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Abstract

Although the structural properties of online social networks have attracted much attention, the properties of the close-knit
friendship structures remain an important question. Here, we mainly focus on how these mesoscale structures are affected
by the local and global structural properties. Analyzing the data of four large-scale online social networks reveals several
common structural properties. It is found that not only the local structures given by the indegree, outdegree, and reciprocal
degree distributions follow a similar scaling behavior, the mesoscale structures represented by the distributions of close-knit
friendship structures also exhibit a similar scaling law. The degree correlation is very weak over a wide range of the degrees.
We propose a simple directed network model that captures the observed properties. The model incorporates two
mechanisms: reciprocation and preferential attachment. Through rate equation analysis of our model, the local-scale and
mesoscale structural properties are derived. In the local-scale, the same scaling behavior of indegree and outdegree
distributions stems from indegree and outdegree of nodes both growing as the same function of the introduction time, and
the reciprocal degree distribution also shows the same power-law due to the linear relationship between the reciprocal
degree and in/outdegree of nodes. In the mesoscale, the distributions of four closed triples representing close-knit
friendship structures are found to exhibit identical power-laws, a behavior attributed to the negligible degree correlations.
Intriguingly, all the power-law exponents of the distributions in the local-scale and mesoscale depend only on one global
parameter, the mean in/outdegree, while both the mean in/outdegree and the reciprocity together determine the ratio of
the reciprocal degree of a node to its in/outdegree. Structural properties of numerical simulated networks are analyzed and
compared with each of the four real networks. This work helps understand the interplay between structures on different
scales in online social networks.
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Introduction

In recent years, an increasing number of online social systems

(e.g., YouTube and Facebook) have been attracting wide attention

from different fields [1–3]. Online social networks provide a

platform for web surfers to make acquaintance with congenial

friends [4], exchange photos and personal news [5], share videos

[6], establish communities or forums on focused issues [7], etc.

These online interactive behaviors, which partly reflect real-life

social relationships among people, provide an unprecedented

opportunity to study and understand the dazzling characteristics of

real-life social systems [8,9].

Complex network theory has been proven to be a powerful

framework to understand the structure and dynamics of complex

systems [10–16]. Online social systems have been treated as

undirected networks [17,18], which have been applied successfully

in exploring various systems [10]. This simplification, however

cannot describe the asymmetric interactions among users. Taking

Flickr as an example, if a user A designates another user B as a

friend, user A can see the photos of user B, but not the other way

round unless user B also designates user A as his friend.

Technically, an asymmetric interaction represents one directed

link, and many online social systems are thus directed networks in

nature. The directionality of links is important in characterizing

the functioning of many systems, e.g., leadership structure of social

reputation [19,20], reciprocal behavior in evolutionary games

[21], information hierarchy of the World Wide Web [22,23],

citation relationship of scientific publications [24,25], etc. Much

effort has been devoted to understanding the structural properties

of these directed networks, including the indegree and outdegree

distributions [26], average shortest distance [26], degree correla-

tion [27], and community structure [28–30]. Correspondingly,

there are many models proposed for the underlying mechanisms of

the statistical properties. Dorogovtsev et al. [31] generalized the

Barabási-Albert(BA) model [32] and obtained the exact form of

the indegree distribution of growing networks in the thermody-

namic limit. Krapivsky et al. [33] introduced a directed network

model that generates correlated indegree and outdegree distribu-

tions. Zhou et al. [20] argued that the ‘‘good get richer’’
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mechanism would facilitate the emergence of scale-free leadership

structure in online social networks.

Up to now, most of the work on complex networks can be

classified into studies on three scales: the local scale based on the

single node properties (through statistical distributions), the macro-

scale based on the global properties of networks (with global

parameters), and the mesoscale based on properties due to a group

of nodes (via modular properties) [34–36]. However, a majority of

studies focused on the first two scales. In view of the significant role

of modularity in the functionality of real networks, it has become

increasing important to study the mesoscale structures. Commu-

nities and motifs are two key mesoscale structures of real complex

networks. Community structures at mesoscale level are ubiquitous

in a variety of real complex systems [37,38], such as Facebook,

YouTube, and Xiaonei. There are more connections among

members of the same community than among members in

different communities. Lancichinetti et al. analyzed the statistical

properties of communities in five categories of real complex

networks, and found that communities detected in networks of the

same category display similar structural characteristics [39].

Motifs, which are defined as subgraphs that occur much more

often than expected in a random network, play a significant role in

our understanding of the interplay between the structures and

dynamics of real complex networks [40–45].

In spite of the structural features revealed at the three scales,

understanding the interplay between the different scales has

remained a major challenge [34–36]. In the present work, we

study how the close-knit friendship structures of online social

networks at the mesoscale level and the structural properties at the

two other scales are affecting each other. In social networks, the

close-knit friendship structure describes the closest unit, which is

usually represented by the closed triples. In a directed network,

there are 13 different possible three-node subgraphs [41]. For

situations without reciprocal links, a focal node has three possible

unclosed triples. Each unclosed triple can be closed by adding a

directed link between the two unconnected nodes, giving rise to

four types of closed triples as shown in Figure 1 [44,45]. The four

closed triples fall into two groups: one is a feedback (FB) loop and

the three others are feedforward (i.e., FFa, FFb, and FFc) loops.

Structurally, the roles of three nodes in the FB loop are equivalent,

but it is not the case in the FF loops. Any FFa loop (from the

perspective of the focal node) becomes a FFb loop for another

node and a FFc loop for the third node, and thus the numbers of

three feedforward loops are equal in directed networks. Compared

to the unclosed triples, the closed triples play a more important

role in dynamical processes on online social networks [46,47], such

as opinion formation [48], game dynamics [49], and cooperation

evolution [50].

In online social networks, the closed triples are a good indicator

of close-knit friendships among people. To understand the

mesoscale structural properties of online social networks, we

analyze data of popular online social networks, establish the

empirical facts, and introduce a directed network model. We

analyze four large-scale online social networks, namely Epinions,

Slashdot, Flickr, and Youtube, and establish that the distributions in

each scale follow a similar power law. We propose a simple

directed network model incorporating two processes: external

reciprocation and internal evolution. Theoretical analysis shows

that the distributions of four closed triples display almost identical

scaling laws due to the negligible degree correlations, and the

distribution exponents depend only on one global parameter - the

mean in/outdegree. Simulation results based on the model are

basically consistent with both the empirical results and theoretical

analysis.

