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Abstract

Nucleotides are involved in several cellular processes, ranging from the transmission of genetic information, to energy
transfer and storage. Both sequence and structure based methods have been developed to predict the location of
nucleotide-binding sites in proteins. Here we propose a novel methodology that leverages the observation that nucleotide-
binding sites have a modular structure. Nucleotides are composed of identifiable fragments, i.e. the phosphate, the
nucleobase and the carbohydrate moieties. These fragments are bound by specific structural motifs that recur in proteins of
different fold. Moreover these motifs behave as modules and are found in different combinations across fold space. Our
method predicts binding sites for each nucleotide fragment by comparing a query protein with a database of templates
extracted from proteins of known structure. Whenever a similarity is found the fragment bound by the template is
transferred on the query protein, thus identifying a putative binding site. Predictions falling inside the surface of the protein
are discarded, and the remaining ones are scored using clustering and conservation. The method is able to rank as first a
correct prediction in the 48%, 48% and 68% of the analyzed proteins for the nucleobase, carbohydrate and phosphate
respectively, while considering the first five predictions the performances change to 71%, 65% and 86% respectively.
Furthermore we attempted to reconstruct the full structure of the binding site, starting from the predicted positions of the
fragments. We calculated that in the 59% of the analyzed proteins the method ranks as first a reconstructed binding site or a
part of it. Finally we tested the reliability of our method in a real world case in which it has to predict nucleotide-binding
sites in unbound proteins. We analyzed proteins whose structure has been solved with and without the nucleotide and
observed only little variations in the method performance.
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Introduction

Nucleotides are ubiquitous molecules in the cellular environ-

ment and they are involved in key cellular processes. They store

and transfer energy and serve as building block of nucleic acids

and enzyme cofactors. Nucleotides were also one of the earliest

cofactors to be bound by proteins [1]. Indeed nucleotide-binding

folds, such as the Rossmann-type [2] and the P-loop containing

nucleotide hydrolases folds [3], are ancient and widespread.

Several nucleotide-binding site prediction methods have been

developed, relying both on sequence and structural information.

Sequence-based methods use machine learning techniques to

identify nucleotide-binding residues based on characteristics such

as conservation or structural features of residues, like hydropho-

bicity, solvent accessibility or net charge.

Chauhan et al. developed methods for the identification of ATP

[4] and GTP [5] binding residues with accuracies of 66% and

68% respectively, while Ansari et al. designed a method specifi-

cally for NAD [6] reaching an accuracy of 74%. However these

methods do not give any insights into the conformation of the

bound nucleotide and the details of its interaction with the protein

residues.

From the structural point of view several studies have

investigated the structural features that a protein must possess in

order to bind a nucleotide. As mentioned some folds are

specifically associated to the binding of nucleotides. Besides this

coarse observation, efforts [7–15] have been made to discover

which local features, such as structural motifs or a specific

physicochemical environment, are required to bind a nucleotide,

or a specific fragment thereof. The results of these studies show

that some chemical fragments, like the phosphate or the

nucleobase moiety, are bound by specific structural motifs which

are shared by non-homologous proteins having a different fold.

Moreover the motifs that bind these different moieties behave as

modules and are reused in different combinations across fold-space

[16]. This observation suggests the possibility of predicting

nucleotide-binding sites starting form the identification of struc-

tural motifs for their constituent fragments.

For instance Saito et al [17] developed a method that identifies

nucleotide-binding site positions using an empirical scoring system
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derived from the spatial distributions of protein atoms around the

nucleobase moiety. The performance of this method reaches

values ranging from 30% and 40% of analyzed protein structures

in which the first ranked prediction is correct. Moreover another

method [18] has been developed that uses known chemical

fragment-fragment interactions with the aim of building, with a

docking-like methodology, energetically favoured nucleotide con-

formations on a protein surface. In 53% of the analyzed proteins

this method placed a correct nucleotide conformation in the first

rank. We recently developed a method for the identification of

phosphate binding sites, based on the identification of specific

structural motifs [19,20]. Here we extend this approach to the

other nucleotide fragments. Our method searches for similarities

between a query protein structure and a reference set of template

binding sites for nucleotide modules. Whenever a similarity is

found the module bound by the template binding site is transferred

on the query protein identifying a putative module-binding site.

