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Abstract

Type I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and
mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has
developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most
relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the
assistance of the mitochondrial co-chaperonin. This is in contrast to the bacterial chaperonin, which is able to function with
the help of co-chaperonin from any source. The goal of our work was to determine structural elements that govern the
specificity between chaperonin and co-chaperonin pairs using mitochondrial Hsp60 as model system. We used a
mutagenesis approach to obtain human mitochondrial Hsp60 mutants that are able to function with the bacterial co-
chaperonin, GroES. We isolated two mutants, a single mutant (E321K) and a double mutant (R264K/E358K) that, together
with GroES, were able to rescue an E. coli strain, in which the endogenous chaperonin system was silenced. Although the
mutations are located in the apical domain of the chaperonin, where the interaction with co-chaperonin takes place, none
of the residues are located in positions that are directly responsible for co-chaperonin binding. Moreover, while both
mutants were able to function with GroES, they showed distinct functional and structural properties. Our results indicate
that the phenotype of the E321K mutant is caused mainly by a profound increase in the binding affinity to all co-
chaperonins, while the phenotype of R264K/E358K is caused by a slight increase in affinity toward co-chaperonins that is
accompanied by an alteration in the allosteric signal transmitted upon nucleotide binding. The latter changes lead to a
great increase in affinity for GroES, with only a minor increase in affinity toward the mammalian mitochondrial co-
chaperonin.
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Introduction

Mitochondrial Hsp60 belongs to the family of type I chaper-

onins, which play a key role in mediating the correct folding of

newly translated, translocated, as well as stress-denatured proteins,

in mitochondria, chloroplasts and eubacteria [1]. Early studies in

yeast identified the mitochondrial Hsp60 protein as essential for

the folding and assembly of proteins imported into mitochondria

[2,3] as well as preventing the denaturation of mitochondrial

proteins during heat-stress [4]. Due to the vital cellular functions of

this protein, it is essential for viability in yeast [5] and its

inactivation results in embryonic lethality in mice [6]. Moreover,

mutations in this protein were discovered to be the root cause of a

number of severe genetic diseases in humans [7–9]. In addition to

the primary essential mitochondrial protein-folding activity, results

of diverse studies have implicated the mammalian mitochondrial

chaperonins (mHsp60 and mHsp10) in a wide range of extra-

mitochondrial activities. A number of reports have suggested that

mHsp60 can stimulate human leukocytes and vascular endothelial

cells to produce pro-inflammatory cytokines, while mHsp10 was

shown to stimulate the production of anti-inflammatory cytokines

and suppress the production of pro-inflammatory cytokines [10–

12]. Recent studies shed light on the mechanism by which

mitochondrial Hsp60 is secreted from cells, enabling it to exert

such extracellular functions [13–15]. Furthermore, mHsp60 was

reported to have pro-apoptotic and anti-apoptotic roles, depend-

ing on its cellular localization [16,17]. Finally, mHsp60 and

mHsp10 were found to change their expression pattern in tumor

cells [18–20]. Unraveling the molecular basis for these disparate

functions of mHsp60 will benefit from a deeper understanding of

its structural and functional properties.

Most of the mechanistic data available to date for type I

chaperonin proteins comes from extensive studies carried out over

the past two decades on the bacterial chaperonins (reviewed in

[21–23]). A general picture has emerged in which the protein

folding function is executed by the concerted action of two

constituent oligomeric proteins, the chaperonin (known in bacteria
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as GroEL and in mammals as mHsp60) and the co-chaperonin

(known in bacteria as GroES and in mammals mHsp10). The

chaperonin oligomer is composed of fourteen identical subunits

that are arranged in a barrel-like structure that is made up of two

stacked heptameric rings, each enclosing a large central cavity

[24,25]. Each subunit is composed of an equatorial, an interme-

diate and an apical domain, the latter of which binds substrate

protein and co-chaperonin [26] (Fig. 1B, C). The co-chaperonin

oligomer, a heptameric molecule composed of 10 kDa subunits

[27,28], binds to the apical domain of the chaperonin in the

presence of ATP via a short, unstructured, yet highly conserved

region, known as the mobile loop [29,30]. Extensive studies

carried out with the bacterial system have led to a generally

accepted model for chaperonin function [23,31,32]. In the GroEL

‘‘down’’ conformation (also referred to as the closed form), a

denatured protein adheres to hydrophobic residues that lie on the

inner surface of one of the GroEL rings (the cis ring). Subsequent

binding of ATP to the cis ring induces a conformational change,

which enables the binding of GroES. The latter causes a further

twist and extension of the chaperonin structure resulting in an

enlarged cavity which exposes hydrophilic residues (also known as

the ‘‘up’’ or ‘‘open’’ conformation of GroEL). These structural

changes facilitate release of the substrate protein into the enclosed

cavity, where it can fold in a protected environment [22,23,33].

ATP hydrolysis in the cis ring, and subsequent binding of ATP

and GroES to the opposing (trans) ring, facilitate the release of

GroES, ADP and folded protein.

Although this general concept for chaperonin function seems to

be similar for all type I chaperonins, certain critical differences at

the mechanistic level are known to distinguish the mitochondrial

chaperonin from the chloroplast and bacterial homologs [34–36].

Despite the fact that mHsp60 is capable of complementing a

bacterial GroEL depletion strain, when co-expressed with

mHsp10 [37], it is incapable of functionally interacting with

[38], or even binding to [39], GroES, the bacterial co-chaperonin.

It was additionally shown that mHsp60 is not functional with co-

chaperonins of plant or phage origin [34,37]. In contrast, the E.

coli chaperonin can facilitate folding with co-chaperonins from

any source [40,41]. Interestingly, despite the fact that chloroplast

chaperonin b subunits are nearly identical in sequence, homolo-

gous oligomers composed of all one subtype exhibit differential

activity with various co-chaperonins [42]. It was suggested that the

specificity for mHsp10 stems from a generally weak affinity of

mHsp60 for co-chaperonins relative to GroEL, with a corre-

spondingly high binding affinity of mHsp10 to chaperonins

compared to other co-chaperonin homologs [34]. The elements

of mitochondrial chaperonins that define their specificity for co-

chaperonin binding seem to lie in the apical domain, as a chimeric

protein, in which the whole apical domain of GroEL was replaced

with that of mHsp60, showed the same preference for mHsp10 co-

chaperonin as the wild-type mHsp60 [35]. On the other side of the

equation, it was previously shown that three substitutions in the

GroES mobile loop, which make it similar to the loop of mHsp10,

are sufficient to allow the bacterial co-chaperonin to bind and

functionally interact with the mammalian mitochondrial chaper-

onin [34]. Although the above studies suggest that the specificity of

mitochondrial chaperonin for its co-chaperonin is most likely

governed by residues in mHsp60 that come into direct contact

with the mobile loop, it is possible that other factors may play a

role in determining the strict specificity of mHsp60 for its co-

chaperonin.

