richard E. Spieler1

1 Oceanographic Center, National Coral Reef Institute, Nova Southeastern University, Dania Beach, Florida, United States of America, 2 Department of Education and

Interdisciplinary Studies, Florida Institute of Technology, Melbourne, Florida, United States of America

Abstract

During early demersal ontogeny, many marine fishes display complex habitat-use patterns. Grunts of the speciose genus
Haemulon are among the most abundant fishes on western North Atlantic coral reefs, with most species settling to shallow
habitats (#12 m). To gain understanding into cross-shelf distributional patterns exhibited by newly settled stages of grunts
(,2 cm total length), we examined: 1) depth-specific distributions of congeners at settlement among sites at 8 m, 12 m,
and 21 m, and 2) depth-variable predation pressure on newly settled individuals (species pooled). Of the six species
identified from collections of newly settled specimens (n = 2125), Haemulon aurolineatum (tomtate), H. flavolineatum (French
grunt), and H. striatum (striped grunt) comprised 98% of the total abundance; with the first two species present at all sites.
Prevalence of H. aurolineatum and H. flavolineatum decreased substantially from the 8-m site to the two deeper sites. In
contrast, H. striatum was absent from the 8-m site and exhibited its highest frequency at the 21-m site. Comparison of newly
settled grunt delta density for all species on caged (predator exclusion) and control artificial reefs at the shallowest site (8-m)
revealed no difference, while the 12-m and 21-m sites exhibited significantly greater delta densities on the caged treatment.
This result, along with significantly higher abundances of co-occurring piscivorous fishes at the deeper sites, indicated lower
predation pressure at the 8-m site. This study suggests habitat-use patterns of newly settled stages of some coral reef fishes
that undergo ontogenetic shifts are a function of depth-variable predation pressure while, for at least one deeper-water
species, proximity to adult habitat appears to be an important factor affecting settlement distribution.
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Introduction

For many coastal fish species, larval settlement occurs in shallow

areas spatially separated from those typically occupied by adult

conspecifics, with species of grunts (Haemulidae) and their

predators (Lutjanidae) as frequent examples [1,2]. The process

of utilizing multiple habitats during early life-history stages is

commonly referred to as an ontogenetic habitat shift [3].

Individuals settling to shallow areas may be exposed to lower

mortality and increased growth rates, with subsequent recruitment

to offshore adult populations representing an important source of

replenishment [4,5]. Refuge from predation affects mortality on

settlement stages of coral reef fishes, influencing adult population

sizes and altering overall community structure [6–9]. It has been

suggested that nearshore, back-reef habitats such as seagrass beds

and mangroves support high densities of new settlers by providing

size-appropriate refuge and increased prey availability (e.g., [10]).

Grunts of the genus Haemulon (15 western Atlantic species) can

represent a major component of many Greater Caribbean coral

reef fish communities and support important fisheries throughout

the region [11–16]. A wide array of studies have focused on

settlement or early juvenile habitat use in grunts (studies include

but are not limited to [2,6,17–30]). Morphological and ecological

transitions among larval, early settlement, and early juvenile life-

history stages of grunts are more complicated than in many other

reef fish families [31,32]. Grunts settle earlier than many other reef

fish genera in terms of both size [23,33] and age [18,34]. Before

the acquisition of species-specific stripe and caudal spot pigment

patterns of early juveniles (approximately 2 to 5 cm in length),

species-level identifications typically require microscopic exami-

nation using meristic, morphometric, and pigment characters [32].

Many grunts can form high-density, multispecies schools at

settlement, which can reduce mortality [35,36] but identification

challenges have often limited species-level ecological research on

settlement-stage individuals.

Year-round settlement of some prominent grunt species occurs

to reef and other shallow natural habitats (e.g., seagrass beds,

mangroves, hardbottom, patch reefs, rubble zones, and reef

pavements) [6,23,28,37–40]. Additionally, artificial reefs (ARs) in

the wider Caribbean can support high densities of early-stage and

juvenile grunts [20,28,41–46]. In southeast mainland Florida,
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newly settled grunts were recorded at substantially higher densities

on concrete ARs than on a nearby reef which had the highest

densities of any natural reef habitat in the area [47,48]. Consistent

with results of other studies that recorded early juvenile and

juvenile stages of many grunt species in shallow-water habitats

[23,49,50], examination of data from the continuous natural reef

tracts throughout Broward County, Florida revealed that the

abundance of early-stage (,5 cm SL) individuals was limited to

depths ,12 m [15,28]. However, on ARs (including vessel reefs

and small [,1 m3] experimental units), high densities of early-

stage grunts have been recorded at 21 m depth [46,51]. The

presence of early-stage grunts at depths .12 m suggests the use of

shallow habitats at settlement is not obligatory for some species of

Haemulon, especially when artificial structures are present.

Adult population densities of reef fishes may vary with distance

from settlement and juvenile habitats. For several Haemulon species

in the Caribbean, reefs in close proximity to mangroves and

seagrass beds exhibited higher adult abundances than reefs

spatially isolated from recruit source habitats [52]. Comparisons

of new settler and juvenile densities have also revealed that many

species utilize back-reef habitats rather than windward coral reefs

typically occupied by the adult reproductive population segment

[30]. Lower predation rates on back-reef habitats utilized by early-

stage fishes could, in part, explain the cross-shelf, age-structured

distributional patterns observed in many species [21,53–55].