Results

Empirical Results
We first analyze four representative directed online social

networks and establish the empirical features. As listed in Table 1,

these four datasets are: (i) Epinions Social Network (ESN, http://

snap.stanford.edu/data/soc-Epinions1.html) [51]: a who-trust-

whom online social network of a general consumer review site

Epinions.com in which members can decide whether to ‘‘trust’’ each

other or not, and subsequently all the trusted relationships form a

so-called social trust network. (ii) Slashdot Social Network (SSN,

http://snap.stanford.edu/data/soc-Slashdot0902.html) [51]: a

friendship network of a technology-related news website Slashdot.-

com. Nodes are the users and links represent the friendships among

the users. (iii) Flickr Social Network (FSN, http://socialnetworks.

mpi-sws.org/data-imc2007.html) [52]: a friendship network of a

photo-sharing site Flickr.com that allows users to designate others as

‘‘contacts’’ or ‘‘friends’’ and track their activities in real time. This

network contains all the friendship links among the users of Flickr.

(iv) YouTube Social Netowrk (YSN, http://socialnetworks.mpi-sws.

org/data-imc2007.html) [52]: a friendship network of a popular

video-sharing website YouTube.com on which users can upload,

share and view videos. The nodes in the network are the users of

YouTube, and a directed link is established from a user A to a user

B when user A declares user B as a friend. Table 1 summarizes the

basic global features of the four online social networks. These

networks all show a large reciprocity r, defined by r~Er=(E{Er)
[53] with Er and E being the numbers of reciprocal links and

single directed links, respectively. Note that a reciprocal link

contributes two single directed links. For example, r&0:25 for

ESN, r&0:73 for SSN, r&0:45 for FSN, and r&0:65 for YSN.

We also studied the local-scale structural properties of these

social networks via statistical distributions. The results of ESN are

presented as an example. Figure 2 shows the indegree and

outdegree distributions (black squares) on a log-log plot. The data

span more than two decades. The distributions follow a power law

with approximately the same exponent, i.e., P(kin)*k
{cin

in and

P(kout)*k
{cout
out , with cin&1:73 and cout&1:71 obtained by the

maximum likelihood estimation [54,55]. More details about the

power-law fits are given in Table S1 of Appendix S1. Figure 3

shows that the indegree kin of each node is nearly proportional to

Figure 1. Three possible unclosed triples and four basic closed
triples for a focal node (red). The basic closed triples correspond to
one feedback (FB) loop and three feedforward (FF ) loops. The three
feedforward loops differ in the indegree kin of the focal node: kin~0 for
FFa, kin~1 for FFb and kin~2 for FFc. The numbers of the three
feedforward loops are equal because every FFa loop from the
perspective of the focal node constitutes a FFb loop and a FFc loop
from the perspective of the another two nodes, but the loops may arise
from different growth histories.
doi:10.1371/journal.pone.0050702.g001

Scale-Free Close-Knit Friendship Structure
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its outdegree kout (also see Figures S4, S5, S6 of Appendix S1),

which is consistent with the similar scaling law of their

distributions. In growing networks, the fat-tail power-law behavior

in the degree distribution suggests that directed links are not drawn

toward and from existing users uniformly. Mislove et al. showed

that there is a positive correlation between the number of links a

user has and its probability of creating or receiving new links in

online social networks [5]. This phenomenon is called ‘‘preferen-

tial attachment’’ [5,32,33,56]. The behavior kin&kout for any

node implies that a node with large kin has a strong ability to

attract links from other nodes and also a strong tendency to link to

other nodes. This is reminiscences of the product ki
outk

j
in used in

the prediction of a link between the nodes i and j [57], i.e., a larger

product gives a larger probability of having a directed link from i
to j. These results lead us to incorporate a preferential attachment

mechanism related to ki
outk

j
in into the mechanism of how the links

grow in a network.

The reciprocal degree is the number of reciprocal links that a

node possesses. Figure 4 shows that the reciprocal degree

distribution also follows a power law P(kr)*kcr
r with an exponent

cr&1:69 as examined by the maximum likelihood estimation

[54,55], similar to that of the indegree and outdegree distributions.

Figure 5 shows that the mean reciprocal degree of the nodes with

the same indegree Skr(kin)T is approximately linearly proportional

to the indegree kin (also see Figures S10, S11, S12 of Appendix

S1), i.e., Skr(kin)T*kin, and in a similar fashion Skr(kout)T*kout,

implying that the probability that a randomly chosen directed link

happens to be a reciprocal link is roughly a constant. All these

features are consistent with the observation that the indegree,

outdegree, and reciprocal degree distributions all follow a similar

exponent.

For mesoscale structures, we focus on the four closed triples i.e.,

FB, FFa, FFb and FFc. As the numbers of three feedforward loops

are equal, i.e., NFFa
~NFFb

~NFFc
, we only look at the total

numbers of FB and FFa closed triples. For ESN, NFB~740,310
and NFFa

~3,586,403 as shown in Table 1. Considering the

feedforward loops as the same up to the permutation of the focal

node, it is interesting to see that NFB : NFFa
&1 : 5. This implies

the existence of some underlying mechanism. Since the indegree

and outdegree distributions are heterogeneous, we study the

numbers of the four closed triples (i.e., nFB,nFFa
,nFFb

, and nFFc
) at

different nodes and their distributions. Figure 6 shows that,

although the numbers of feedback and feedforward loops are

different, their distributions follow similar scaling laws, i.e.,

P(nFB)*nFB
{cFB and P(nFF )*nFF

{cFF , with cFB&1:37,

cFFa
&1:39, cFFb

&1:35 and cFFc
&1:38 as determined by the

maximum likelihood estimation [54,55]. More details on the

exponents are given in Table S1 of Appendix S1. Moreover,

although the numbers of three feedforward loops are equal, their

distributions look slightly different in detail. This is a phenomenon

worthy of further research.

To understand this phenomenon, we consider the three

unclosed triples in Figure 1. For a node with indegree kin and

Table 1. Basic statistics of the four online social network
datasets.

Data sets Epinions Slashdot Flickr YouTube

N 75,879 82,168 1,715,255 1,138,499

E 508,825 870,161 22,613,980 4,945,382

kmax
in 3035 2552 16255 25519

kmax
out 1801 2510 26185 28644

r 0.25 0.73 0.45 0.65

NFB 740,310 899,316 435,829,822 5,320,127

NFFa
3,586,403 2,881,727 1,667,179,686 16,287,794

Properties of each network: number of users N , number of directed links E,
reciprocity r, number of feedback (FB) loop NFB , number of feedforward loops
NFFa

. The numbers of the three feedforward loops (FFa , FFb , FFc) are equal,
because every FFa loop from the perspective of the focal node constitutes a
FFb loop and a FFc loop from the perspective of the another two nodes.
doi:10.1371/journal.pone.0050702.t001

Figure 2. Indegree (a) and outdegree (b) distributions of the
Epinions social network (black squares) and simulation results
(red circles) based on the model. The dashed lines in both panels
have a slope {2:17 as the analytic results in Eqs. (17) and (31)
suggested. The simulated network is generated by the model with the
parameters N~75879, m&4:34 and p&0:08, as determined by the
mean degree SkT and reciprocity r of the Epinions social network. Data
points are averages over the logarithmic bins of the indegree kin and
outdegree kout , respectively.
doi:10.1371/journal.pone.0050702.g002