Based on the ability of the mHsp60-mHsp10 pair to comple-

ment a depletion of the bacterial chaperonins in E. coli, we

developed a screen which uses selective pressure to isolate mHsp60

mutants that are able to function when assisted by the bacterial co-

chaperonin, GroES. In this study, we report the isolation and

characterization of two mHsp60 mutants that are able to function

with GroES. Our results show that the interaction between

chaperonin and co-chaperonin is affected not only by amino acids

involved in direct contact of the two proteins, but also by structural

elements that are far from the binding site. Together, these factors

allow for a fine-tuning of chaperonin affinity for its cofactor and

determine the specificity of mHsp60 to mHsp10. The mechanistic

implications of this analysis on our understanding of the wild-type

mammalian mitochondrial chaperonin system are discussed.

Results

Isolation of mHsp60 Mutants Able to Functionally
Interact with GroES

Over a decade ago, the crystal structure of a GroEL-GroES

complex was solved at 3 Å resolution, allowing for visualization of

the contact sites between the two oligomers. Close inspection of

the structure revealed that three amino acids in the GroES mobile

loop (IVL) make contact with three residues L234, L237 and

V264, located in the H and I helixes of the GroEL apical domain

[43]. These residues in GroEL correspond to V232, L235 and

L262 in mHsp60, respectively (underlined amino acids in Fig. 1A).

In order to analyze the significance of this interaction for co-

chaperonin specificity of the human mHsp60, we mutated the two

corresponding amino acids that differed in mHsp60, making them

identical to those of GroEL. However, the purified mHsp60

mutant (V232L/L262V) exhibited wild-type protein-folding be-

havior and was still functional only with mHsp10 (not shown). This

result suggests that, although the mutated amino acids are seen to

interact with GroES in the crystal structure of the bacterial

complex, other important elements must be involved in directing

the specificity of the chaperonin-co-chaperonin interaction in the

mitochondrial system.

In order to elucidate the molecular basis for the exclusive

interaction of mHsp60 with its co-chaperonin, mHsp10, we

adopted an unbiased directed evolution approach to identifying

the amino acids responsible for this specificity. We developed an

in-vivo screen for isolating mHsp60 mutants that are able to

functionally interact with GroES, the bacterial co-chaperonin.

Selective pressure was exerted by providing GroES as the only

available co-chaperonin, thereby allowing only compatible

mutants to survive (a schematic depiction is presented in Fig.

S1). While we expected to find significant changes in the sequence

of mHsp60 that had become functional with GroES, the mutations

in the three colonies that we isolated were minor: One colony

harbored only a single mutation, E321K, and the other two

colonies contained identical changes which consisted of a double

mutation, R264K and E358K (Fig. 2A). Notably, while all the

mutated amino acids correspond to GroEL amino acids that are

located in the apical domain, none of them would be expected to

directly interact with the mobile loop of the co-chaperonin, based

on the crystal structure of the GroEL-GroES complex [43]. T266

of GroEL, corresponding to R264 of mHsp60, is the position

closest to the bound co-chaperonin, however, it emerges from the

side of helix I opposite to that which is seen to make contact with

the mobile loop (Fig. 1C). Interestingly, while bacteria expressing

the mHsp60 mutants together with GroES exhibited significantly

better growth than wild- type mHsp60 with mHsp10 (Fig. 2B &

C), the amino acid changes in both mutants were detrimental to

bacterial growth when expressed with mHsp10: in the case of the

double mutant R264K/E358K, bacterial growth was significantly

slower than wild-type, and in the case of the single mutant E321K,
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the bacteria were not viable (Fig. 2D). Thus, the isolated mHsp60

mutants exhibited altered specificity, with a preference for GroES

over mHsp10 in vivo.

Following identification of the two mutants from the screen, our

next goal was to elucidate the molecular mechanism by which

these mutations altered the specificity of mHsp60 for co-

chaperonin. To this end, the mutated proteins were expressed in

bacteria, purified as oligomers and were subjected to structural

and functional in vitro analysis.

E321K Forms a Highly Stable Complex with mHsp10
As a first step in characterizing the mutant proteins, we

examined the ability of E321K to refold HCl-denatured malate

dehydrogenase (MDH) in vitro together with mHsp10 and GroES.

As shown in Figure 2E, GroEL and wild-type mHsp60 behaved as

would be expected based on previous studies: the former was

active with both mHsp10 and GroES, while the latter was active

only with the mitochondrial co-chaperonin, mHsp10. As opposed

to the wild-type protein and in agreement with the in vivo results,

E321K was able to facilitate the refolding of MDH only with the

assistance of bacterial co-chaperonin, GroES, and not with its co-

chaperonin, mHsp10. Thus, the in vivo and the in vitro results

indicate that the single point mutation, E321K, switched the co-

chaperonin specificity of mHsp60, from being functional only with

mHsp10 to being functional only with GroES. One possible

explanation for this observation could be that the E321K mutation

specifically impairs the ability of mHsp60 to bind mHsp10. A

second possible explanation could be that the E321K mutation

causes a general increase in the binding affinity of mHsp60 to all

co-chaperonins, thereby enabling the mutant to bind GroES with

moderate affinity, but leading to a very tight and non-functional

binding to mHsp10, which was suggested to have a relatively high

affinity for chaperonins compared to other co-chaperonins [34].

Consequently, a very stable, non-functional complex between

E321K and mHsp10 is formed, as opposed to the dynamic and

functional complex that is formed between the wild-type mHsp60

and mHsp10.

We employed several methods in order to experimentally probe

the molecular basis for the in vivo behavior and in vitro refolding

results of the mutant chaperonins. In the first, MDH refolding

activity by E321K-GroES was tested following pre-incubation

with the competing mHsp10. Under these conditions, refolding

was profoundly inhibited by mHsp10 in a concentration-depen-

dent manner (Fig. 3). Maximal inhibition was obtained at a

mHsp10:E321K ratio of 1:1, supporting the suggestion that a very

stable complex is formed between E321K and mHsp10. We also

carried out a pull-down assay using a hexa-histidine-tagged

mHsp10, in order to examine whether a stable interaction could

be observed between mHsp10 and either E321K, wild-type

mHsp60 or GroEL. The GroEL control was detected in complex

with mHsp10 only in the presence of nucleotides (Fig. 4A),

consistent with previous reports [44–47]. For the mHsp60-

mHsp10 pair, previous studies showed that mammalian mHsp10

binds to mHsp60 only in the presence of ATP, but not ADP [35].