However, in most studies that compare predation among different

habitat types, experimental designs were not able to address

potentially confounding factors associated with among-habitat

variations in depth, distance to the reef, topographic complexity,

benthic fauna, and other biophysical factors; all of which can

influence predator-prey interactions.

Several studies have examined how reef fish assemblages

respond to differences in predation pressure and topographic

complexity using ARs [41,45,56]. Fish abundance and species

richness may correlate to reef area/volume, rugosity, isolation

distance, and elevation, while variations in benthic fauna influence

fish assemblage structure of reefs [48,57–60]. Experimental

manipulations that use ARs to remove or reduce the confounding

effects of these factors allow much sharper focus on specific

processes. To investigate potential factors responsible for the cross-

shelf distributions of newly settled stages of Haemulon species in

southeast Florida, we examined 1) settlement patterns at the

species-level using ARs deployed at three discrete depths and 2)

depth-specific differences in relative predation pressure on new

settlers by comparing caged versus control AR treatments at each

depth, while simultaneously measuring the abundance of co-

occurring predators.

Materials and Methods

Ethics Statement
Sampling was conducted under Florida Fish and Wildlife

Conservation Commission Special Activity License 06SR-982 and

06SR-978.

Study Area and Sites
In order to minimize variability of habitat structure and

associated ecological processes among depth treatments, three

sites located on sand plains between nearly continuous reef tracts

that parallel the shore of Broward County, Florida, USA were

chosen [61]. The study sites lie at water depths of 8 m, 12 m, and

21 m (Fig. 1) and were located at almost the same latitude (8-m:

26u07.4 N, 80u05.8 W; 12-m: 26u07.6 N, 80u05.3 W; and 21-m:

26u07.5 N, 80u04.9 W). At each of the three sites, a 464 grid of

ARs was chosen in which ARs were separated by approximately

30 m. The 30-m spacing was selected based on previous studies in

the area which showed this distance adequately minimized

movements of resident fishes among ARs and was short enough

that, given typical horizontal visibility for the area, divers could

efficiently navigate the grid using compass headings [45,48]. All

replicate ARs were .30 m from any natural reef structure. Sandy

plain habitats in the area are generally flat and homogenous in

terms of structure.

Replicate Artificial Reefs
Forty-eight replicate ARs (Gilliam-Spieler reefs; sensu [28]) at

three sites (16 each) were used in the present study (Fig. 2A). The

ARs were ,1 m3 (L6W6H; 100 cm6100 cm696 cm) cubes

constructed using concrete block amalgamated with cement and

reinforced with steel rods (rebar), weighing ,1.5 tons prior to

deployment. Each AR contained four layers separated by nine

support columns. The void space, rugosity, and overhangs created

by the design of the ARs are used by newly settled grunts in

addition to other species. The flat, vertical sides of the ARs used in

this study allowed for fastening of plastic netting material to

exclude larger fishes (potential early-stage Haemulon predators)

from the internal structure (Fig. 2B). All ARs were initially

deployed in early 1995 and remained submerged.

Eight of the 16 ARs, at each of the three sites, were randomly

chosen for the caged treatment during each experimental trial. For

the caged treatment, four ,1 m2 sections of 1.9 cm (3/40)

polyethylene mesh netting were fastened to vertical sides of an

AR to limit piscivore access. Two bungee cords secured the netting

around the top and bottom layers of each of the four vertical sides

of the AR. The vertical corner edges of the netting were joined

together using cable ties. Prior to the start of the experiment, large

encrusting organisms (e.g., oysters, bryozoans, etc.) were removed

from the vertical surfaces of ARs so the netting would fit directly

against the vertical sides without gaps.

Study Design and Data Collection
Previous examination of temporal settlement patterns of grunts

in this area showed highest settlement in summer months [28].

Based on McFarland et al. (1985) [23], experimental trials

bracketed the quarter moon phases (waxing and waning) to

ensure data collections captured pulses of newly settled stages of

grunts. Visual surveys and specimen collections were performed

every two weeks during the summer of 2006. To start the study, all

fishes were removed from the ARs using rotenone. The initial

clearing of fishes, and effective start of the study, took three dive

days: 8–10 May 2006. The first data collection date was 22 May

2006. The final collections were conducted on 10–11 August 2006.

For each experimental trial used in the analysis, all counts and

collections at each site were performed within a two- to four-day

period (Table 1).

In terms of multiple criteria, transitions among early-life stages

of grunts are more complicated than in many reef fish families

[31]. Post-flexion larvae (5–10 mm standard length, SL) can often

be epibenthic with an extended demersal metamorphosis showing

morphological and ecological attributes of larvae (e.g., planktivory)

and, following Lindeman and Richards (2006) [32], we considered

newly settled (NS) individuals to be those from 5–20 mm SL (5–

10 mm: epibenthic larvae; 10–20 mm transitional new settler). In

the current study, assuming direct settlement from the plankton

(not secondary settlement from other habitat), the maximum age

of specimens able to settle onto the ARs was theoretically limited

by the number of days (14) between experimental trials. At 40

Predation Effects on Fish Settlement Distribution
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days, length is approximately 18 mm SL in H. flavolineatum [18]

and other Haemulon species (Lindeman, unpubl. data).