Figure 3. Relationship between the indegree and the out-
degree of nodes in the Epinions social network and the model.
Results of the Epinions social network (black squares) and simulation
results (red circles) based on the model are shown. The blue dash line
represents the relation function kin~kout . Data points are averages over
the logarithmic bins of the indegree kin .
doi:10.1371/journal.pone.0050702.g003

Scale-Free Close-Knit Friendship Structure
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outdegree kout, there are C2
kout

unclosed triples A, C1
kin

C1
kout

unclosed triples B, and C2
kin

unclosed triples C when reciprocal

links are forbidden, where Cm
n ~n!=½m!(n{m)!� denotes the

binomial coefficient. These unclosed triples would

generate closed triples in the ratio

n’FB : n’FFa
~(C1

kin
C1

kout
=2) : (C2

kout
zC2

kin
zC1

kin
C1

kout
=2). Accounting

for all the nodes, we can obtain the total number

of optional closed triples N ’FB~
PN

i (C1
ki

in

C1
ki

out
=2) and

N ’FFa
~
PN

i~1 (C2
ki

out
zC2

ki
in

zC1
ki

in

C1
ki

out
=2), respectively. Assuming

there is no degree correlation and making use of kin&kout, we

have NFB : NFFa
&1 : 5, which is basically consistent with the ratio

found in ESN. The assumption of no degree distribution is

supported by the results in Figure 7(a), in which the network shows

a very weak degree correlation over two decades that can be

treated almost as no degree correlation (further quantitative

evidence is given by the Pearson correlation coefficient in Table S2

of Appendix S1) [58]. In this case, the number of closed triples at a

node depends only on its indegree kin and outdegree kout, i.e.,

nFB*k2
in and nFFa

*k2
in for large kin, nFB*k2

out and nFFa
*k2

out for

large kout. This behavior is confirmed in Figure 8 and Figure 9

(also see Figures S19, S20, S21, S22, S23, S24 of Appendix S1).

This also gives the reason why the distributions of four closed

triples follow similar scaling laws. Results of analyzing the other

three networks (i.e., Slashdot, Flickr and YouTube) also exhibit similar

phenomena (see Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23,

S24 of Appendix S1).

Directed Network Model
We propose a growing network model with node and link

creation processes incorporating link directionality that reproduces

the empirical features. In the model, we consider two evolutionary

ingredients: reciprocation and preferential attachment. On one

hand, many empirical results show that the reciprocity r of online

social networks is much greater than in sparse random directed

networks with r?0 [5,53]. Our results of r&0:45 of FSN and

r&0:65 of YSN provide further evidence. The high reciprocity

implies that there is a good chance that the creation of a directed

link prompts the establishment of a reversed link. For example,

users of Flickr often respond to an incoming link by quickly

establishing a reversed link as a matter of courtesy [5]. Thus,

reciprocation is believed to be an independent growth mechanism

in large-scale online social networks. On the other hand,

preferential attachment has been proven to be an important and

basic growing mechanism in online social networks [5,32,33,56].

Users with large indegrees and outdegrees are more likely to

receive incoming links and create outgoing links, respectively. This

motivated us to incorporate a preferential attachment mechanism

depending on the product ki
outk

j
in in creating new links.

The model starts with an initial seed consisting of m0 nodes. At

each time step, a new node is added and 2zmzmp new directed

links are introduced according to two processes: external

reciprocation and internal evolution.

(1) External reciprocation. The new node in every time step

establishes a new directed link with an existing nodes i in the

network with a probability

pi~
ki

inP
j

k
j
in

ð1Þ

proportional to the indegree ki
in of node i. To incorporate the

reciprocation mechanism, the node i that receives the link

creates a reversed link to the new node. Consequently, a

reciprocal link is created between these two nodes. This

mechanism is reasonable in that a strong motivation of a new

user joining a social network is to get connected to and

interact with someone already in the network. As we shall see,

this process can be treated conveniently in the mathematical

analysis of the model.

Figure 4. Reciprocal degree distributions of the Epinions social
network and the model. Results of the Epinions social network (black
squares) and simulation results (red circles) based on the model are
shown. Analytic treatment (see Eqs. (17) and (31)) suggests a scaling
behavior with an exponent {2:17, as shown by the dash line. Data
points are averages over the logarithmic bins of the reciprocal degree
kr.
doi:10.1371/journal.pone.0050702.g004

Figure 5. Mean reciprocal degree of nodes with (a) the same
indegree and (b) the same outdegree in the Epinions social
network and in the model. Results of the Epinions social network
(black squares) and simulation results (red circles) based on the model
are shown in a log-log scale in the main panels. Analytic treatment
suggests that SkrT is linearly dependent on kin and kout , and the blue
dash lines of slope 1 show its dependence. The inset in each panel
shows the results in a linear scale and the dash line has a slope of 0:3, as
given by Eqs. (20) and (31). Data points are averages over the
logarithmic bins of the indegree kin and outdegree kout, respectively.
doi:10.1371/journal.pone.0050702.g005

Scale-Free Close-Knit Friendship Structure
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(2) Internal evolution. In each time step, m new directed links,

representing the activity of the network, are created among

the existing nodes according to the preferential attachment

mechanism. Consider two unconnected nodes i and j up to

that time step, a new directed link from node i to node j is

created with the probability

pij~
ki

outk
j
inX

x,y,x=[Cin(y)
kx

outk
y
in

, ð2Þ

where ki
out and k

j
in are the outdegree of node i and the

indegree of the target node j, respectively, and Cin(y) in the

normalization factor is the set of incoming neighbors of node

y at that time step. This attachment probability is propor-

tional to the product ki
outk

j
in. The larger the product is, the

greater probability a new directed link is created between

them. For each of the new directed links created, a reversed

link will be established with the reciprocation probability p.

Therefore, mzmp directed links are introduced into the

network through internal evolution in each time step. It

should be noted that multiple links between two nodes and

self-connections are prohibited in the model.