However, in our pull-down experiment, no complex between

mHsp60 and Hsp10 was observed under any conditions, even

when ATP was present (Fig. 4B). The latter finding confirms that

the complex of mHsp10 with mHsp60 is much more labile than

the complex it forms with GroEL. In contrast, a complex between

E321K and mHsp10 was observed under all condition tested, even

in the absence of nucleotide (Fig. 4C). This again supports the idea

that the complex formed between E321K and mHsp10 is less

dynamic than the complex formed between the wild-type proteins

and suggests that E321K adopts a conformation that enables it to

interact with co-chaperonin, even without nucleotide binding.

We hypothesized that if an increased affinity of the E321K

mutant to mHsp10 is responsible for the lack of activity, the

function might be rescued by replacing wild-type mHsp10 with a

‘‘low affinity’’ mutant. Leucine 27, located in the mobile loop of

GroES, is a highly conserved residue among co-chaperonins that

was shown to contact GroEL in the crystal structure [43].

Consistent with this, it was previously shown that the L27A mutant

of GroES cannot interact with GroEL [39]. In this study, we

created the corresponding mutation in mHsp10 (L33A). Neither

GroEL (Fig. 5A) nor wild-type mHsp60 (Fig. 5B) was able to refold

denatured MDH when incubated with either of the ‘‘low-affinity’’

co-chaperonin mutants. In contrast, the E321K mutant of

mHsp60 was active with the mHsp10 mutant, L33A, but not

with the GroES mutant, L27A (Fig. 5C). Thus, our MDH-

refolding results clearly show that the E321K mutation of mHsp60

can compensate for the decreased affinity of the L33A mHsp10

mutant to chaperonins.

The ability of co-chaperonins to inhibit ATP hydrolysis activity

of chaperonins is another measure of their interaction. It is well

known that upon binding of co-chaperonin, the ATPase activity of

the chaperonin is inhibited by ,50% [31,48]. In our system, the

ATPase activity of GroEL was inhibited by both GroES and

mHsp10 (by 67% and 53%, respectively) and that of mHsp60 was

inhibited, as expected, only by mHsp10 (by 49%) (Table 1). The

two low-affinity co-chaperonin mutants did not inhibit the ATPase

activity of GroEL or of wild-type mHsp60, which suggests that no

binding occurs between these pairs. In the case of the E321K

mutant, the only co-chaperonin that did not inhibit the ATPase

activity was the L27A GroES mutant, the same mutant which did

not assist in refolding. Notably, of all combinations examined, the

E321K-mHsp10 exhibited the highest inhibition of ATPase

activity (84%), again suggesting that a stronger binding takes

place between these two proteins (Table 1).

All the above-mentioned results support the hypothesis that the

E321K mutant was able to function with GroES due to a general

increase in binding affinity for co-chaperonins. In order to obtain

direct support for this hypothesis, we used surface plasmon

resonance (SPR) to evaluate the association equilibrium constant

(KA) in a direct manner (Fig. 6 and Table 2). As expected, no

binding was observed between wild-type mHsp60 and GroES,

while E321K showed significant binding to GroES. In support of

the increased-affinity hypothesis, a 6-fold increase in the apparent

KA value was measured for the association of mHsp10 with

E321K, compared to its association with wild-type mHsp60.

Notably, the tight binding between E321K and mHsp10 is also

reflected in the distinct dissociation pattern of this protein complex

Figure 1. Positions of mutations in the primary and tertiary structures of GroEL. (A) Alignment of the amino acid sequences of GroEL and
the mature mHsp60 protein. Protein sequence alignments were carried out by ClustalW. Amino acids discussed in this study are marked in boldface
type. The amino acids known to be in direct contact with GroES are underlined. The color code corresponding to domain boundaries is described
below. (B–C) 3D-structure models of GroEL subunit in the down (B) and up (C) conformations (Protein Data Bank entry 1AON) [43]. The amino acids
discussed in this study are labeled and presented as space-filling models. The corresponding amino acids in mHsp60 are indicated in brackets. The
ADP molecule is colored in purple. The three domains as defined by GroEL are color-coded on the GroEL sequence and structure: equatorial (blue),
intermediate (green) and apical (red). Helices H and I are colored in gray. The figure was produced using PyMOL software.
doi:10.1371/journal.pone.0050318.g001
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(Figure 6B). The bi-phasic dissociation pattern of E321K from

mHsp10 can be explained by the concurrence of two distinct

processes: monomerization of the unstable mHsp60 oligomers [49]

Figure 2. Identifying mHsp60 mutants that are functional with GroES. (A) Examination of the in vivo system at the indicated growth
conditions. (B) Ten-fold-serial dilutions of E. coli strain MGM100 harboring plasmid pOFX with the indicated mHsp60 variant and GroES, grown on
agar plates in the presence of glucose and IPTG. (C–D) Examination of the ability of mHsp60 mutants to facilitate the growth of MGM100 on agar
plates containing glucose and IPTG in combination with GroES (C) or mHsp10 (D). GroEL-GroES and mHsp60-mHsp10 combinations serve as positive
controls; the mHsp60-GroES combination serves as negative control. (E) Refolding of 0.33 mM HCl-denatured MDH by 10 mM of the indicated
chaperonin and 40 mM of mHsp10 (white columns) or GroES (black columns). MDH activity was measured at 340 nm following 120 min incubation at
30uC in the presence of 1 mM ATP. The activity following refolding is presented relative to that of native MDH (100%).
doi:10.1371/journal.pone.0050318.g002
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and slow dissociation of a very stable and non-functional complex

formed between E321K and mHsp10.

Structural Interpretation for the E321K Phenotype
The finding that E321K creates an inactive, very stable complex

with mHsp10, led us to seek the structural basis underlying this

observation. It was previously suggested that residue R322 of

GroEL creates a salt-bridge with E178 in the down conformation

of GroEL [24] (Fig. 1B), but not in the up, co-chaperonin bound

conformation [43,50] (Fig. 1C). It was proposed that mutations

abolishing the formation of this salt-bridge should strengthen the

interaction with co-chaperonins by allowing the molecule to reach

the up conformation more easily [51,52]. Although residues 322

and 178 are not well conserved among chaperonins, the coupling

of positively- and negatively-charged amino acids, potentially

forming this salt bridge, is highly conserved from bacterial to

mitochondrial chaperonins in corresponding positions (Fig. S3).