Furthermore we explore the possibility of using the predicted

positions of nucleotide fragments to reconstruct the structure of the

full nucleotide. Here we demonstrate that this method is reliable

when analyzing protein structures without a bound nucleotide (the

real world case) and show that has a better performance than a

previously developed method. The method is available and

downloadable at http://pdbfun.uniroma2.it/nucleos.

Materials and Methods

Nucleotide Modules Binding Sites Datasets
We define nucleotides as composed of nucleobases, carbohy-

drates and phosphates. The nucleobase module can be adenine,

guanine, cytosine, thymine, uracil and the nicotinamide and flavin

moieties from respectively the NAD and FAD molecules. The

carbohydrate can be the ribose in closed and open form and the

deoxyribose ring. We collected binding sites for these modules

from all the structures in the Protein Data Bank (PDB) [21],

March 2012 version. Whenever a ligand (excluding nucleic acid

molecules) bound by a protein structure contains one of these

modules we collect all the residues that have at least one non-

hydrogen atom in a radius of 3.5 Å from any non-hydrogen atom

of the nucleotide module. Since the structural comparison method

[22] used in this work requires input structures of at least three

residues, binding sites composed of less than three residues were

discarded. In order to reduce redundancy we used BLASTClust

[23] with a 95% sequence identity threshold. A single binding site

for each type of module was randomly selected from each cluster

of sequences defined by BLASTClust.

We collected 4657 binding sites for nucleobases, 3073 for

carbohydrates and 10185 for phosphates.

Protein Structure Datasets
Two datasets of protein structures were used to test the method

in this work. The first dataset is composed of 1925 protein-

nucleotide complexes from the sc-PDB [24] (this dataset will be

referred from now on as sc-PDB dataset) database. Different types

of nucleotides are represented in this dataset: adenosine mono- di-

and tri-phosphate (respectively AMP, ADP and ATP), guanosine

di- and tri-phosphate (GDP and GTP), phosphoaminophosphonic

acid-adenylate ester (ANP), phosphoaminophosphonic acid-gua-

nylate ester (GNP), nicotine-adenine dinucleotide (NAD), nicotin-

amide-adenine-dinucleotide phosphate(NAP), flavine-adenine di-

nucleotide (FAD), flavin mononucleotide (FMN). For each of these

proteins we selected the chain that binds the nucleotide with the

highest number of residues. A residue is defined as contacting the

nucleotide if it has at least one non-hydrogen atom in a 3.5 Å

radius from any non-hydrogen atom of the nucleotide. This step

discarded weakly bound ligands and nucleotides bound at the

interface of multiple protein chains. In order to remove

homologous protein chains we used BLASTClust with a 30%

sequence identity threshold. For each non-redundant group of

proteins binding a given nucleotide we selected, as representative,

the structure with the best resolution. After removing redundancy

the dataset contains 1039 nucleotide-binding proteins. The surface

cannot be calculated if the structure contains artifacts or missing

coordinates, while the residue conservation score requires the

protein to be present in PFAM and a good correspondence

between the Uniprot and PDB sequences. These requirements

lead to the removal of 115 structures reducing the size of the

dataset to 924 nucleotide-binding protein structures (the complete

list is provided in Table S1).

The second dataset is composed of proteins from the LigASite

[25] database that bind nucleotides and that have been crystallized

in both their apo and holo forms. The LigASite database contains

Table 1. Minimum distance allowed for nucleotide modules
from the protein surface.

Nucleotide modules
Minimum distance from
the surface (Å)

Nucleobase 0.407

Carbohydrate 0.124

Phosphate 0.830

Minimum distance, in Ångström, allowed for a predicted nucleotide module
from the solvent excluded surface. The distance is calculated considering any
atom of the nucleotide module and any vertex of the mesh representing the
solvent excluded surface.
doi:10.1371/journal.pone.0050240.t001

Table 2. Minimum and maximum distances allowed between nucleotide modules.