Abundance of grunts was recorded using visual counts of

individual ARs. All grunts located within a one-meter radius of an

AR were recorded to the nearest cm total length (TL). A similar

visual census method has been used in several other studies on

ARs [42,45,48,62]. In addition to recording abundance of grunts,

divers also recorded the abundance of species that may prey upon

Haemulon individuals (i.e., Holocentridae, Serranidae, Apogonidae,

Carangidae, Lutjanidae, and Scorpaenidae) present within one

meter radius of an AR. Visual counts were not time delimited.

To examine depth-variable predation intensity of NS grunts,

two treatments at each of the three sites were used. The first

treatment was represented by ARs lacking the outer plastic netting

on the vertical sides, hereafter the noncaged (NC) treatment. This

treatment represented the control for the other treatment type, the

caged (C) treatment. Plastic netting was secured to the vertical

sides of the ARs of this treatment type as described above. For

every experimental trial, the treatment type at each site was

randomly assigned to the individual ARs to control for any

influence caused by AR position within the grid. At each site, half

(eight) of the 16 ARs were assigned as C while the other half were

Figure 1. Reef categorization (based on LIDAR data) of the study area (Broward County, Florida, USA) and site locations of artificial
reefs. Sand habitat in gray.
doi:10.1371/journal.pone.0050897.g001

Figure 2. Replicate artificial reefs treatments A) noncaged [NC] control and B) caged [C] to exclude predators.
doi:10.1371/journal.pone.0050897.g002

Predation Effects on Fish Settlement Distribution
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NC. Use of these two treatments allowed for relative comparisons

in predation intensity among sites. A significantly higher mean

delta density (see below) of NS grunts on the C treatment relative

to the NC treatment at a given site (i.e., depth) was considered to

have a higher relative predation pressure than a site lacking

significant difference between the two treatments. The random-

ized-block experimental design used in this study was meant to

provide independence between successive experimental trials and

an acceptable mode of interspersing the replicates; to avoid

pseudoreplication [63,64].

Connell (1997) [65] suggested that a partially caged treatment

could be used as an adequate control in assessment of predation

impacts. Using the same AR design and caging material as the

present study, Gilliam (1999) [45] assessed attraction of fishes to

caged ARs by comparing a partially caged treatment (netting on

two sides) to full caging and noncaged treatments (the latter two

treatments were identical to those used in the present study). The

results of that study showed that partial caging (predator

accessible) and fully caged (predator exclusion) treatments did

not significantly differ for 0–2 cm TL fishes (all species; Haemulon

spp. represented the large majority, .95%); these treatments

exhibited significantly higher abundances than the noncaged

treatment. This implies the effect of the caging material on the

abundance (and potential attraction) of newly settled fishes was not

proportional to the amount of caging material.

After completing a visual count of an AR, NS grunts were

collected by herding individuals into fine-mesh hand nets.

Approximately 80% of the individuals recorded during visual

counts were collected. After collection, rotenone was applied to

clear fishes from the AR, establishing the effective start of the

subsequent experimental trial. In addition to the grunts, apogonids

(resident predators) were also affected by the piscicide. Approx-

imately 300 g of rotenone powder (7.4%) was placed into a re-

sealable plastic bag with approximately 240 mL of IvoryTM liquid

dish soap. One bag was used for each AR. Fishes associated with

the AR were enveloped in the rotenone cloud and most fishes died

within five minutes. Once cleared of fishes, each AR was assigned

its randomly predetermined treatment (caged or noncaged) for the

subsequent fortnightly experimental trial and divers moved on to

the next AR. Upon returning to the boat, collected specimens were

placed into labeled jars with 90% EtOH for preservation.

For newly settled Haemulon individuals, in situ species-level

identification when total length was ,2 cm TL was usually not

possible. Species identification for collected specimens was

performed in the laboratory using Lindeman and Richards

(2006) [32]. Once identified to species, specimens were measured

to the nearest 0.01 mm standard length (SL). Because some

collection samples contained thousands of specimens, subsampling

techniques were used. For each experimental trial, samples from

four ARs from each of the three sites (depths) were randomly

chosen for species identification and length measurement.

Collections from two caged and two noncaged ARs were

represented in the four selected samples from each site. Individual

samples were then subsampled volumetrically using a Folsom

splitter. A subsample containing approximately 80 specimens was

used to represent the species composition and length frequency of

the raw sample.

Statistical Analysis
Previous studies on both natural reef and ARs have shown that

NS stages of grunts exhibit a spatially and temporally patchy

distribution [45,47,48]. Frequency-distribution histograms (not

shown) revealed highly right-skewed abundance data in which

zero values were common. This patchy distributional pattern is

common in visual fish surveys and can cause extremely high

variability among replicate samples with corresponding mean

abundances exhibiting statistically high variances [66,67] in which

parametric statistics are unlikely to appropriately resolve among-

factor differences. Thus, NS Haemulon spp. abundance data

collected in visual counts were analyzed using the delta approach

[68,69].