Indeed, the homologous amino acids to GroEL’s R322 and E178

are E321 and K176 in mHsp60, respectively.

In order to experimentally probe the hypothesis that the

breakdown of this salt bridge is responsible for the ‘‘high-affinity’’

phenotype of the E321K mutant, we mutated the putative salt-

bridge partner of E321 in mHsp60, namely K176. The K176E

mutation was tested as a single mutant, on the background of the

wild-type protein, and as a double mutation on the background of

the E321K mutation (Fig. 7). As would be expected, the K176E/

E321K double mutant, in which the salt-bridge between these

amino acids is predicted to be restored, was active only with

mHsp10, and not with GroES, similar to the wild-type mHsp60.

However, the K176E single mutant, which would be expected to

exhibit a high affinity phenotype, similar to the E321K mutant,

was also functional only with mHsp10, like the wild-type protein.

It is possible that in the K176E mutant, an alternative salt bridge is

formed between one of these negatively charged positions with

another, positively-charged amino acid, thereby restoring the wild-

type phenotype.

Properties of the Double Mutant R264K/E358K
The second clone of mHsp60 that was isolated in our screen

carries the mutations R264K and E358K, and was able to

complement GroEL in vivo, together with either GroES or

mHsp10. Surprisingly, although bacterial growth was observed

to be slower in the presence of mHsp10 compared to the growth in

the presence of GroES (Fig. 2C & D), the MDH refolding yields

in vitro, were actually higher with mHsp10 than with GroES

(Fig. 5D). The better in vitro functionality of the double mutant

with mHsp10 is emphasized by the fact that much higher GroES

concentrations are needed to reach maximum yield of refolded

MDH. While the double mutant together with mHsp10 reaches

maximum activity at a low co-chaperonin: chaperonin ratio of

0.5:1, maximal yield in the presence of GroES was achieved only

at a ratio of ,4:1.

In order to examine the contribution of each individual

mutation to the observed phenotype, we created two additional

constructs of mHsp60, one carrying the R264K mutation and the

second carrying the E358K mutation. The three mutants,

R264K/E358K, R264K and E358K, were similarly active with

mHsp10 in-vitro (Fig. 2E), despite the differences that are observed

when they are co-expressed with mHsp10 in-vivo (Fig. 2D). When

the single mutants E358K or R264K were co-expressed with

GroES, little, if any, bacterial growth was observed (Fig. 2C). In-

vitro, in the presence of GroES, the R264K mutant exhibited only

background refolding activity, like wild-type mHsp60, while the

E358K mutant exhibited approximately half of the activity

displayed by the double mutant (Fig. 2E). These in-vivo and in-

vitro results indicate that mutations R264K and E358K somehow

act in a synergistic manner to allow the double mutant to function

with GroES.

Figure 3. Inhibition of GroES-E321K refolding activity by mHsp10. A binary complex of E321K and HCl-denaturated MDH was pre-incubated
for 30 min in the presence of increasing concentrations (from 0 to 20 mM) of mHsp10 and 2 mM ATP before adding 20 mM GroES. MDH activity was
measured 1 hour following the addition of GroES. % inhibition = 100*[(Ao–Ai)/Ao]. Ao represents the activity level in the absence of mHsp10, and Ai

represents the activity level at each mHsp10 concentration.
doi:10.1371/journal.pone.0050318.g003
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The R264K/E358K Mutant Exhibits Differential Increase in
its Affinity for Co-Chaperonins

Does the double mutant R264K/E358K operate, as in the case

of the single mutant E321K, mainly by a mechanism of global

increased affinity, or via a distinct mechanism? The ability to

functionally interact with mHsp10 in-vivo and in-vitro (Fig. 2D & E),

together with the higher concentrations of GroES needed for

maximal refolding activity in-vitro (Fig. 5D), suggest that the double

mutant has lower affinity for co-chaperonin compared to the

E321K mutant. As a first step in analyzing the mechanism for

activity of the double mutant with GroES, we tested its ability to

function with the low-affinity mHsp10 mutant, L33A. We found

that, although the mHsp10 mutant L33A was able to bind to the

mHsp60 double mutant, based on its ability to inhibit the ATPase

activity (Table 1), this interaction did not lead to a functional

complex (Fig. 5). Thus, the L33A mutant binds the double mutant

but is incapable of facilitating MDH-refolding activity. These

results are consistent with previous studies showing that not all

interactions between chaperonin and co-chaperonin lead to

productive folding [39,53].

Finally, binding of the double mutant R264K/E358K to co-

chaperonins was evaluated using surface plasmon resonance

(SPR). Consistent with the in vivo data (Fig. 2C–D) and the

functional in vitro data (Figs. 2E and 5D), the double mutant

demonstrated binding to both GroES and mHsp10. Quantita-

tively, the double mutant exhibited only a 1.5-fold increase in the

apparent KA value to its mitochondrial partner co-chaperonin,

compared to the wild-type protein (Table 2). We hypothesize that

such a small increase in the affinity between the double mutant

and the co-chaperonin might not be sufficient by itself to explain

the gain of function between mHsp60 and GroES.

Effect of ADP on Protein Refolding by mHsp60 Mutants
It is well known that ADP acts as a strong inhibitor of both ATP

hydrolysis and protein folding activity of GroEL, by competing

with ATP for nucleotide binding sites [54,55]. Consistent with this,

when a ten-fold excess of ADP over ATP was included in the

reaction mixture, the yield of MDH refolding activity of GroEL

with either mHsp10 or GroES was inhibited by ,75% (Fig. 8A).

In contrast, in the case of wild-type mHsp60, no inhibition of

MDH refolding activity was observed in the presence of excess

ADP over ATP (Fig. 8B), even though it was previously shown that

a 5-fold excess ADP over ATP inhibits the ATPase activity by

,50% [36], indicating that ADP does bind to mHsp60.

Since the effect of ADP is related to the allosteric behavior of

chaperonins [55], we sought to determine whether ADP affects

protein folding activity of the two mHsp60 mutants. As shown in

Fig. 8D, ADP was able to significantly inhibit the yield of refolded

MDH by the double mutant, when assisted by GroES, but not

when assisted by mHsp10. Notably, the yield of the refolded MDH

by E321K-GroES pair was not inhibited by ADP (Fig. 8C). For

those cases, in which ADP did not affect the refolding yields, we

examined whether a more modest effect could be detected on

initial refolding rates. Indeed, excess ADP over ATP decreased the

initial refolding rates by the double mutant-mHsp10 (Fig. 8G) and

E321K-GroES (Fig. 8F) pairs. However, no inhibition by ADP

was detected at any level for the wild-type mHsp60-mHsp10 pair

(Fig. 8E). These results suggest that the isolated mutants exhibit

some alterations in the nucleotide binding properties and/or in the

transmission of allosteric signals, in such a manner that ADP

becomes an inhibitor of their function under our experimental

conditions.