Pair of nucleotide modules Minimum distance (Å) Maximum distance (Å)

Nucleobase–Carbohydrate 3.937 5.275

Phosphate–Carbohydrate 3.079 5.151

Nucleobase–Phosphate 5.189 19.063

Nucleobase–Nucleobase 8.846 19.540

Carbohydrate–Carbohydrate 5.528 16.333

Phosphate–Phosphate 2.654 7.148

These distances (in Ångström) are calculated between the centroids of nucleotide modules.
doi:10.1371/journal.pone.0050240.t002

Nucleotide-Binding Sites Identification
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391 non-redundant pairs of proteins (January 2012 release). The

apo and holo structures of the same protein must share the same

nucleotide-binding chains. For each protein we considered only

one nucleotide-binding chain that must be common to both apo

and holo structures of the protein. As before we selected the chain

with the highest number of nucleotide-binding residues. 72 of the

391 proteins bind one of the eleven nucleotide types considered in

this work and their apo and holo structures share the nucleotide-

binding chain. The calculation of solvent excluded surface of the

protein and of the residue conservation was not possible for 8

proteins because of the aforementioned issues. The final number

of pairs of apo-holo structures is then reduced to 64 (the complete

list is provided in Table S2).

Method Overview
The method is divided in three steps: i) identification of binding

sites for the three types of nucleotide modules: nucleobase,

carbohydrate and phosphate, ii) filtering and clustering of the

predicted modules, iii) scoring and ranking of the predicted

binding sites.

Identification of binding sites for nucleobases,

carbohydrates and phosphates. The method uses the Super-

pose3D local structural comparison software [22] based on the

Query3D algorithm [26], to identify structural similarities between

a query protein structure and a set of template binding sites for one

of the three types of nucleotide module. Briefly, Superpose3D

searches for the largest subset of amino acids that have a similar

conformation in two protein structures. Proteins are represented as

an ensemble of non-connected residues, so that sequence

collinearity is not required, and each amino acid is represented

by its Ca and the geometric center of its side chain. Each

structural match is evaluated by three criteria: i) the Root Mean

Square Deviation (R.M.S.D.) must be equal or lower than a

specified threshold, ii) matching amino acids must have a

BLOSUM62 [27] substitution score equal or greater than a

specified threshold, iii) matching amino acids must be close to at

least one amino acid in the set (distance between their Ca equal or

lower than 7.5 Å).

Whenever Superpose3D finds a structural similarity between a

set of amino acids from the query protein structure and a binding

site for a nucleotide module, this nucleotide module is rotated and

translated onto the query protein structure using the same 3D

transformation associated with the structural match. Thus the

nucleotide module is added to the analyzed protein and represents

a putative binding site for that nucleotide module.
Filtering and clustering of the predicted nucleotide

modules. The principal aim of this method is to identify

binding sites for nucleotides on newly solved protein structures

where homology-based binding site identification is not possible.

We simulate this situation and test the ability of the method in

finding nucleotide-binding sites in a protein structure without

using template binding sites from homologous protein structures.

To this end all the predictions derived from structural matches

involving potentially homologous proteins are discarded. For each

structural match we aligned the query protein chain and the chain

whose template binding site is involved in the structural match

with the Needle alignment program from the Emboss suite [28]. If

the sequence identity between the two protein chains is equal or

higher than 30% the prediction is discarded.

Predicted nucleotide modules are discarded if they have at least

one atom inside the surface of the protein. The Solvent Excluded

Surface [29] is calculated using the UCSF Chimera MSMS

package [30]. Nevertheless the remaining predicted modules could

be too close to the protein surface to represent real ligand

positions. Therefore we analyzed the minimum distance between

each type of nucleotide module and the protein surface in a set of

non-redundant nucleotide-binding protein structures, excluding

Table 4. Results of the method considering the nucleotide type.