Materials and Methods

Rate Equation Analysis
We first analyze the indegree and outdegree distributions of the

model. After t steps, the growing directed network has N~m0zt

nodes and (2zmzmp)t directed links, where the tiny number of

initial links in the seed are ignored. Meanwhile, the sum of

indegree and the sum of outdegree are equal, i.e.,P
j k

j
in~

P
j k

j
out~(2zmzmp)t. For a sparse network

with mean indegree SkT~2zmzmpvvN, we have

Figure 6. Distributions of four basic closed triples in the Epinions social network and the model. Distributions of closed triples
corresponding to (a) FB, (b) FFa , (c) FFb , and (d) FFc loops in the Epinions social network (black squares) and in the simulated network based on the
model (red circles). Analytic treatment (see Eqs. (30) and (31)) suggests a scaling behavior with an exponent {1:58, as shown by the dash lines. Data
points are averages over the logarithmic bins of the nFB , nFFa, nFFb and nFFc, respectively.
doi:10.1371/journal.pone.0050702.g006

Figure 7. Degree correlations in the Epinions social network
and the model. Results of degree correlations as measured by four
quantities corresponding to the average nearest neighbor degree
vknn

in (kin)w (squares), vknn
out(kin)w (circles), vknn

out(kout)w (triangles),
and vknn

in (kout)w (inverted triangles) for (a) the Epinions social network
and (b) simulated network based on the model. Data points are
averages over the logarithmic bins of the indegree kin or outdegree
kout.
doi:10.1371/journal.pone.0050702.g007

Scale-Free Close-Knit Friendship Structure
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P
x,y,x=[Cin(y) kx

outk
y
in&

P
kx

out|
P

k
y
in~½(2zmzmp)t�2 so that

Eq. (2) can be approximated by

pij&
ki

outk
j
in

½(2zmzmp)t�2
: ð3Þ

Consider the creation of one new directed link via the internal

evolution at step t. The probability pz

ki
in

that the indegree ki
in of

node i increases by one due to the creation of one link is

Figure 8. Mean number of the four closed triples for nodes with the same indegree in the Epinions social network and the model.
Results for the mean number of closed triples corresponding to (a) FB, (b) FFa , (c) FFb , and (d) FFc loops for nodes with the same indegree are
shown for the Epinions social network (black squares) and simulated network (red circles) based on the model. Analytic treatment (see Eq. (28)) gives
a scaling behavior with an exponent 2, as indicated by the dash lines. Data points are averages over the logarithmic bins of the indegree kin .
doi:10.1371/journal.pone.0050702.g008

Figure 9. Mean number of the four closed triples for nodes with the same outdegree in the Epinions social network and the model.
Results for the mean number of closed triples corresponding to (a) FB, (b) FFa , (c) FFb , and (d) FFc loops for nodes with the same outdegree are
shown for the Epinions social network (black squares) and simulated network (red circles) based on the model. Analytic treatment (see Eq. (28)) gives
a scaling behavior with an exponent 2, as indicated by the dash lines. Data points are averages over the logarithmic bins of the outdegree kout .
doi:10.1371/journal.pone.0050702.g009

Scale-Free Close-Knit Friendship Structure
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pz

ki
in

~
X

j=[Cin(i)

k
j
outk

i
in

½(2zmzmp)t�2
zp

X

j=[Cout(i)

ki
outk

j
in

½(2zmzmp)t�2
, ð4Þ

where the first term gives the probability that the node i receives a

new incoming link from one of the other nodes and the second

term gives the probability that a reversed link is created back to

node i when a new directed link was created from node i to some

node j. According to
P

j=[Cin(i) k
j
out^

P
j=[Cout(i) k

j
in&(2zmzmp)t,

pz

ki
in

is approximately given by

pz

ki
in

&
ki

inzpki
out

(2zmzmp)t
: ð5Þ

Similarly, the probability pz

ki
out

that the outdegree ki
out of node i

increases by one due to the creation of one link is

pz

ki
out

&
ki

outzpki
in

(2zmzmp)t
: ð6Þ

Equations for the rate of change of the expected indegree ki
in and

outdegree ki
out can then be written down. Taking ki

in and ki
out as

continuous variables, the dynamical equations are

dki
in(t)

dt
~

ki
inP

j k
j
in

zmpz
kin

,

dki
out(t)

dt
~

ki
inP

j k
j
in

zmpz
kout

, ð7Þ

where the first term in the equations comes from the newly added

node in a time step. The difference of the two equations gives

d½ki
in(t){ki

out(t)�
dt

~mpz
kin

{mpz
kout

~
m(1{p)(ki

in{ki
out)

(2zmzmp)t
, ð8Þ

where Eqs. (5) and (6) have been used. Let ti be the time that the

node i is introduced, i. e., ki
in(ti)~ki

out(ti)~1. It follows from Eq.

(8) that ki
in(t)~ki

out(t) at any time t. Although the expected value

of the difference between indegrees and outdegrees of a node does

not grow over time mathematically, the difference does exist in a

particular realization of the model in simulations. Eq. (7) and the

initial condition ki
in(ti)~ki

out(ti)~1 gives

ki
in(t)~ki

out(t)~(
t

ti

)b, ð9Þ

where b~(1zmzmp)=(2zmzmp). The indegree and out-

degree of the nodes both grow over time in the same functional

form, with older nodes having higher indegrees and outdegrees.

Let Nkin
(t) and Nkout

(t) be the number of nodes with expected

indegree kin and outdegree kout at the time step t, respectively.

The rate equation of Nkin
(t) is then given by

dNkin
(t)

dt
~

kin{1
P

j k
j
in

Nkin{1{
kinP
j k

j
in

Nkin
z

mpz
kin{1Nkin{1{mpz

kin
Nkin

zdkin,1:

ð10Þ

The first and third terms on the right-hand side account for the

increase of Nkin
(t) due to the external reciprocation and internal

evolution, respectively; and the second and fourth terms account

for the decrease due to the processes. The last term accounts for

the introduction of a new node with indegree kin~1 at time t. Eq.

(10) is valid for all kin§1.

After many steps t, there are N~m0zt&t nodes in the

network. In the asymptotic limit, we substitute Nkin
(t)~tP(kin),

where P(kin) is the indegree distribution [59], andP
j k

j
in~(2zmzmp)t into Eq. (10) to obtain the simple recursive

relation

½2zmzmpz(1zmzmp)kin�P(kin)~

(1zmzmp)(kin{1)P(kin{1)z(2zmzmp)dkin ,1:
ð11Þ

Using the initial condition that kin~1 at the time that a node was

introduced, the solution of Eq.(11) is

P(kin)~A
C(kin)

C(kinz2z 1
1zmzmp

)
, ð12Þ

where A~
2zmzmp

3z2mz2mp
C(

1

1zmzmp
z3) and C is the Euler

gamma function. Using the asymptotic form C(xzl)?xl as

x??, we can extract the scaling form

P(kin)&Ak
{(2z 1

1zmzmp
)

in : ð13Þ

Similarly, the rate equation of Nkout
(t) is given by

dNkout (t)

dt
~

kin{1
P

j k
j
in

Nkout{1{
kinP
j k

j
in

Nkoutz

mpz
kout{1Nkout{1{mpz

kout
Nkoutzdkout,1:

ð14Þ

The first (second) and third (fourth) terms on the right-hand side

account for the increase (decrease) in Nkout due to the external

reciprocation and internal evolution, respectively; and the last

term accounts for the introduction of a new node with kout~1 at

time t. Substituting Nkout (t)~tP(kout), where P(kout) is the

outdegree distribution, and
P

j k
j
in~(2zmzmp)t into Eq. (14),

the recursive relation for P(kout) is

½2zmzmpz(1zmzmp)koutz1�P(kout)~

(1zmzmp)(kout{1)P(kout{1)z(2zmzmp)dkout1,
ð15Þ

which is identical to Eq. (11) for P(kin). It follows that

P(kout)&Ak
{(2z 1

1zmzmp
)

out : ð16Þ
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The results show that the expected indegree and outdegree grow

over time following the same functional form of Eq. (9), and the

indegree and outdegree distributions follow the same scaling law

with an exponent

c~2z
1

1zmzmp
: ð17Þ

Next, we consider the reciprocal degree distribution P(kr). For a

node i with ki
in~ki

out, ki
r satisfies the dynamical equation

dki
r(t)

dt
~

ki
in(t)

(2zmzmp)t
z

mpki
in(t)zmpki

out(t)

(2zmzmp)t
: ð18Þ

Substituting Eq. (9) into Eq. (18) and using the initial condition

that ki
r(ti)~1 at the time that node i was introduced, the solution

to Eq. (18) is

ki
r(t)~

2mpz1

1zmzmp
½ki

in(t){1�z1: ð19Þ

For large ki
in, we have

ki
r*

2mpz1

1zmzmp
ki

in: ð20Þ

Using P(kr)dkr~P(kin)dkin, the distribution P(kr) follows

P(kr)*kr
{c, ð21Þ

where c is given by Eq. (17) as for the indegree and outdegree

distributions.

Furthermore, we analyze the degree correlations between

connected nodes by the rate equation approach. Let Nlout

kin
be the

number of links that originate from a node with an expected

outdegree lout to a node with an expected indegree kin [60].

Generally, Plout

kin
is defined for kin§1 and lout§2. The quantity

Nlout

kin
(t) evolves according to

dN
lout
kin

(t)

dt
~

(kin{1)N
lout
kin{1{kinN

lout
kinP

kinNkin

z

(lout{1)N
lout{1
kin

{loutN
lout
kinP

kinNkin

z
(lout{1)Nlout{1P

kinNkin

d1,kin

zmpz
kin{1N

lout
kin{1{mpz

kin
N

lout
kin

zmpz
lout{1N

lout{1
kin

{

mpz
lout

N
lout
kin

z(mzmp)
(lout{1)(kin{1)P

x,y,x=[Cin(y) kx
outk

y
in

Nlout{1Nkin{1{

(mzmp)
loutkinP

x,y,x=[Cin(y) kx
outk

y
in

Nlout Nkin
,

ð22Þ

where the first two terms on the right-hand side account for the

changes due to the introduction of a new node, including the gains

when the new node is connected to a node with indegree (kin{1)
(outdegree (lout{1)) which is already connected to a node with

outdegree lout (indegree kin), and the losses when the new node is

connected to either end of a link that connects a node with

outdegree lout and another node with indegree kin. The third term

accounts for the gain in Nlout

1 due to the addition of the new node.

The remaining terms take into account the changes due to the

internal evolution process with the introduction of mzmp

directed links.

Asymptotically, Nlout

kin
?(2zmzmp)tPlout

kin
, Nkin

?tP(kin) and

Nlout
?tP(lout). Considering

P
kinNkin

~
P

j k
j
in~(2zmzmp)t

and
P

x,y,x=[Cin(y) kx
outk

y
in&

P
kx

out|
P

k
y
in~½(2zmzmp)t�2, Eq.

(22) gives a recursive relation

½2zmzmpz(1zmzmp)(kinzlout)�Plout
kin

~

(1zmzmp)½(kin{1)P
lout
kin{1z(lout{1)P

lout{1
kin

�

z
1

2zmzmp
(lout{1)P(lout{1)dkin,1

z
mzmp

(2zmzmp)2
½(lout{1)(kin{1)P(lout{1)P(kin{1)

{loutkinP(lout)P(kin)�:

ð23Þ

Solving Eq. (23) directly for P
lout
kin

is difficult, however, it is

observed that decomposing P
lout
kin

into

P
lout
kin

*loutP(lout)kinP(kin), ð24Þ

with P(lout) given by Eq. (16) and P(kin) given by Eq. (13) satisfies

Eq. (23) in the scaling regime, as one can readily show by

substituting Eq. (24) into Eq. (23) and taking the limits of lout??
and kin??. Eq. (24) implies that there is no degree correlation, a

feature that is supported by the empirical results in Figure 7 for

ESN over a wide range of degrees (also see Figures S16, S17, S18

of Appendix S1). It also follows from ki
in~ki

out and Eq. (24) that

P
lout
kin

~P
lout
kout

~P
lin
kin

~P
lin
kout

. Interpreting P
lout
kin

as a joint probabil-

ity, the lack of degree correlation as expressed in Eq. (24) implies

that the conditional probability

P(kinDlout)*kinP(kin), ð25Þ

which is independent of lout. For a node i with large ki
in~ki

out, the

average nearest neighbor function can be calculated as

knn
in (kout)~

X

k’in

k’inP(k’inDkout)*
X

k’in

k’2inP(k’in), ð26Þ

which is also independent of kout. This is consistent with the

behavior of knn
in (kout) in ESN, as shown in Figure 7.

The number of FB loops can be formally written as [61]

nFB~
C1

kin
C1

kout

2

X

k’in,k’’in

P(k’inDkout)P(k’’outDkin)P
k’’out
k’in

, ð27Þ

where P
k’’out
k’in

is the probability that a link connects a node with

outdegree k’’out to a node with indegree k’in. The lack of degree

correlations makes the summations independent of kin and kout,

and thus nFB scales as

nFB*kin
2: ð28Þ

Scale-Free Close-Knit Friendship Structure

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e50702



Similarly, the numbers of four closed triples nD at a node with

large indegree and outdegree follow the scaling behavior nD*k2
in

or nD*k2
out. Combining nD*k2

in with Eq. (13) (P(kin)*k
cin
in ), the

distributions of four closed triples have the same scaling behavior

as follows:

P(nD)*n
cD
D , ð29Þ

where the exponent cD can be readily found by using

P(nD)dnD~P(kin)dkin to be

cD~
3

2
z

1

2(1zmzmp)
: ð30Þ

The exponent cD is determined by the parameters m and p and it

falls into the range (1:5,2�.