Discussion

Chaperonin proteins, mHsp60 and mHsp10, are key players in

the homeostasis of mitochondria since they mediate the folding of

proteins in the matrix, an environment containing only a limited

number of chaperones (in the human mitochondria there are only

one Hsp60, one Hsp70 and no ClpB homologues) [56]. In

Figure 4. A stable complex is formed between the E321K
mutant and mHsp10. Interaction between mHsp10 and different
chaperonins was measured using a pulldown assay. 50 mM of His-
tagged mHsp10 together with 50 mM of GroEL (A), mHsp60 (B), or
E321K mutant (C) were incubated with nickel beads in the absence of
nucleotides, or in the presence of 4 mM ATP or 4 mM ADP. Equivalent
aliquots of 2 ml from the total sample (T), unbound fraction (U), fourth
wash (W), and bound fraction (B) were analyzed by SDS-PAGE and
stained with Coomassie blue. The intensities of the bands were
quantified by densitometry (ImageMaster 1D Prime program). The
bound ratio listed on the bottom of each gel represents the ratio
between the intensities of the chaperonin and co-chaperonin bands in
the bound fraction.
doi:10.1371/journal.pone.0050318.g004
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addition to their chaperonin function, it is well documented that

mHsp60 and mHsp10 affect processes that are not related directly

to protein folding, such as apoptosis [16,17] and inflammation

[10–12]. One may assume that the diverse repertoire of functions

affected by the mitochondrial chaperonin system will be reflected

in significant structural differences when compared to the bacterial

chaperonin and co-chaperonin homologs. For example, it could be

that the monomeric form, not the tetradecameric form, is

functional outside mitochondria or cells. In such a case the

cooperation with Hsp10 will not be required. The specificity that

mHsp60 has developed for the mitochondrial co-chaperonin could

be explained by such structural drift in these molecules. We used a

directed evolution approach to elucidate the structural basis for

chaperonin-co-chaperonin specificity in the mitochondrial system

and isolated two mHsp60 mutants that were able to function with

GroES, a single mutant E321K and a double mutant R264K/

E358K. The fact that amino acids distant to the contact site have

such a dramatic effect on activity reflects the importance of

dynamic transitions for function of the system. Subsequent

experiments were carried in order to determine the molecular

basis for the gain of GroES-dependent chaperone function in these

two mHsp60 mutants.

The E321K Mutant
Both the in vivo and the in vitro refolding results showed that the

E321K mutant switched its co-chaperonin functional specificity.

Figure 5. Refolding activity in the presence of increasing concentrations of wild-type and low-affinity co-chaperonins. Refolding of
0.33 mM HCl-denatured MDH by 10 mM of chaperonin GroEL (A), wild-type mHsp60 (B), E321K mHsp60 (C), R264K/E358K mHsp60 (D), in the presence
of increasing concentrations of mHsp10 (white triangles), GroES (black triangles) and the low-affinity mutants: mHsp10_L33A (white diamonds) and
GroES_L27A (black diamonds). MDH activity was measured at 340 nm following 120 min incubation at 30uC in the presence of 1 mM ATP. The 100%
reference was determined as the activity of a sample containing the same amount of native MDH.
doi:10.1371/journal.pone.0050318.g005

Table 1. Inhibition of chaperonin ATPase activity by various
co-chaperonins.

ATPase inhibition (Refolding activity)

GroEL mHsp60 E321K R264K/E358K

mHsp10 53% (+) 49% (+) 84% (2) 48% (+)

GroES 67% (+) 0% (2) 30% (+) 47% (+)

mHsp10_L33A 0% (2) 0% (2) 26% (+) 40% (2)

GroES_L27A 0% (2) 0% (2) 0% (2) 0% (2)

Steady-state ATPase activity was measured for each chaperonin. The T.O.N
values (1/min) were 3.2760.32, 0.8360.14, 0.9160.1 and 0.7960.08 for GroEL,
mHsp60, E321K and R264K/E358K, respectively. The percentage of ATPase
inhibition by each co-chaperonin is indicated. The experiment was carried out
using a 2:1 molar ratio of co-chaperonin:chaperonin. Plus (+) and minus (2)
indicate the ability and inability, respectively, of each chaperonin-co-
chaperonin pair to mediate the refolding of HCl-denaturated MDH (as depicted
in Fig. 5).
doi:10.1371/journal.pone.0050318.t001

Mitochondrial Hsp60 Specificity for Co-Chaperonin

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e50318



In contrast to the wild-type mHsp60, that could function only with

its natural co-chaperonin partner, mHsp10, the E321K mutant

could function only with the assistance of the bacterial co-

chaperonin, GroES. Pull-down, folding, ATPase and SPR

experiments all suggest that the substitution of glutamate by lysine

in E321K caused a significant increase in the affinity of the

chaperonin protein to all co-chaperonins. This global increase in

affinity enabled the mutant mHsp60 to functionally interact with

the low-affinity co-chaperonin, GroES, and with the low affinity

mHsp10 mutant, L33A. However, this same increase in affinity

resulted in the formation of an inactive, very stable complex

between mHsp10 and E321K, which in contrast to other

chaperonin-co-chaperonin complexes, did not require nucleotide

for its formation (Fig. 4). The results with E321K support a

previous proposition that increasing the affinity of mHsp60 for co-

chaperonin will enable the protein to function with GroES [52].

Our results are also consistent with previous studies which

demonstrated that GroEL mutants that acquire the ability to

function with a GroES temperature sensitive mutant (G24D) are

impaired in their ability to function with wild-type GroES [52].

Structural studies have shown that GroEL exists in two major

conformations and that transition between the two is facilitated via

nucleotide binding and release [24,43,57]. In the absence of

nucleotide, GroEL exists in the down conformation, which does

not allow for co-chaperonin binding. In this conformation, R322

in the apical domain of GroEL, which corresponds to E321 of

mHsp60, forms a salt bridge with E178 in the intermediate

domain. Upon nucleotide binding this salt bridge is disrupted,

allowing the GroEL molecule to bind co-chaperonin and acquire

an up conformation. In GroEL, mutations abolishing the

formation of the salt bridge in either position, E178 or R322,

were found to be suppressors for low-affinity co-chaperonin and

chaperonin, respectively [51,52]. It was suggested that elimination

of this salt bridge can facilitate a shift toward the up conformation,

Figure 6. Chaperonin-co-chaperonin interactions measured by SPR. Association and dissociation patterns of 10 mM of the indicated
chaperonin to immobilized (A) GroES (, 600 Relative Units-RU) or (B) mHsp10 (, 800 RU) in the presence of 2 mM ATP.
doi:10.1371/journal.pone.0050318.g006

Table 2. SPR analysis.