Nucleobase Carbohydrate Phosphate

Ligand Precision Recall F-score Precision Recall F-score Precision Recall F-score

AMP 0.36 0.26 0.29 0.52 0.31 0.38 0.29 0.43 0.32

ADP 0.41 0.36 0.37 0.32 0.34 0.32 0.82 0.76 0.78

ATP 0.51 0.31 0.38 0.44 0.42 0.43 0.71 0.68 0.69

ANP 0.44 0.43 0.42 0.34 0.38 0.25 0.86 0.69 0.74

FAD 0.51 0.41 0.43 0.75 0.52 0.6 0.82 0.65 0.71

FMN 0.21 0.69 0.32 0.27 0.38 0.21 0.64 0.42 0.47

GDP 0.94 0.59 0.71 0.56 0.52 0.52 0.86 0.80 0.81

GTP 0.45 0.28 0.27 0.23 0.36 0.05 0.78 0.53 0.61

GNP 0.75 0.75 0.78 0.43 0.65 0.56 0.98 0.90 0.92

NAD 0.41 0.56 0.47 0.72 0.55 0.61 0.54 0.39 0.45

NAP 0.7 0.41 0.5 0.8 0.49 0.59 0.56 0.47 0.49

Complete results reporting precision, recall and F-score for all the nucleotide types and for each nucleotide module considered. These results have been obtained using
0.6 Å as R.M.S.D. threshold.
doi:10.1371/journal.pone.0050240.t004

Table 3. F-score of the method at different R.M.S.D.
thresholds.

R.M.S.D. threshold (Å) Nucleobase Carbohydrate Phosphate

0.6 0.48 0.47 0.64

0.7 0.43 0.42 0.50

0.8 0.38 0.34 0.42

Average F-scores of the method (considering all the nucleotide types) for each
nucleotide module and for each R.M.S.D. threshold used during the structural
comparison step.
doi:10.1371/journal.pone.0050240.t003

Nucleotide-Binding Sites Identification
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those that are potentially homologous to proteins included in our

test sets. The method accepts only those predictions whose

distance from the protein surface is not smaller than the minimum

distance for the corresponding module (Table 1) in this dataset.

Finally predicted modules of the same type are clustered together

using an agglomerative hierarchical clustering procedure, in a

centroid linkage fashion, with a threshold of 2 Å. For each cluster

the method selects the module closest to the centroid of the cluster.

Scoring of the predicted nucleotide-binding sites. Each

prediction on the protein surface is assigned a score. The score for

a predicted binding site for a nucleotide module is composed of

two parts: i) a clustering score, equal to the number of the modules

of the same type that clustered with it, ii) a conservation score, that

is the average conservation of the query protein residues involved

in its structural match.

This conservation score is calculated for each residue in the

protein structure, as described in a previous work [19], taking into

account the PFAM [31] multiple alignment of the protein family.

Briefly, for each residue the percentage of similar residues

(BLOSUM62 matrix score equal or higher than 1) in its PFAM

alignment column is calculated. These percentages are normalized

to percentiles that represent the conservation scores, using the

distribution of percentage values for that multiple alignment. This

procedure normalizes the conservation scores from different

PFAM multiple alignments and makes them comparable.

Each predicted nucleotide-binding site is given a score that is

the sum of the clustering scores of its nucleotide modules plus their

conservation score.

Combination of Binding Sites for Nucleotide Modules
In order to reconstruct nucleotide-binding sites from their

predicted modules we derived a set of rules, in the form of distance

constraints that are used when joining the modules to build

nucleotide-binding sites. We analyzed the distances between all the

possible pairs of nucleotide modules in a set of 1226 non-

redundant (30% sequence identity threshold) set of nucleotide-

binding proteins culled from the PDB. Protein chains showing a

sequence identity equal or higher than 30% with any of the

protein structures analyzed by the method were discarded. For

each pair of nucleotide modules we analyzed the distribution of

centroid distances and defined the minimum and maximum

allowed distances in a way that discarded 1% of the lowest and 1%

of the highest distances. All these distances are reported in the

Table 2.

These distance thresholds are used when joining modules to

reconstruct the full nucleotide. The aim is to build combination of

modules that follow the architecture of the nucleotide bound by

the protein, e.g. the FAD molecule has a nucleobase-carbohy-

drate-phosphate-phosphate-carbohydrate-nucleobase architecture.