Simulation Results
We also carried out numerical simulations to study the

structural properties of the model and compared results with data

of real online social networks. The activity m and reciprocation

probability p are two important parameters of the model. They

determine the reciprocity r~(1zmp)=(1zm) and mean indegree

SkT~2zmzmp of simulated networks. In order to compare

results with real online social networks, we take three parameters

from real data, namely the number of nodes N, the reciprocity r
and the mean indegree (outdegree) SkT, and determine the

parameter m and p in the model through

m~
SkT
1zr

{1;

p~
SkTr{r{1

SkT{r{1
: ð31Þ

Taking ESN as an example, we have SkT&6:7, r&0:25, and

N~75879. The model parameters are then fixed at m&4:34 and

p&0:08 according to Eq.(31). With the values of m and p, a

network of N~75879 nodes is simulated. For a non-integer value

of m, it is implemented in a probabilistic way. For ESN with

m~4:34, for example, the initiation of the fifth new directed link

through the internal evolution process is implemented with a

probability 0:34 after establishing four new directed links in every

time step. The structural properties of the simulated network are

analyzed for each of the quantities studied for the real data.

Results are shown in Figures 2–9 as red circles for comparison

(also see Figures S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12,

S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, S24 of

Appendix S1). The model basically reproduces the key properties

of ESN.

For the indegree and outdegree distributions (see Figure 2) and

the reciprocal degree distribution (see Figure 4), the simulation

results also show similar scaling law, with the exponents cin&1:95,

cout&1:96 and cr&2:1 determined by the maximum likelihood

estimation [54,55] (see Table S1 of Appendix S1 for more detail).

These values are slightly larger than the corresponding values of

the exponents in ESN. According to Eqs. (17), (21) and (31), these

exponents are equal and the theoretical value is

c~2z1=(SkT{1)&2:17. Note that the rate equation analysis

assumes an infinite system. The difference between the simulated

results and the theoretical value comes from the finite size of

simulated network, as well as the approximations made in getting

at the values of the exponent. The indegree and outdegree

distributions of simulated network are in reasonable agreement

with the empirical results of ESN. The model, however, gives a

reciprocal degree distribution smaller than the ESN empirical

results over a wide range of kr. This discrepancy implies that there

are some network growing mechanisms in ESN that are not

included in the model, e.g., different reciprocation probabilities for

different nodes [62]. This, together with a possibly very weak

degree correlation in Figure 7 that we ignored, may be the reason

for the simulation results in Figures 3 and 5 to be bigger than the

empirical values for large in/outdegrees, and for the small

differences in the tails in Figures 2 and 4 [63,64].

For the distributions of the four closed triples, the distributions

from simulations follow a power-law behavior with almost the

same exponent (see Figure 6), where cFB&1:47, cFFa
&1:46,

cFFb
&1:46 and cFFc

&1:46 as determined by the maximum

likelihood estimation. These values are slightly larger

than the exponents found in ESN. Theoretically,

cD~3=2z1=½2(SkT{1)�&1:58 according to Eqs. (30) and (31).

We note that the theoretical values of both c and cD depend only

on the mean indegree SkT, which in turn is determined by the two

model parameters m and p. Figure 10 shows the values of all the c-

exponents of the distributions for the four online social networks

and the corresponding simulated networks, which are determined

by the maximum likelihood estimation.

The two parameters m and p affect the reciprocal degree of

nodes kr through Eq.(20). Substituting Eq. (31) into Eq. (20), we

have kr*(2SkTr{r{1)kin=½(1zr)(SkT{1)�&0:3kin for ESN.

The reciprocal degree kr of a node and its kin are related by a

factor depending on the two global parameters SkT and r. This

linear relationship between kr and kin (kout) with a slope 0:3 is

observed in simulation results, as shown in Figure 5, but the ESN

data show a faster increase of kr with kin and kout. When the

network has a larger reciprocity, such as r&0:73 for Slashdot,

r&0:45 for Flicker, and r&0:65 for YouTube, a better agreement is

observed (see Figures S10, S11, S12 of Appendix S1). Despite

some small differences in the tail in Figures 8 and 9, which may be

caused by local proximity bias in link creation [5], simulation

results for the dependence of the number of closed triples with kin

and kout are basically in accordance with empirical results.

More comparison of results between the model and large-scale

online social networks are given in Appendix S1 (see Figures S1,

S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16,

S17, S18, S19, S20, S21, S22, S23, S24). The results further

support the notions that the two mechanisms incorporated in our

model provide a potential explanation of the local and mesoscale

structures in these online social networks.

Discussion

With the advancement in information technology, online social

systems become an increasingly important part of modern life. It

is, therefore, of great significance to study the structures and

dynamics of these systems. In this study, we focused on the local

scale, mesoscale and macroscale structural properties of online

social networks, especially the influence of properties on the local

scale and macroscale on the mesoscale structures. We analyzed the

data and extracted the local scale and macroscale structural

properties of four large-scale online social networks. It was found

that the indegree and outdegree distributions follow a similar

scaling law, which follows from the fact that kin&kout for most of

the nodes. It implies that there is a preferential attachment

mechanism in which the product ki
outk

j
in is important in the
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establishment of links during the evolution of online social

networks. In addition, the very large reciprocity r observed in

these networks suggests the existence of a reciprocation mecha-

nism in online social networks. The reciprocal degree distribution

also shows a similar exponent as that of the indegree distribution

due to the roughly linear relationship between the reciprocal

degree kr and the indegree kin of nodes (i.e., kr*kin), which in turn

implies a fixed probability of reciprocal links between connected

nodes. In the mesoscale, the close-knit friendship structures are

determined by both local scale (i.e., indegree and outdegree

kin&kout) and macroscale (i.e., mean in/outdegree SkT) structural

properties. For a node with large kin&kout, the numbers of the

four closed triples show the same scaling behavior: nFB*k2
in and

nFF*k2
in, as a result of the negligible degree correlations in these

networks. For all nodes, the distributions of these closed triples also

follow a similar scaling law. Despite the numbers of the three

feedforward loops are equal, their distributions look somewhat

different in detail.

To reproduce the empirical features, we proposed and studied a

simple directed network model incorporating an external recipro-

cation process and an internal evolution process. The two

parameters in the model are the activity m and the reciprocation

probability p. They can be inferred from the reciprocity r and

mean indegree SkT of real online social networks according to

Eq.(31), so as to ensure that the simulated network and the real

network have the same reciprocity and mean indegree. Analyti-

cally, we derived the structural properties in the local-scale and

mesoscale. The results show that the exponents characterizing the

distributions of indegree, outdegree, reciprocal degree and four

closed triples depend only on the mean indegree SkT, i.e.,

c~2z1=(SkT{1) and cD~3=2z1=½2(SkT{1)�. In addition,

the mean indegree SkT and the reciprocity r together determine

the ratio of the reciprocal degree to the directed in/outdegree, i.e.,

kr*(2SkTr{r{1)kin=½(SkT{1)(1zr)�. The expected indegree

and outdegree of nodes in the model grow as the same function of

the time that the nodes are introduced, with very old nodes having

very high indegrees and outdegrees. This phenomenon, coupled

with an essentially fixed rate of reciprocation, reproduces almost

all the properties of the online social networks studied here.