Association equilibrium constant (KA) ratio1

mHsp60 R264K/E358K E321K

mHsp10 160.19 1.5360.22 5.9760.60

GroES ND2 0.6260.12 1.4360.31

1Ratios of association equilibrium constant represent the apparent KA measured
between each pair relative to the apparent KA measured between mHsp60 and
mHsp10 (apparent KD of 7.4 mM). The apparent values of KA, the association
constant (M21), were determined using equilibrium analysis [65,66]. Values
represent average 6 SEM of at least three independent experiments.
2ND, no binding detected.
doi:10.1371/journal.pone.0050318.t002

Figure 7. The effect of the K176E mutation on the function of
mHsp60 with co-chaperonins. Refolding of 0.33 mM HCl-denatured
MDH by 10 mM of the indicated chaperonin and 20 mM of mHsp10
(white columns) or GroES (black columns). MDH activity was measured
at 340 nm following 60 min incubation at 30 uC in the presence of
1 mM ATP. The activity following refolding is presented relative to that
of native MDH (100%).
doi:10.1371/journal.pone.0050318.g007
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Figure 8. The inhibitory effect of ADP on MDH refolding activity by chaperonins. (A–D) Refolding of 0.33 mM HCl-denatured MDH by
10 mM of the indicated chaperonin and 40 mM of mHsp10 (white columns) or GroES (black columns). MDH activity was measured at 340 nm following
a 60 min incubation at 30uC in the absence of nucleotides or in the presence of 10 mM ADP, 1 mM ATP or 1 mM ATP+10 mM ADP as indicated. The
activity following refolding is presented relative to that of native MDH (100%). (E–G) Time-dependent refolding activity of wild-type mHsp60 (E),
E321K mutant (F) and R264K/E358K mutant (G) together with mHsp10 (white symbols) or GroES (black symbols) in the presence of 1 mM ATP
(triangles) or 1 mM ATP+10 mM ADP (squares). The relative activity is compared to the activity measured by each chaperonin pair after 30 min in the
presence of ATP (100%).
doi:10.1371/journal.pone.0050318.g008
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which leads to enhanced interaction with the co-chaperonin.

Although identity of residues E178 and R322 is not well conserved

among chaperonins, the coupling between a positively- and a

negatively- charged amino acids, which allows for formation of the

salt bridge between the homologous positions, is highly conserved

(Fig. S3). Indeed, restoring the salt bridge in mHsp60 by creating a

double mutant E321K/K176E resulted in a wild-type phenotype

(Fig. 7). Similarly, in mHsp60, disruption of this salt bridge in the

E321K mutant enables mHsp60 to interact with low-affinity co-

chaperonins, presumably by favoring the up conformation. This

mutant forms a very stable inactive complex with mHsp10, for

which dissociation of the complex is much slower and functionally

irrelevant. The ability of the E321K mutant to bind mHsp10 even

in the absence of nucleotides supports the suggestion that the

mutant can achieve the up conformation even in the absence of

ATP binding.

The R264K/E358K Double Mutant
The second mutant that was functional with GroES harbored a

double mutation. Similar to E321K, the double mutant R264K/

E358K was active with GroES, both in vivo and in vitro. Never-

theless, this mutant was different since it was also active with

mHsp10. Will all mutations that enable mHsp60 to function with

GroES work via a mechanism of improved affinity? In contrast to

the E321K mutant, the double mutant was not active with the low

affinity L33A mHsp10 mutant, indicating a mechanism that does

not involve global improvement of affinity for all co-chaperonins

(Fig. 5). Moreover, direct binding measurements show that the

increase in association equilibrium constant between mHsp10 and

R264K/E358K (relative to wild-type mHsp60) was only about

1.5-fold. In vivo and in vitro examination of the two corresponding

single mutants, R264K and E358K, showed that each functioned

normally with mHsp10, but exhibited little, if any, activity with

GroES. (Fig. 2B–E). These results suggest that positions 264 and

358 function synergistically to allow for the gain of GroES-

dependent chaperone function.

What is the structural basis of the R264K/E358K phenotype?

In the bacterial homologue, mutations in D359, which correspond

to E358 in mHsp60, were proposed to interfere with the inter-

subunit interaction of Y360 with the hydrophobic cluster A383-

L183-F281 in the adjacent subunit, thereby destabilizing the down

conformation [51] (Fig. S4). In a similar way, the E358K mutation

in mHsp60 may interfere with the putative inter-subunit

interaction between the conserved neighboring tyrosine and a

similar hydrophobic cluster that exists in the adjacent mHsp60

subunit. As a result of this disruption, the up conformation would

be indirectly favored. Thus, in this case, a modest increase in

affinity allowed the double mutant to interact with both mHsp10

and GroES.

Furthermore, several studies pointed to D359 as a key player in

allosteric transitions in GroEL [58–60]. In simulations of allosteric

transition dynamics in GroEL subunits it was shown that the

transition of GroEL to its GroES-bound conformation, is

accompanied by the formation of a salt bridge between D359 of

the apical domain and K80 of the equatorial domain [58,60]

(Fig. 1C). A sequence alignment shows that the homologous

position to D359 of mHsp60, E358, is similarly conserved as a

negatively charged residue (Fig. S5). However, the homologous

mHsp60 amino acid, which corresponds to K80 of GroEL, is not

fully conserved- it is K78 in some organisms, but in others it is an

uncharged residue, mainly asparagine, as in humans (Fig. S5). We

suggest that a salt bridge, corresponding to D359-K80, does not

form in wild-type mHsp60. However, the mutation E358K in

mHsp60 might enable the formation of a similar, new salt bridge

between position 358 and positions E81 or E82 (Fig. S5). It is

tempting to speculate that such a change may alter the allosteric

signal transmitted following ATP binding and stabilize a

conformation that enables interaction with GroES. Such a

scenario could explain the ability of the single mutant E358 to

functionally interact with GroES, albeit inefficiently (Fig. 2E). In

order to examine this suggestion, we mutated positions 81 and 82

in mHsp60 to lysine, potentially enabling them to form a salt

bridge with E358, and examined whether this E81K/E82K/

R264K mutant displays the R264K/E358K phenotype. The triple

mutant exhibited modest activity with GroES, lending support to

this hypothesis. Nevertheless, the results were inconclusive because

of the high background activity levels, which most likely resulted

from greater oligomeric instability of this mutant (not shown).