If the predicted modules do not permit the full reconstruction of

the nucleotide, the method tries, iteratively, to build a ‘‘sub-

architecture’’ of the bound nucleotide, e.g. the ADP molecule is a

sub-architecture of the ATP molecule. The minimum allowed sub-

architecture is composed of two consecutive nucleotide modules,

e.g. nucleobase-carbohydrate or carbohydrate-phosphate.

Figure 1. F-scores measuring the method performance for the different nucleotides. Complete results reporting the F-scores for all the
nucleotide types and for each nucleotide module considered. The bars are colored depending on the nucleotide module: blue for the nucleobase,
red for the carbohydrate and green for the phosphate.
doi:10.1371/journal.pone.0050240.g001

Nucleotide-Binding Sites Identification

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e50240



Results

Overview
We developed a method for the identification of binding sites for

nucleotide molecules on protein structures. This method compares

the structure of a query protein with three datasets of template

binding sites, one for each type of nucleotide module: the

nucleobase, the carbohydrate and the phosphate. Predicted

nucleotide modules are used to identify putative binding sites for

the nucleotide bound by the analyzed proteins. The method has

been tested on two datasets of protein structures. The first dataset

contains protein structures binding several common nucleotides

with different architectures, the second datasets contains nucleo-

tide-binding protein structures that have been solved in both apo

and holo forms. After predicting binding sites for nucleotide

modules on a protein structure, the method ranks the predictions

according to their score. A prediction for a specific module is

considered correct if its centroid lies at 5 Å or less from the

crystallographic position.

Results on the sc-PDB Dataset
The first analyzed dataset is composed of 924 protein structures

binding AMP, ADP, ATP, GDP, GTP, ANP, GNP, FAD, FMN,

NAD and NAP.

We first searched for an optimal combination of parameters to

use in order to screen the predictions, evaluating the performance

with a ten-fold cross validation test. For each test we:

i) divide a group of proteins binding the same nucleotide, say

ATP, into training and test sets with the sizes of the sets

respecting a 9:1 ratio;

ii) analyze the predictions made on the training set proteins

searching for the scoring threshold that gives the best F-score

(harmonic mean of precision and recall) for the method

performance;

Figure 2. Performance of the method considering first-ranked predictions. Complete results, as percentage of analyzed protein structures
in which the method places a correct prediction in the first rank for the three types of nucleotide modules. Each nucleotide type is represented by a
doughnut chart that is divided in three sectors, one for each nucleotide module (blue for the nucleobase, red for the carbohydrate and green for the
phosphate). The size of each module sector is proportional to the percentage of proteins in which the method is successful. The columns divide the
nucleotides by their architecture type: NCP stands for nucleobase-carbohydrate-phosphate (e.g. the AMP) and so on. Moreover nucleotides are
grouped by their characteristic molecular feature so that rows divide them in guanine-, adenine-, flavin- and nicotinamide-containing nucleotides.
doi:10.1371/journal.pone.0050240.g002

Table 5. Overall results of the method after ranking
predictions.

Top ranks Nucleobase Carbohydrate Phosphate

1 48% 48% 68%

3 66% 62% 82%

5 71% 65% 86%

10 76% 67% 90%

Complete results, as percentages of analyzed protein structures in which the
method places a correct prediction of the three types of nucleotide modules
considering the 1, 3, 5 and 10 top ranks.
doi:10.1371/journal.pone.0050240.t005

Nucleotide-Binding Sites Identification
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iii) evaluate the performance, using the F-score, that the method

achieves on the test set when using the threshold selected in

the previous step.