To calculate delta density of newly settled grunts for each factor,

all zero data were removed from raw abundances (hereafter,

concentration; conc). A frequency-distribution histogram was

constructed which showed that the data were still highly right

(positively) skewed. A log10(x+1) transformation was applied to

meet the assumptions of analysis of variance (ANOVA). If a

significant difference (p,0.05) was detected, a modified Tukey

HSD test (for unequal sample size) was performed to determine

differences among variables. Percent presence (i.e., occurrence;

occ) data were also calculated for each factor; either NS Haemulon

were present on an AR or they were not. To compare occurrence

data among the three sites and between treatments at each site

(pooling all experimental trials) a Kruskal-Wallis nonparametric

ANOVA was performed. If significant (p,0.05), a nonparametric

multiple comparisons test was run to identify among-site

differences. A Mann-Whitney U test was used to compare

occurrence data of C and NC treatments overall (pooling all

experimental trials and sites). A Fisher’s exact test (two-tailed p-

value) was used to corroborate factor differences identified in

nonparametric multiple comparisons test (from Kruskal-Wallis)

and Mann-Whitney tests.

Delta density is a composite density represented by the product

of occurrence (the proportion of zero to non-zero values) and

concentration (mean abundance after removal of all zeros). For

each site, treatment, and site/treatment combination delta density

(D) was calculated enabling comparison between C and NC

replicate reefs at each site. The product of concentration (conc)

and occurrence (occ) was calculated for each site, treatment, and

site/treatment combination to yield indices of relative density

represented by delta density. It has been suggested that delta

density is a better representation than conventionally calculated

mean density because the latter can have a large variance due to

Table 1. Sampling dates of each site during respective
experimental trials.

Experimental Trial 8-m 12-m 21-m

Initial Fish Clearing 5/9/06 5/10/06 5/8/06

Trial #1 5/23/06 5/24/06 5/22/06

Trial #2 6/6/06 6/7-8/06a 6/5/06

Trial #3 6/22/06 6/21/06 6/19/06

Trial #4b N/A N/A 7/10/06

Trial #5c 7/25/06 7/26/10 7/24/06

Trial #6 8/11/06 8/11/06 8/10/06

Trial #7d 8/21/06 8/21/06 8/21/06

aRequired two days to conduct visual counts and collect specimens due to
vessel engine failure.
bSchedule for three weeks to account for shifting lunar phase. Rough seas did
not allow for data collection at 8-m and 12-m sites. Data from 21-site used for
length comparisons only.
cNo visual count data was obtained. Rotenone was applied to clear fishes for
subsequent experimental trial.
dTrial exhibited low NS grunt abundance (and occurrence) values and was used
only for species distributional analysis.
doi:10.1371/journal.pone.0050897.t001

Predation Effects on Fish Settlement Distribution

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e50897



the presence of zero values [70]. Statistical comparisons of delta

density would not be possible without an error term. Estimated

delta density variance (var) can be calculated using a Taylor

approximation [71]. Approximated delta density variance was

calculated through the product of the square of occurrence and the

variance of concentration:

var(D)~var(conc)|occ2

Once the estimated variances (and standard deviations) for delta

densities were calculated, it was possible to statistically compare

delta density between pairs of sites, treatments, and treatments at

each site using a difference test (t-test). This was achieved by using

‘‘difference between two means’’ test (Statistica, Statsoft, Inc.) in

which means (represented by delta density of a factor) and

corresponding approximated standard deviations were entered to

calculate a two-tailed p-value.

Additionally, the abundance of predatory fishes (based on visual

census of individual ARs) was compared using a three-way

ANOVA with experimental trial, sites, treatments as factors. A

log10(x+1) transformation was applied to raw abundance data to

meet the assumptions of analysis of variance (ANOVA). If a

significant difference (p,0.05) was detected, a Tukey HSD post hoc

analysis was used to identify the differences among variables.

Results

Species-Specific Depth Patterns at Settlement
A total of 2125 newly settled (NS) Haemulon species (,20 mm

SL) collected from ARs was identified to the species level. This

subsample represented ,24% of the total abundance of NS grunts

recorded from the visual counts of the ARs. Six species were

collected: Haemulon aurolineatum (tomtate), H. flavolineatum (French

grunt), H. striatum (striped grunt), H. melanurum (cottonwick), H.

parra (sailors choice), and H. plumierii (white grunt). Only the first

three species were abundant enough to warrant further examina-

tion of depth/site settlement distribution.

Data for individual species, standardized by sample size (mean

species contribution per sample at each site, pooling all

experimental trials), revealed H. aurolineatum as the predominate

species collected in this study (Fig. 3). At the 8-m site, H.

aurolineatum ([mean 6 SE] 44.666.5) and H. flavolineatum

(52.066.7) exhibited similar percent contributions (per sample).

However, mean percent contribution for H. aurolineatum was two

times greater than H. flavolineatum at the 12-m and 21-m sites. At

the 21-m site, H. aurolineatum exhibited a mean percent sample

contribution of approximately 35%. Although 98% of NS H.

striatum were collected at the 21-m site, its mean percent

contribution only accounted for 45.6% (60.07) of the samples

collected at this site.

Haemulon aurolineatum and H. flavolineatum were found at all three

sites and exhibited depth-related differences in their distributions

(Fig. 4). Of the H. aurolineatum specimens collected, 49% were

found at the 8-m site while 26% and 24% were recorded from

samples at the 12-m and 21-m sites, respectively. Similarly, at the

8-m site, 71% of all H. flavolineatum specimens were collected. The

remainder of specimens was collected at nearly equal relative

abundance (,14%) from the 12-m and 21-m sites. In contrast to

these two species, H. striatum was collected on the 12-m and 21-m

sites only; with ,98% present on the deepest site. The remaining

species were not abundant: NS stages of H. parra and H. plumierii

were found exclusively at the 8-m site (13 and 3 individuals,

respectively), while 18 NS H. melanurum were found at the 12-m

and 21-m sites only.