The double mutant contains an additional mutation, which

seems to function synergistically with E358. What is the

significance of position 264 in mHsp60 for co-chaperonin binding?

GroEL’s T266, which corresponds to R264 in mHsp60, is located

in Helix I which was shown to participate in the interaction

between chaperonin and co-chaperonin [43]. Moreover, amino

acids adjacent to this site were shown experimentally to affect co-

chaperonin binding in GroEL. For example, V264 of GroEL was

shown to directly contact the GroES mobile loop in the GroEL-

GroES complex crystal structure [43,57]. The N265A mutation in

GroEL was found to block GroES binding, although substrate

binding in this mutant remained unimpaired (‘‘trap’’ GroEL) [61].

Lastly, in a mutation correlation analysis, M267 of GroEL was

shown to be related to L27 from the IVL tripeptide of the GroES

mobile loop [62]. It is therefore reasonable to assume that the

R264K mutation in mHsp60 locally modifies the Helix I

environment, thereby improving the interaction with the co-

chaperonin mobile loop. This local effect is not manifested without

prior conformational changes that are induced by the E358K

mutation, thereby explaining the synergistic effect of E358K and

R264K.

ADP Inhibition and Implications for the Functional Cycle
of mHsp60

During the reaction cycle of the bacterial chaperonin system,

following hydrolysis of ATP in the cis ring of the GroEL-GroES

complex, ATP binding at the trans ring facilitates the release of

GroES, ADP and substrate protein from the cis-ring [63,64]. Since

ADP can bind concomitantly to both rings of GroEL, when it is

present alone or in excess over ATP, the complex between GroEL

and GroES is formed, but GroES is not released from GroEL and

the reaction cycle is arrested. ADP bound to the trans ring is

incapable of transmitting the allosteric signal to the cis ring or of

inducing the release of GroES and thus acts as an inhibitor of the

folding reaction cycle [31,55] (Fig. 8A).

A different model was proposed for the reaction cycle of the

mitochondrial chaperonin system. Based upon the observation

that no binding occurs between mHsp60 and mHsp10 in the

presence of ADP, it was suggested that following ATP hydrolysis,

when ADP occupies the cis ring, the complex between mHsp60

and mHsp10 dissociates spontaneously, without the requirement

for an allosteric signal induced by ATP-binding to the trans ring

[35]. How is ADP discharged from mHsp60 to allow cycling of the

chaperonin? One possibility would be that ADP does not bind

mHsp60 at all, and is instantly released following ATP hydrolysis

and dissociation of mHsp10. However, ,50% inhibition of the

ATPase activity of the wild-type protein was observed when ADP

was present in a 5-fold excess over ATP [36] indicating that ADP

indeed binds to mHsp60. Another explanation can be extrapolat-

ed from our observation that ADP does not inhibit protein folding
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activity by wild-type mHsp60 even when it is present in a 10- fold

excess over ATP (Fig. 8B). We suggest that ADP cannot occupy

both rings of mHsp60 concomitantly. As a result, one of the two

rings is continuously available for ATP binding, and therefore, also

for mHsp10 binding. ATP binding to the unoccupied trans ring

forces the release of newly-formed ADP from the cis ring, thereby

recycling the chaperonin complex.

In contrast to wild-type mHsp60, we observed ADP-mediated

inhibition of the protein folding activity of the two isolated

mHsp60 mutants suggesting that some change has taken place

either in their nucleotide binding properties or in the allosteric

signal transmitted by the bound nucleotide that enables simulta-

neous binding of ADP to both rings. As these mutants exhibit

altered co-chaperonin binding properties and possible stabilization

of the up conformation, it is possible that the release of co-

chaperonin from chaperonin after ATP hydrolysis is no longer

spontaneous. Rather, it has now become dependent upon the

allosteric signal transmitted by the binding of ATP to the trans ring

and, therefore, competitive binding of ADP for the ATP sites

becomes inhibitory as in the bacterial system. This suggestion is

supported, at least in the case of the double mutant, by a previous

prediction that the transition from up to down conformation will

be most sensitive to mutations in residue D359 in GroEL [60],

which corresponds to E358 in mHsp60.

Another observation which is worthy of discussion is the fact

that ADP had a strong inhibitory effect on the folding activity of

the double mutant only when refolding was carried out with

GroES, whereas folding by the double mutant-mHsp10 pair was

only mildly inhibited by ADP (Fig. 8D & G). A possible

explanation for this could be that, following their binding,

mHsp10 and GroES exert distinct conformational changes on

the chaperonin and stabilize the ADP-bound state in the trans ring

to different degrees.

Conclusions
In vitro analysis of mHsp60 mutants that are functional with

GroES lent insight into the molecular basis for the exclusive

interaction between mHsp60 and mHsp10. Due to the dynamic

character of the chaperonin machinery, much more than simple

one-on-one amino acid interactions is involved in binding between

chaperonin and co-chaperonin. We found that binding of co-

chaperonin to chaperonin is influenced by two distinct factors.

The first is the accessibility of the up conformation, which affects

the general affinity of mHsp60 for co-chaperonins and the second

is the nature of the allosteric signals that are transmitted upon

nucleotide binding. A delicate balance between these two forces

has evolved in the mitochondrial system in order to ensure an

optimal interaction between chaperonin and co-chaperonin as well

as to allow for additional extra-mitochondrial functions of these

molecules.

Materials and Methods

Cloning of GroEL and GroES into a pOFX Plasmid
Using the IPTG-inducible pOFX plasmid expressing wild-type

human mHsp10 and mHsp60 [8], we engineered three additional

constructs containing various combinations of co-chaperonin and

chaperonin from the human and bacterial chaperonin systems

(Fig. S1). In order to clone GroEL into a pOFX plasmid, its ORF

was amplified by standard PCR with primers 5 & 6 (Table S1)

digested by restriction enzymes AflII and SpeI and ligated into

pOFX which was digested with the same enzymes. The cloning of

GroES into pOFX was carried out in two steps, due to cloning

constraints. First, a standard PCR was carried out on the GroES

ORF with primers 3 & 4 (Table S1). The PCR products were then

digested with Eco105I and Eco81I and ligated into pOFX. This

step resulted in GroES with an extension of 3 amino acids at its C-

terminus. This extension was removed using site-directed PCR

with primers 19 & 20 (Table S1).