The performance of the method is evaluated by calculating

precision, recall and F-score. For each nucleotide, and for each

type of nucleotide module, the average F-score achieved in the ten

tests is calculated. The whole procedure has been conducted with

different R.M.S.D. thresholds in the structural comparison step:

0.6, 0.7 and 0.8 Å. A small variation of the R.M.S.D. threshold

influences dramatically the number of predictions made on a

protein. The results show that the best R.M.S.D. is 0.6 Å since it

has the best average F-scores throughout all the nucleotide types:

0.48, 0.47 and 0.64 on nucleobases, carbohydrates and phosphates

respectively. Complete results are reported in Table 3. From now

on all the results reported use 0.6 Å as R.M.S.D threshold. These

results show that higher R.M.S.D. thresholds result in a greater

number of structural matches thus improving the recall of the

method (the amount of correctly identified binding sites). However

the F-score decreases dramatically because of the amount of false

positive predictions, thus decreasing the precision of the method

(complete results divided by nucleotide type are reported in

Table 4). It is also clear that the phosphate module is the one that

better identifies binding sites for nucleotides compared to

carbohydrate and nucleobase.

With some nucleotide types the method is more successful than

with others: GNP for example has a performance of 0.87, 0.62 and

0.92 for the nucleobase, the carbohydrate and the phosphate

respectively (results will be written in this order from now on). In

the majority of cases the binding site for a particular nucleotide

cannot be identified with all the nucleotide modules: the

performance of the method on FAD-binding proteins is 0.43,

0.60 and 0.71, while on the ATP-binding proteins it has a

performance of 0.38,0.43 and 0.69. Complete results are in

Figure 1.

Moreover we also ranked the predictions irrespective of any

scoring threshold and evaluated the performance according to the

position of the correct predictions in the ranked list. Therefore, for

each module, we calculated the percentage of proteins for which

the method places a correct prediction among the top 1, 3, 5 and

10. Before ranking the predictions we observe that in 77%, 67%

and 93% of the protein structures there is at least one correct

prediction for the nucleobase, the carbohydrate and the phosphate

respectively. A correct prediction is ranked first in 48%, 48% and

68% of the analyzed proteins for the nucleobase, carbohydrate

and phosphate respectively. Considering the top five predictions

the method reaches a performance of 71%, 65% and 86%

(Table 5). The performance of the method varies according to the

identity of the nucleotide. Considering the first ranked prediction

the method reaches a performance of 66%, 74% and 70% on

FAD binding proteins and 86%, 59% and 95% on GNP binding

proteins. On the other hand worse performances are obtained

with smaller nucleotides such as AMP and FMN (31%, 35% and

46% on AMP binding proteins and 28%, 31% and 60% on FMN

binding proteins). The results obtained for each nucleotide type

when considering the first ranked prediction are graphed in

Figure 2 (complete results, divided by nucleotide type, considering

also the top three, five and ten prediction are reported in Table 6).

Overall the method performs better on bigger nucleotides such

as FAD, NAD and NAP than on smaller ones such as FMN and

AMP. Moreover the phosphate module is the one that better

identifies nucleotide-binding sites, while the carbohydrate and

nucleobase modules identify the correct binding sites depending

on the type of the nucleotide. Figure 2 shows that the nucleobase

works better with big nucleotides such as FAD, NAD and NAP

and on nucleotides with guanine like GDP and GNP, while the

carbohydrate works better than the others on FAD, NAD and

NAP. Two cases with the ranked predictions are reported in

Figure 3, where the ranking system places correct predictions in

the first rank (colored in green). Globally the predicted binding

sites rank better as they become close to the real binding site for

the nucleotide, showing that scoring system is working as expected.

More specifically the method is able to put in the first ranks

multiple correct predictions. Figure 3-B shows how the method

puts in the first and second ranks a correct prediction respectively

for the nicotinamide and for the adenine modules of the NAD

molecule complexed with the DTDP-glucose oxidoreductase from

S. enterica (PDB: 1n2s).

When searching for structural similarities between the query

protein and the template binding sites, the method discards

matches involving potentially homologous proteins. Similarly it is

Table 6. Results of the method after ranking predictions considering the nucleotide type.