The mesoscale structural properties reported in our work help

us understand the interplay between structural properties on

different scales in online social networks. More specifically, the

mesoscale structures in these online social networks are deter-

mined by global parameters as well as by local distributions. This

provides a useful perspective of future studies in social network

analysis. Our work also provides a better understanding of the

evolution of online social networks, especially the emergence of

close-knit friendship structures with a scaling behavior in their

distributions. The two processes (reciprocation and preferential

attachment) provide a possible explanation of the mechanisms

underlying the local scale and mesoscale structural properties of

online social networks. The former reflects that users often

respond to a new incoming link by quickly establishing a reversed

link. The latter means that a well-known user with a large kin is

more likely to attract new connections and an active user with a

large kout is more likely to create new connections. Our model may

also be applied to other growing directed networks in which the

indegree and outdgree distributions show a similar scaling

behavior and the reciprocation mechanism is valid. However,

the model is not applicable to the symmetric online social networks

that lack the power-law degree distributions [1–3] (e.g., Facebook),

and to the WWW [33] and Wikipedia [56] as the indegree and

outdegree distributions in these systems carry different exponents

and the reciprocation mechanism is absent. Similarly, it does not

apply to the citation network as a paper can only cite published

papers, but not vice versa.

Although simulated results of our model basically reproduced

the structural properties of the online social networks at different

scales, the differences in the exponents characterizing the

distributions and in the tails of the distributions in real online

social networks (e.g., Figures 4, 5, 8, 9) imply that there exist other

factors, such as individual users of different reciprocation

probabilities and local proximity bias, that are ignored in the

model. These factors are good ingredients for future work. It is also

important to study the emergence of communities in online social

networks. The present work also forms the basis for the

understanding of the impact of mesoscale structural properties

on dynamical processes on online social networks, such as

information diffusion, opinions formation, and cooperation

evolution. An interesting problem for future work is to investigate

whether the model can be applied to offline real social networks.

Such a work would help reveal the difference between online and

offline social networks.

Supporting Information

Appendix SI Appendix to the manuscript.

(PDF)

Table S1 The exponents of various distributions ob-
tained by power-law fits of real online social networks
and the simulated network based on the model using the
maximum likelihood estimation. xmin is the lower bound of

the range for fitting a power-law distribution, is the corresponding

exponent and KS is the goodness-of-fit value based on the

Kolmogorov-Smirnov statistic.

(PDF)

Table S2 Pearson correlation coefficient. r(in; in) quanti-
fies the tendency of nodes with a high indegree to be
connected to another node with a high indegree. The

other quantities carry a similar interpretation.

(PDF)

Figure 10. Values of the c-exponents for various distributions.
Values of the c-exponents for the various distributions as determined by
the maximum likelihood estimation against 1=(SkT{1) for each of the
four large-scale online social networks and the corresponding simulated
networks based on the model. The lines are only guides to the eye.
doi:10.1371/journal.pone.0050702.g010
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Figure S1 Indegree (a) and outdegree (b) distributions
of the Slashdot social network (black squares) and
simulation results (red circles) based on the model.
The dashed lines in both panels have a slope 22.1 as the analytic

results in Eqs. (17) and (31) suggested. The simulated network is

generated by the model with the parameters N = 82168, m <5.14

and p <0.67 as determined by the mean degree Ækæ and reciprocity

of the Slashdot social network. Data points are averages over the

logarithmic bins of the indegree kin and outdegree kout, respectively.

(PDF)

Figure S2 Indegree (a) and outdegree (b) distributions
of the Flickr social network (black squares) and
simulation results (red circles) based on the model.
The dashed lines in both panels have a slope 22.08 as the analytic

results in Eqs. (17) and (31) suggested. The simulated network is

generated by the model with the parameters N = 100000, m

<8.07 and p <0.39 as determined by the mean degree Ækæ and

reciprocity of the Flickr social network. Data points are averages

over the logarithmic bins of the indegree kin and outdegree kout,

respectively.

(PDF)

Figure S3 Indegree (a) and outdegree (b) distributions
of the YouTube social network (black squares) and
simulation results (red circles) based on the model. The

dashed lines in both panels have a slope 22.3 as the analytic

results in Eqs. (17) and (31) suggested. The simulated network is

generated by the model with the parameters N = 100000, m

<4.34 and p <0.08 as determined by the mean degree Ækæ and

reciprocity of the YouTube social network. Data points are

averages over the logarithmic bins of the indegree kin and

outdegree kout, respectively.

(PDF)

Figure S4 Relationship between the indegree and the
outdegree of nodes in the Slashdot social network and
the model. Results of the Slashdot social network (black squares)

and simulation results (red circles) based on the model are shown.

The blue dash line represents the relation function kin = kout. Data

points are averages over the logarithmic bins of the indegree kin.

(PDF)

Figure S5 Relationship between the indegree and the
outdegree of nodes in the Flickr social network and the
model. Results of the Flickr social network (black squares) and

simulation results (red circles) based on the model are shown. The

blue dash line represents the relation function kin = kout. Data

points are averages over the logarithmic bins of the indegree kin.

(PDF)

Figure S6 Relationship between the indegree and the
outdegree of nodes in the YouTube social network and the
model. Results of the YouTube social network (black squares) and

simulation results (red circles) based on the model are shown. The

blue dash line represents the relation function kin = kout. Data points

are averages over the logarithmic bins of the indegree kin.

(PDF)

Figure S7 Reciprocal degree distributions of the Slash-
dot social network and the model. Results of the Slashdot

social network (black squares) and simulation results (red circles)

based on the model are shown. Analytic treatment (see Eqs. (17)

and (31)) suggests a scaling behavior with an exponent 22.1, as

shown by the dash line. Data points are averages over the

logarithmic bins of the 13 reciprocal degree kr.

(PDF)

Figure S8 Reciprocal degree distributions of the Flickr
social network and the model. Results of the Flickr social

network (black squares) and simulation results (red circles) based

on the model are shown. Analytic treatment (see Eqs. (17) and (31))

suggests a scaling behavior with an exponent 22.08, as shown by

the dash line. Data points are averages over the logarithmic bins of

the reciprocal degree kr.

(PDF)

Figure S9 Reciprocal degree distributions of the You-
Tube social network and the model. Results of the YouTube

social network (black squares) and simulation results (red circles)

based on the model are shown. Analytic treatment (see Eqs. (17)

and (31)) suggests a scaling behavior with an exponent 22.3, as

shown by the dash line. Data points are averages over the

logarithmic bins of the reciprocal degree kr.

(PDF)

Figure S10 Mean reciprocal degree of nodes with (a) the
same indegree and (b) the same outdegree in the
Slashdot social network and in the model. Results of the

Slashdot social network (black squares) and simulation results (red

circles) based on the model are shown in a log-log scale in the main

panels. Analytic treatment suggests that Ækræ is linearly dependent

on kin and kout, and the blue dash lines of slope 1 show its

dependence. The inset in each panel shows the results in a linear

scale and the dash line has a slope of 0.82, as given by Eqs. (20)

and (31). Data points are averages over the logarithmic bins of the

indegree kin and outdegree kout, respectively.