Among-Site Comparison of Settlement and Predation
Settlement of Haemulon Species. A total of 8842 newly

settled grunts was included in the following analyses of visual count

data. Grunts were patchily distributed among ARs resulting in

heavily right-skewed abundance data, inappropriate for paramet-

ric statistics. Utilization of the delta approach required calculation

of concentration and occurrence in order to obtain delta density

values. A three-way ANOVA using concentration (i.e., abundance

after removal of zeros; log10[x+1] transformed) of NS grunts

revealed significant differences for experimental trial, treatment,

and the site by treatment interaction term (Table 2). A Tukey

HSD test revealed that the significant difference in concentration

of NS grunts that occurred for the site6treatment interaction

resulted from a difference between the 12-m NC replicate reefs

and C replicate reefs at the 12-m and 21-m sites. None of the other

site/treatment combinations differed from one another. A Tukey

HSD test for unequal sample size also revealed more consistency

in concentration of NS grunts among experimental trials than seen

for abundance. The caged AR treatment exhibited a significantly

greater concentration than noncaged ARs (pooling experimental

trials and sites). Experimental trial #2 had a significantly lower

concentration than experimental trials #1 and #3. Experimental

trial #6 did not differ from any of the others (Table 2).

Analysis of occurrence (i.e., the percentage of ARs on which NS

grunts were recorded) was performed using Kruskal-Wallis

nonparametric ANOVAs and revealed significant differences

among sites (df = 2, p = 0.003) and experimental trials (df = 3,

p,0.0001). Comparison between the C and NC treatments

(pooling experimental trials and sites) showed no significant overall

difference in occurrence (Mann-Whitney U = 4224.0, p = 0.243).

However, comparison between caged and noncaged ARs at each

site revealed a significant higher occurrence on caged ARs at the

12-m site (U = 368.0, p = 0.024), with no difference detected

between treatment at either the 8-m or 21-m sites. For sites, a post

hoc multiple comparisons test revealed that the 8-m site exhibited a

significantly higher occurrence than the 12-m site. Neither of these

two sites differed from the 21-m site. A post hoc multiple

comparisons test showed that experimental trial #3 had a

significantly higher occurrence of NS grunts than experimental

trial #6, with no differences among the remaining experimental

trials.

No significant difference was found for delta density of NS

grunts between any pair of sites (i.e., 8-m vs. 12-m, 8-m vs. 21-m,

12-m vs. 21-m). Comparison of delta densities for C (51.3560.99)

and NC (26.3260.62) treatments (pooling data from all experi-

mental trials and sites) revealed significantly higher values for the

C treatment (p = 0.014). For treatment comparisons at each site,

no significant difference was found between the treatments at the

8-m site (p = 0.241). However, the C treatment exhibited

significantly higher delta densities than NC treatment at the 12-

m (p = 0.034) and 21-m (p = 0.046) sites (Fig. 5).

Piscivore Distributions. Recording potential predators of

NS grunts during visual counts at the ARs allowed for comparison

of piscivore distributional trends across the shelf. Potential

predators included species within several families: Holocentridae,

Serranidae, Apogonidae, Carangidae, Lutjanidae, and Scorpae-

nidae. The five most abundant predators of NS grunts were:

Apogon pseudomaculatus (twospot cardinalfish, Apogonidae), Diplec-

trum formosum (sand perch, Serranidae), Caranx crysos (blue runner,

Carangidae), Lutjanus analis (mutton snapper, Lutjanidae), and

Cephalopholis cruentata (graysby, Serranidae). A three-way ANOVA

of piscivorous fish abundance (all species combined, log10[x+1]

transformed) revealed a significant difference among experimental

trials and sites (Table 3). A Tukey HSD test indicated mean

Predation Effects on Fish Settlement Distribution
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Figure 3. Mean percent sample contribution for newly settled stages of each Haemulon species. Data pooled for experimental trials and
treatments.
doi:10.1371/journal.pone.0050897.g003

Figure 4. Relative abundance of species of Haemulon at each site, based on specimen totals from collections of new settlers on ARs
(pooling all experimental trials).
doi:10.1371/journal.pone.0050897.g004

Predation Effects on Fish Settlement Distribution
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piscivorous fish abundance was significantly lower on the 8-m site,

with the other two depths exhibiting no difference (Table 4). No

significant difference in overall piscivorous fish abundance

between C and NC treatments (pooling all sites and experimental

trials) was found (F = 0.47, p = 0.49).

For A. pseudomaculatus, the most abundant piscivorous species

recorded, results of a three-way ANOVA mirrored the among-site

abundance pattern (and Tukey HSD significance levels) exhibited

by all piscivorous species combined (F2 = 20.64, p,0.001; Table 4).

A three-way ANOVA of D. formosum, the most prevalent (i.e.,

highest occurrence and second-most abundant) piscivore recorded

in this study also revealed a significant difference in abundance

among sites (F2 = 56.14, p,0.001). However, for this species, a

Tukey HSD test showed that its abundance was significantly

higher at the 12-m site than the 8-m and 21-m sites, which did not

differ from each other (Table 4).