In vivo Complementation Experiment
IPTG-inducible pOFX plasmid variants were electroporated

into E. coli strain MGM100 [67,68]. The cells were grown on

2YT-agar plates containing 25 mg/ml Kanamycin and 50 mg/ml

Spectinomycin in the presence of either: 0.2% arabinose, 0.5%

glucose or 0.5% glucose and 1 mM IPTG.

Mutagenesis and in vivo Screening for mHsp60 Mutants
Able to Function with GroES

Random mutagenesis of mHsp60 was carried out using error-

prone PCR. cDNA of mHsp60 was amplified by PCR in two steps

with primers 1 & 2 (Table S1). In the first step, 4 cycles of PCR

were carried out in 4 different test tubes. In each tube, the

concentration of one of the dNTPs was lower (1.25 mM),

compared to the concentration of the other dNTPs (0.25 mM

each). In the second step, the 4 reactions were pooled together and

additional 25 cycles of PCR were performed. The purified PCR

products were ligated into the pOFX plasmid, already containing

the GroES sequence, between the AFlII and SacI restriction sites

and transformed into E. coli XL1-blue. Following purification from

XL1-blue, the pOFX plasmids were transformed by electropora-

tion into MGM100 competent cells. Finally, the ability of the

mutant-containing bacteria to grow on 2YT-agar plates (25 mg/ml

Kanamycin, 50 mg/ml Spectinomycin) was examined in the

presence of 0.5% glucose and 1 mM IPTG. Colonies that were

able to grow under these conditions were collected and the

mHsp60 ORF was sequenced.

Site-directed Mutagenesis
Site-directed mutants were created according to the protocol of

Stratagene, using primers 7–18 (Table S1).

Protein Purification
GroEL and GroES, wild-type and mutant proteins, were

purified as previously described [69]. mHsp10(His)6 and mHsp60,

wild-type and mutant proteins, were purified as described [70]. A

Coomassie-stained gel of the purified proteins that were used in

this study is shown in Fig. S2.

Pull-down Assay
His-tagged mHsp10 (50 mM), together with 50 mM of wild-type

mHsp60, E321K or GroEL were incubated for 5 min in 200 ml

binding buffer composed of 50 mM Tris-HCl pH 7.7, 5%

glycerol, 150 mM NaCl, 5 mM MgCl2, 100 mM KCl, 30 mM

imidazole and nucleotides as indicated. After a 30 min incubation

with 40 ml Ni-NTA beads (GE Healthcare) on an end-to-end

shaker at room temperature, samples were centrifuged and washed

four times with 200 ml binding buffer. The pellets, containing Ni-

beads and bound proteins, were then resuspended with 200 ml

sample buffer and boiled for 10 min. Equivalent aliquots of 2 ml

from the total sample, the unbound fraction, fourth wash and

bound (pellet) fraction were analyzed by SDS-PAGE and stained

with Coomassie Brilliant Blue R-250.

Steady-state ATPase Activity
The steady-state ATP hydrolysis was measured at 340 nm by

coupling the formation of ADP to the oxidation of NADH by
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pyruvate kinase and lactate dehydrogenase, as previously de-

scribed [71]. The reactions were carried out with 5 mM of GroEL

or 10 mM of mHsp60 variants in the presence of 50 mM Na-

HEPES pH 7.5, 10 mM MgCl2, 50 mM KCl, 0.2 mM phos-

phoenol pyruvate, 0.3 mM NADH, 14 units of pyruvate kinase, 7

units of lactate dehydrogenase and 2 mM ATP.

In vitro Refolding Activity
Refolding of HCl-denatured MDH was carried out as

previously described [39].

Surface Plasmon Resonance (SPR)
The experiments were performed with a ProteOn XPR36

instrument (Bio-Rad) as previously described [65]. 0.7–3.5 mg of

either GroES or mHsp10 were immobilized through amine-

coupling to the GLC sensor chip (Bio-Rad). For the association

phase, samples containing six concentrations of each mHsp60

variant in injection buffer were simultaneously injected over the

chip. For the dissociation phase, the injection buffer was injected

over the chip. The injection buffer contain 20 mM Na-HEPES

pH 7.5, 100 mM KCl, 10 mM MgCl2, 0.005% Tween and 2 mM

ATP. Apparent KA values were calculated using the ProteOn

Manager program (Bio-Rad).

General Methods
The protein concentration was determined by using Sigma’s

Bicinchoninic acid protein assay with BSA as a standard (Sigma-

Aldrich). Protein concentrations refer to monomer concentrations.

Supporting Information

Figure S1 Schematic representation of the screening
procedure. In this screen, an MGM100 strain was used, in

which GroEL and GroES expression is under control of the

inducible arabinose promoter PBAD. (A) Co-expression of mHsp60

and GroES does not allow for growth of these bacteria in the

absence of arabinose. Upon co-expression of GroEL and GroES

or mHsp60 and mHsp10 from an IPTG-inducible plasmid, this

strain is able to grow in the presence of glucose and IPTG. (B) A

library of mHsp60 mutants cloned into pOFX co-expressing

GroES was transformed into MGM100. Colonies that were able

to grow in the presence of glucose and IPTG were isolated and the

mHsp60 open reading frame sequenced.

(DOC)

Figure S2 SDS-PAGE of the various purified proteins
used in this study. 10 mg of each protein was separated by 14%

SDS-PAGE and stained with Coomassie blue.

(DOC)

Figure S3 The highly conserved salt bridge between
positions 321/322 and 176/178. A multiple sequence

alignment of various mitochondrial and bacterial chaperonin

sequences was produced using the ClustalW2 program. Only the

amino acids corresponding to positions 322 and 178 in GroEL or

176 and 321 in mHsp60 are presented. Residues displaying a

different charge than their counterparts in a particular position are

presented with a gray background.

(DOC)

Figure S4 Tyrosine 360 in GroEL interacts with a
hydrophobic cluster of the adjacent subunit. A three

dimensional model showing a side view of a GroEL ring in the

closed state. Each subunit is colored differently (left image). Y360,

a neighbor of D359, interacts with the A383-L183-F281 cluster in

which A383 and L183 are located on the adjacent subunit (PDB

entry 1AON). Image was created using the PyMOL program.

(DOC)

Figure S5 Multiple sequence alignment of various
mitochondrial and bacterial chaperonin sequences. Only

the amino acids corresponding to positions 80 and 359 in GroEL

or 70, 78, 81, 82 and 358 in mHsp60 are highlighted. Residues

having a different charge from their counterparts in a particular

position are presented with red letters. Produced by the ClustalW2

program.

(DOC)

Table S1 List of primers used in this study.

(DOC)
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