Nucleobase Carbohydrate Phosphate

Ligand Best Top 3 Top 5 Top 10 Best Top 3 Top 5 Top 10 Best Top 3 Top 5 Top 10

AMP 31 55 58 61 35 49 52 52 46 64 75 86

ADP 37 55 60 66 32 48 51 53 80 92 94 97

ATP 44 63 66 73 37 53 56 58 71 85 88 96

ANP 53 63 71 74 36 51 58 63 76 90 91 99

FAD 66 84 87 92 74 85 86 88 70 85 86 99

FMN 28 65 74 82 31 51 59 60 60 76 81 95

GDP 66 70 70 77 51 72 77 77 85 89 91 98

GTP 34 46 46 54 31 51 57 57 60 71 74 96

GNP 86 91 95 95 59 77 82 86 95 100 100 100

NAD 63 83 88 89 85 88 89 89 44 68 74 92

NAP 64 76 78 83 76 80 85 88 64 78 86 90

Complete results for the sc-PDB dataset divided by nucleotide type, as percentage of analyzed protein structures in which the method places a correct prediction in the
first, top three, top five and top ten predictions for the three types of nucleotide modules.
doi:10.1371/journal.pone.0050240.t006

Nucleotide-Binding Sites Identification
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Figure 3. Two test cases of the ranking system. Two protein structures with ranked predictions (only the top ten for each type of nucleotide
module are shown). The first ranked prediction is colored in green, the 2nd and the 3rd are colored in yellow, the 4th and the 5th are colored in orange,
from the 6th to the 10th predictions are colored in red. The nucleotides complexed with proteins are colored in blue. A: structure of the kinase CK2
from Z. mais (PDB: 1day) complexed with phosphoaminophosphonic acid-guanylate ester (GNP). B: structure of the DTDP-glucose oxidoreductase
from S. enterica (PDB: 1n2s) complexed with NAD.
doi:10.1371/journal.pone.0050240.g003

Table 7. Comparison of the method performance on apo and holo structures.

Nucleobase Carbohydrate Phosphate

Structure form 1 3 5 10 1 3 5 10 1 3 5 10

Holo 48 66 67 70 33 50 55 58 53 72 73 80

Apo 38 62 68 71 40 49 52 58 49 66 71 82

Complete results for the LigASite dataset (apo-holo structures), as percentage of analyzed protein structures in which the method places a correct prediction in the first,
top three, top five and top ten predictions for the three types of nucleotide modules.
doi:10.1371/journal.pone.0050240.t007

Nucleotide-Binding Sites Identification
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interesting to quantify how many times a query nucleotide-binding

site is identified by a template binding site having a different

protein fold. To this end we analyzed the 410 (out of 924) proteins

in the dataset that are classified in the SCOP database [32].

Moreover we could not consider predictions made by template

binding sites that do not have a SCOP record. The top ranked,

correct, prediction has a SCOP fold different from the query

protein in 50% and 52% of cases for the nucleobase and

carbohydrate respectively. This percentage rises to 86% for

phosphate. These results confirm that similar binding motifs for

these modules occur in different protein folds [16,19].

Results on Apo-holo Protein Structures
Since the aim of this method is to predict nucleotide-binding

sites on unbound structures, we assessed how the performance of

the method is affected by the conformational changes that occur

upon ligand binding. We used LigASite to compile a dataset of 64

proteins whose structures have been solved both in the bound and

unbound state (holo and apo forms respectively). We predicted

binding sites for nucleobases, carbohydrates and phosphates on

the holo and apo forms of the dataset proteins. When considering

the first ranked prediction the method puts a correct prediction in

the first rank respectively in the 48%, 33% and 53% of the holo

structures, while on the corresponding apo structures these

percentages change respectively to 38%, 40% and 49%. Therefore

we observed on average a 7% difference between the perfor-

mances on the apo and holo structures; moreover the carbohy-

drate has a better performance on apo structures than on holo

structures. Considering the top five ranks the method identifies a

correct binding site in the 67%, 55% and 73% on holo structures

and 68%, 52% and 71% on apo structures showing an average

performance gap of only 2% (Complete results are reported in

Table 7). This small difference allows the method to be reliable

when predicting a nucleotide-binding site on a protein structure

crystallized without the ligand.