(PDF)

Figure S11 Mean reciprocal degree of nodes with (a) the
same indegree and (b) the same outdegree in the Flickr
social network and in the model. Results of the Flickr social

network (black squares) and simulation results (red circles) based

on the model are shown in a log-log scale in the main panels.

Analytic treatment suggests that Ækræ is linearly dependent on kin

and kout, and the blue dash lines of slope 1 show its dependence.

The inset in each panel shows the results in a linear scale and the

dash line has a slope of 0.59, as given by Eqs. (20) and (31). Data

points are averages over the logarithmic bins of the indegree kin

and outdegree kout, respectively.

(PDF)

Figure S12 Mean reciprocal degree of nodes with (a) the
same indegree and (b) the same outdegree in the
YouTube social network and in the model. Results of the

YouTube social network (black squares) and simulation results (red

circles) based on the model are shown in a log-log scale in the main

panels. Analytic treatment suggests that Ækræ is linearly dependent

on kin and kout, and the blue dash lines of slope 1 show its

dependence. The inset in each panel shows the results in a linear

scale and the dash line has a slope of 0.73, as given by Eqs. (20)

and (31). Data points are averages over the logarithmic bins of the

indegree kin and outdegree kout, respectively.

(PDF)

Figure S13 Distributions of four basic closed triples in
the slashdot social network and the model. Distributions of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops in the Slashdot social network (black squares) and in the

simulated network based on the model (red circles). Analytic

treatment (see Eqs. (30) and (31)) suggests a scaling behavior with

an exponent 21.55, as shown by the dash lines. Data points are

averages over the logarithmic bins of the nFB, nFFa
, nFFb

and nFFc
,

respectively.

(PDF)
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Figure S14 Distributions of four basic closed triples in
the Flickr social network and the model. Distributions of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops in the Flickr social network (black squares) and in the

simulated network based on the model (red circles). Analytic

treatment (see Eqs. (30) and (31)) suggests a scaling behavior with

an exponent 21.54, as shown by the dash lines. Data points are

averages over the logarithmic bins of the nFB, nFFa
, nFFb

and nFFc
,

respectively.

(PDF)

Figure S15 Distributions of four basic closed triples in
the YouTube social network and the model. Distributions

of closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops in the YouTube social network (black squares) and in the

simulated network based on the model (red circles). Analytic

treatment (see Eqs. (30) and (31)) suggests a scaling behavior with

an exponent 21.65, as shown by the dash lines. Data points are

averages over the logarithmic bins of the nFB, nFFa
, nFFb

and nFFc
,

respectively.

(PDF)

Figure S16 Degree correlations in the Slashdot social
network and the model. Results of degree correlations as

measured by four quantities corresponding to the average nea-

rest neighbor degree , knn
in (kin) . (squares), , knn

out(kin) . (circles),

, knn
out(kout) . (triangles), and , knn

in (kout) . (inverted triangles) for (a)

Slashdot social network and (b) simulated network based on the

model. Data points are averages over the logarithmic bins of the

indegree kin or outdegree kout.

(PDF)

Figure S17 Degree correlations in the Flickr social
network and the model. Results of degree correlations as

measured by four quantities corresponding to the average nea-

rest neighbor degree , knn
in (kin) . (squares), , knn

out(kin) . (circles),

, knn
out(kout) . (triangles), and , knn

in (kout) . (inverted triangles) for (a)

Flickr social network and (b) simulated network based on the

model. Data points are averages over the logarithmic bins of the

indegree kin or outdegree kout.

(PDF)

Figure S18 Degree correlations in the YouTube social
netowrk and the model. Results of degree correlations as

measured by four quantities corresponding to the average nea-

rest neighbor degree , knn
in (kin) . (squares), , knn

out(kin) . (circles),

, knn
out(kout) . (triangles), and , knn

in (kout) . (inverted triangles) for (a)

YouTube social network and (b) simulated network based on the

model. Data points are averages over the logarithmic bins of the

indegree kin or outdegree kout.

(PDF)

Figure S19 Mean number of the four closed triples for
nodes with the same indegree in the Slashdot social
network and the model. Results for the mean number of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops for nodes with the same indegree are shown for the Slashdot

social network (black squares) and simulated network (red circles)

based on the model. Analytic treatment (see Eq. (28)) gives a

scaling behavior with an exponent 2, as indicated by the dash line.

Data points are averages over the logarithmic bins of the indegree

kin.

(PDF)

Figure S20 Mean number of the four closed triples for
nodes with the same indegree in the Flickr social
network and the model. Results for the mean number of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops for nodes with the same indegree are shown for the Flickr

social network (black squares) and simulated network (red circles)

based on the model. Analytic treatment (see Eq. (28)) gives a

scaling behavior with an exponent 2, as indicated by the dash line.

Data points are averages over the logarithmic bins of the indegree

kin.

(PDF)

Figure S21 Mean number of the four closed triples for
nodes with the same indegree in the YouTube social
network and the model. Results for the mean number of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops for nodes with the same indegree are shown for the

YouTube social network (black squares) and simulated network

(red circles) based on the model. Analytic treatment (see Eq. (28))

gives a scaling behavior with an exponent 2, as indicated by the

dash line. Data points are averages over the logarithmic bins of the

indegree kin.

(PDF)

Figure S22 Mean number of the four closed triples for
nodes with the same outdegree in the Slashdot social
network and the model. Results for the mean number of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops for nodes with the same outdegree are shown for the

Slashdot social network (black squares) and simulated network (red

circles) based on the model. Analytic treatment (see Eq. (28)) gives

a scaling behavior with an exponent 2, as indicated by the dash

line. Data points are averages over the logarithmic bins of the

outdegree kout.

(PDF)

Figure S23 Mean number of the four closed triples for
nodes with the same outdegree in the Flickr social
network and the model. Results for the mean number of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops for nodes with the same outdegree are shown for the Flickr

social network (black squares) and simulated network (red circles)

based on the model. Analytic treatment (see Eq. (28)) gives a

scaling behavior with an exponent 2, as indicated by the dash line.

Data points are averages over the logarithmic bins of the

outdegree kout.

(PDF)

Figure S24 Mean number of the four closed triples for
nodes with the same outdegree in the YouTube social
network and the model. Results for the mean number of

closed triples corresponding to (a) FB, (b) FFa, (c) FFb, and (d) FFc

loops for nodes with the same outdegree are shown for the

YouTube social network (black squares) and simulated network

(red circles) based on the model. Analytic treatment (see Eq. (28))

gives a scaling behavior with an exponent 2, as indicated by the

dash line. Data points are averages over the logarithmic bins of the

outdegree kout.

(PDF)
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