A total of 180 C. crysos, a transient predator, was recorded in 47

of the 240 AR counts. On the 12-m and 21-m sites, C. crysos

exhibited mean abundances greater than 1.0; significantly greater

Table 2. Results from 3-way ANOVA on NS grunt
concentration (i.e., abundance after removal of zeros;
log10[x+1] transformed).

Source df SS MS F p

Site – Depth 2 0.320 0.160 0.632 0.534

Treatment 1 2.582 2.582 10.210 0.002*

Experimental trial 3 3.275 1.092 4.317 0.007*

Experimental trial6Site 6 2.610 0.435 1.720 0.126

Experimental
trial6Treatment

3 0.990 0.330 1.305 0.278

Site6Treatment 2 2.869 1.435 5.672 0.005*

Experimental
trial6Site6Treatment

6 1.330 0.222 0.877 0.516

Due to low abundances, experimental trial #7 was excluded from this analysis.
P-values with asterisk (*)indicate significant difference.
doi:10.1371/journal.pone.0050897.t002

Figure 5. Mean delta density of newly settled stages of Haemulon species on the caged and noncaged ARs at each site. P-values
obtained from comparison of caged and noncaged ARs for each site (difference between two means test). Significant p-values between treatments at
a site denoted with asterisk (*).
doi:10.1371/journal.pone.0050897.g005

Table 3. Results from 3-way ANOVA of piscivorous fish
abundance (all species combined, log10[x+1] transformed).

Source df SS MS F p

Site – Depth 2 10.059 5.030 46.764 ,0.001*

Treatment 1 0.050 0.050 0.469 0.494

Experimental trial 4 1.459 0.365 3.391 0.010*

Experimental trial6Site 8 1.112 0.139 1.293 0.249

Experimental
trial6Treatment

4 0.131 0.033 0.306 0.874

Site6Treatment 2 0.137 0.069 0.639 0.529

Experimental
trial6Site6Treatment

8 1.013 0.127 1.178 0.314

Data from experimental trial #7 included. P-values with asterisk (*)indicate
significant difference.
doi:10.1371/journal.pone.0050897.t003
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than the 8-m site (F2 = 9.18; p,0.001; Table 4). Large schools

(containing hundreds of individuals) of C. crysos made passes by the

ARs, frequently extended beyond the one-meter radius around the

AR in which abundance data from visual surveys were recorded. It

is likely that abundance (and percent presence) data collected

during visual counts did not adequately represent the foraging

behavior exhibited by this species.

Discussion

Depth-Specificity of Settlement among Congeners
Many reef fishes exhibit age-structured, cross-shelf distributional

patterns whereby new settlers and juveniles utilize different

habitat(s) than adult conspecifics [1,72,73]. Use of shallow habitats

by new settlers implies that an advantage exists in differential

habitat use. Several studies have demonstrated that utilization of

shallow habitats by juvenile and newly settled individuals can

reduce predation rates by providing size-appropriate structural

complexity, which reduces predator foraging efficiency [54,74].

Predation refuge provided by structural complexity may vary

among species [75,76] and may, in part, explain demographic

differences in habitat-use patterns. Our results revealed varying

settlement distributions among closely related species within the

genus Haemulon.

Factors that influence depth and habitat specificity at settlement

and the possible roles of predation remain poorly understood.

Studies attempting to examine these factors are often confounded

by within-habitat variation. In this study, collections and

laboratory identification of 2125 newly settled individuals (i.e.,

epibenthic larvae) from ARs placed at similar sites at three depths

(8 m, 12 m, and 21 m) indicated the most abundant species (H.

aurolineatum, H. flavolineatum, and H. striatum) exhibited overlapping,

yet distinct, distributional patterns. NS H. aurolineatum and H.

flavolineatum were collected at all sites while H. striatum was collected

at the 12-m and 21-m sites only (98% at the deepest site).

Abundances of H. aurolineatum and H. flavolineatum were almost

equal at the shallowest site, with the former species exhibiting

comparatively higher abundance at the two deeper sites (Fig. 4).

The analogous depth distribution of settlement stage H.

aurolineatum and H. flavolineatum seen in this study also reflects

highly similar morphological adaptations, as new settlers and early

juveniles share nearly identical pigmentation, eye size, and body

shape [33]. Evidence suggests that all species of Haemulon feed on

plankton during post-settlement stages [19,32,77]. Through

ontogeny, individuals of H. flavolineatum become benthic carnivores

as adults. However, juvenile and subadult H. aurolineatum often

continue to feed diurnally on zooplankton while adults feed on

both zooplankton and benthic prey [78]. The comparatively deep

settlement of H. striatum likely reflects distinct ecological and

morphological adaptations. This species is a highly specialized

obligate planktivore throughout its life history, inhabiting the

water column of deep reefs [78–80]. Settlement to relatively deep,

offshore areas with more consistent availability of planktonic food

resources could position individuals to grow faster, which can

lower mortality rates [81–83]. Variability in food resources is

unlikely to explain the species-specific distributional patterns

within the genus since all species of Haemulon feed on plankton

as new settlers [84]. For H. flavolineatum in Aruba and Curaçao,

despite greater food abundance and corresponding faster growth

rates of individuals exposed to offshore reef habitats, mangroves

and seagrasses remained the predominant settlement habitats [29].

Because several species (which typically settle to shallow

habitats) were capable of settlement on ARs in relatively deep

waters, the possibility exists that the lack of NS grunts on deeper

natural reefs .21 m [28] is indicative of 100% mortality at (or

immediately following) settlement. However, the similar delta

densities of new settlers (consisting of three primary species) on

ARs at all three sites does not support this assumption. While

differences in predation pressure among sites could be attributed

to differences in predatory species composition and relative

abundance, predation does not appear to be the only factor

driving the distributional patterns of new settlers. Subsamples of

collected specimens revealed that, while H. aurolineatum and H.

flavolineatum settled at lower densities on the 21-m site than the 8-m

site, H. striatum was never collected at the shallowest site. For H.

striatum, settlement occurred at depths in closer proximity to adults

or adult habitat, which may reduce mortality during subsequent

habitat shifts. This implies that the ecological advantage gained by

settling to deeper reefs (with higher pressure, see below) may

outweigh the benefit of settlement to shallow habitats with

potentially less predation pressure.

Depth-Variable Predation Effects on the Cross-shelf
Distribution of New Settlers

To gain understanding of how depth-variable post-settlement

predation affects the distribution of newly settled individuals, the

difference in NS grunts (all species) delta density between the C

and NC treatments was used as a measure of relative predation

pressure. The difference at each site was then compared among

the 8-m, 12-m, and 21-m sites. While analysis revealed no among-

depth difference in NS grunt delta density (see above), results of

the caging experiment revealed higher relative predation pressure

on NS grunts at the deeper sites. This pattern is likely to reflect

conditions of the surrounding natural reef system. Larger (more

consumptive) predators are likely to be more abundant in

topographically complex (e.g., elevation, rugosity, volume, etc.)

habitats [85].

In the reef system surrounding the study sites, several distinct

hardbottom reef habitats are separated by sandy plains [61]. The

nearshore ridge complex (NRC) habitat, adjacent to the 8-m site,

exhibited the highest abundance of NS grunts relative to the other

surrounding natural reef habitats (Jordan et al., in prep). Despite

the high density of NS grunts, of the three reef habitat categories

examined in Walker et al. (2009) [60], the NRC had lowest total

fish abundance and species richness while also exhibiting lowest

values of habitat elevation (m), volume (m3), surface rugosity index,

and linear-rugosity index. Similarly, Almany (2004) [86] found

Table 4. Mean piscivore abundance (6 SE) on ARs (pooling
both treatments using data from all experimental trials) at the
three study sites.

Species 8-m 12-m 21-m

Apogon
psuedomaculatus

0.3160.09b 3.0460.53a 2.6160.49a

Diplectrum formosum 0.5060.10b 1.7160.18a 0.2860.09b

Caranx crysos 0.0660.04b 1.1660.44a 1.0160.23a

Lutjanus analis 0.1360.04 0.1360.04 0.3060.08

Cephalopholis
cruentata

0b 0.0360.02b 0.2860.05a

Total* 1.3460.19b 6.5960.66a 5.3360.63a

Differing letters indicate significant differences between sites using log-
transformed data (log10[x+1]) (Tukey HSD, p,0.05).
*Based on all potential predators of newly settled stages of Haemulon species
(see Methods).
doi:10.1371/journal.pone.0050897.t004
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that new settler abundance did not differ among reefs with varying

topographic complexities. While size-appropriate refugia (topo-

graphic complexity, rugosity, etc.) for NS grunts may exist on

deeper reefs in the area, the shelter characteristics of the shallow

reefs may be less suitable for larger fishes and predators. The

potentially size-appropriate refugia present in deeper reef habitats

could simultaneously increase predation pressure on prey species

[87].

Predation vulnerability has been shown to vary among prey

species [88]. While this study was not designed to resolve

variations in mortality among congeners, the different distribu-

tional patterns observed could be attributed to a species-specific

response to predation pressure. Disproportionately higher preda-

tion pressure on newly settled H. aurolineatum and H. flavolineatum at

the deeper sites would explain declining offshore abundances of

these species. In contrast, H. striatum may have exhibited

comparatively low mortality at the deepest site. Due to the

underlying differences of the reef types, it is impossible to directly

ascribe the findings of the caged-versus-noncaged treatment effects

using ARs located at different depths to the surrounding natural

reef system. Structural or biological attributes of the ARs absent

from natural reefs (and vice versa) may allow H. aurolineatum and H.

flavolineatum, normally associated with the shallow habitats, to settle

to deeper areas. The structural complexity of the ARs used in this

study (relative to natural reef) may have reduced priority effects

and provided more size-appropriate refuge for newly settled

individuals while negatively influencing the success rate of

predatory strikes, relative to natural reef habitat [20,86,89–92].

Despite this difference, only the use of replicate artificial reef units

(positioned on nearly identical habitat) could allow for an

unconfounded examination of depth-variable predation pressure.

The mortality risk associated with undergoing ontogenetic

habitat shifts are thought to outweigh the benefit gained by

remaining in the settlement habitat [3]. The findings of Dahlgren

and Eggleston (2000) [4] supported this assertion and suggested

that ontogenetic habitat shifts minimize the ratio of mortality risk

to growth rate. Such shifts in habitat use appear to provide a

means of balancing predation (driven by appropriate refuge or

predator abundance) and suitable food availability, thereby

decreasing mortality. Habitat shifts, which offset the mortality

risk of remaining within the former habitat, are likely to occur on a

practical spatial scale. Results of our study suggest greater

predation pressure on deeper reef areas and, in general, the

length of time spent away (and distance travelled) from refuge is

related to mortality risk [93]. Thus, the deep settlement of H.

striatum appears to be driven by accessibility to habitat needed

during subsequent life-history stages, which inhabit deep forereef

areas to feed on relatively plankton-rich waters. The other two

abundant species (H. aurolineatum and H. flavolineatum) shift to a

benthic feeding mode at an early age (,5 cm TL) and exhibited a

broader settlement distribution that likely reflects the availability of

habitats suitable for these species during subsequent life stages.

Sandy areas, on which the conspecific adults often forage, are

common throughout the reef tracts at all depths [61].

While results from this study suggest predation and proximity to

adult conspecifics can influence new settler distribution on reefs,

other factors may explain the observed patterns. Due to their

common absence from plankton surveys, complex larval taxono-

my, and low published abundance in light traps, understanding of

species-specific Haemulon larval ecology is lacking [94,95]. How-

ever, larval grunts may be able to detect and react to reef noise

during settlement [96]. It is also possible that settling individuals

avoid areas where they have detected resident predators/

competitors, as seen with other species [92]. On the natural reef

system surrounding the study area, small-bodied predators

(serranids and apogonids) and territorial pomacentrids (Stegastes

spp.) exhibited significantly lower abundances on shallow reef

habitats (Jordan and Spieler, unpub. data; [15]), which opposed

the distributional patterns seen for early-stage grunts [28].

Predator avoidance occurs among freshwater systems affects

species distribution [97,98]. In the case of settling larvae, predator

avoidance behavior would require risk assessment of species that

might negatively influence their survivorship [99]. Relative to

other coral reef fishes, the lack of pelagic morphological features,

small settlement size, and extended duration of the epibenthic

larval period of grunts suggest that larvae often may not enter the

pelagic realm, potentially staying in near-bottom association with

softbottom habitat during much of the larval period [31,32]. Such

an early life history strategy could reduce planktonic mortality and

explain the large schools of epibenthic larvae often found on the

edges of shallow hardbottom structures for many species of

Haemulon. As with many other reef fish families, research into

sensory abilities of late-stage Haemulon larvae would be of value

[100].

Although potential predators did not show higher abundances

on the C treatment, which exhibited higher densities of newly

settled individuals on the 12-m and 21-m sites, among-site

differences in abundance were observed for A. pseudomaculatus, D.

formosum, C. crysos, C. cruentata, and total piscivores (all species

combined). Total potential piscivore abundance was significantly

lower at the 8-m site. In general, all piscivorous species exhibited

increasingly higher abundances on the offshore sites except D.

formosum which occurred in 80% of the counts at the 12-m site,

with only 35% and 20% at the 8-m and 21-m sites, respectively.

Although the use of rotenone likely caused an unnatural feeding

opportunity, this serranid was observed consuming early-stage

grunts during rotenone sampling and has been shown to negatively

affect fish recruitment on ARs [101]. The most abundant potential

piscivore recorded, A. pseudomaculatus, was also observed feeding on

NS grunts during collections. Marnane and Bellwood (2002) [102]

showed that, despite their small size, fishes comprised a major

dietary component of several species of Indo-Pacific apogonids.

Similarly, C. crysos was observed feeding on NS grunts during

collections, suggesting predator-prey interactions may also occur

naturally. Although C. crysos abundance and its effect on NS grunt

mortality was likely inadequately represented in the visual count

data, studies have suggested carangids account for high mortality

of new settlers on ARs in the Greater Caribbean [44,48,103].

Compared to other piscivores recorded in this study, its large size

and schooling, chase behavior suggest that C. crysos would be a

more consumptive predator [104]. However, the predation

pressure placed upon prey NS grunts by this carangid was likely

to be higher on noncaged ARs, since complete refuge from their

predatory strikes could be obtained within the netting material.

Thus, of the most prevalent piscivorous species recorded, it is

possible that C. crysos may have contributed to the difference in NS

grunt density between C and NC treatments at the 12-m and 21-m

sites.

This study suggests that distributional patterns of NS grunts on

the natural reef, in which the vast majority of individuals were

recorded on nearshore habitats [28], are driven by multiple

factors. Results from the comparison of C and NC treatments

suggest that predation pressure was strongest at the deepest site.

Although delta density of new settlers (all species) at this site did

not differ from the other sites, the observed species-specific

settlement patterns appear in part to reflect an ecological trade-off

between predation pressure and proximity to adult conspecifics (or

adult resources) for several Haemulon species. Depth does not
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appear to be a primary determinant of settlement for the two most

prevalent species observed, H. aurolineatum and H. flavolineatum,

which are typically opportunistic with regard to habitat selection at

settlement [24]. The high settler and juvenile densities of certain

ontogenetic-shifting species commonly found in shallow habitats

may be the result of lower relative predation, corresponding to the

density and constituents of the piscivore suite, rather than the

increased structural refuge associated with certain habitats (e.g.,

seagrass, mangrove, etc.). However, for species within the genus

Haemulon, distributional patterns at settlement do not appear to be

driven solely by predation pressure. At settlement, all newly settled

Haemulon species exhibit very similar morphologies and behaviors.

Evidenced by its absence from shallow habitat, H. striatum may

gain an ecological advantage by limiting the distance needed to

shift from settlement to juvenile and adult habitats; offsetting the

initial benefit of settling to shallow habitats with lower relative

predation pressure.
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