Linking Predicted Binding Sites for Nucleotide Modules
We decided to investigate whether binding sites for different

nucleotide modules can be predicted independently and subse-

quently combined together in order to predict the position of the

full nucleotide. We derived a set of ‘‘centroid distance rules’’ to use

when combining predicted modules. These rules were derived

from a non-redundant set of nucleotide-binding proteins and

consist of maximum and minimum allowed distances between

every pair of nucleotide modules (Table 2). The aim is to build

whole nucleotide-binding sites on the surface of the analyzed

proteins using the predicted nucleotide modules by joining them in

different combinations. The method tries to reconstruct the same

architecture of the nucleotide bound by the protein starting from

the predicted positions of the individual modules. If a full

reconstruction is not possible, the method tries to build ‘‘sub-

architectures’’ (the ADP molecule is a ‘‘sub-architecture’’ of the

ATP molecule). The minimum allowed sub-architecture consists of

two consecutive different nucleotide modules, i.e. nucleobase-

carbohydrate or carbohydrate-phosphate. A prediction is scored

by summing the scores of its constituent modules.

We evaluated the method using three different criteria to

consider a predicted nucleotide-binding site as correct: i) all the

modules composing the predicted binding site lie at 5 Å or less

from the corresponding modules of the crystallized ligand (‘‘all-

modules distance’’); ii) the cluster of modules composing the

predicted nucleotide-binding site and the cluster of the corre-

sponding nucleotide modules in the crystallized ligand have their

centroid laying at less than 5 Å (‘‘ligand-centroid distance’’); iii) the

RMSD of the modules in the predicted binding sites with the

corresponding modules in the crystallized ligand is equal to or

lower than 5 Å. After combining nucleotide modules on the 924

protein structures of the sc-PDB dataset the method places a

correct prediction in the first rank in 43%, 56% and 59% of the

cases using respectively the all-modules distance, the ligand-

centroid distance and the RMSD criterion. We observed that, if

we consider all the predictions irrespective of their rank, in 63% of

the analyzed structures there is at least one correct prediction,

using the ligand-centroid distance criterion.

In 98% of the cases all the modules are predicted from

templates derived from protein chains having sharing less than

30% sequence identity between them. This result shows that

binding sites for whole nucleotides can be effectively reconstructed

by assembling modules, which are themselves predicted from non-

Figure 4. Test case for linked predicted binding sites forming a
FAD-binding site. Top ranked prediction for the binding site of the
FAD molecule bound by the subunit F of the Alkyl hydroperoxide
reductase from S. typhymurium (PDB code 1hyu). A) Structure of the
reductase (residues from 1 and 197 and from 325 to 453 are not shown
for convenience) with the structures of the template binding sites
matching with reductase residues (red: I46, N48, V290, Q289 of the
thioredoxin reductase from H. pylori (PDB: 3ish) binding a flavin module;
blue: D287, Q295, S299 of the thioredoxin reductase from S. cerevisiae
(PDB: 3itj) binding a ribose; cyan: K112, G109, S108 of the human RNA
helicase DDX20 (PDB: 3b7g) binding a phosphate; green: G10, P11, G38,
G138 of the 2-oxoglutarate dehydrogenase E3 component from T.
thermophilus (PDB: 2yqu) binding a phosphate; yellow: G10, A137, T138
of a putative monoxygenase from S. aureus (PDB: 3d1c) binding a
ribose; magenta: I11, A122, T157 of the gernaylgeranyl reductase from
S. acidocaldarius (PDB: 3atr) binding an adenine). The modules bound
by the template binding sites are colored by atom type (grey for
Carbon, blue for Nitrogen, Red for Oxygen and Orange for Phosphorus).
Matching residues are depicted with the same color. B) The prediction is
composed of predicted binding sites for nucleotide modules: predicted
modules are colored as their binding sites in A. The FAD molecule
bound by the protein is colored in black.
doi:10.1371/journal.pone.0050240.g004
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homologous proteins. Figure 4 reports a test case involving a FAD

binding site on subunit F of the Alkyl hydroperoxide reductase

from S. typhymurium (PDB code 1HYU).

Comparison with an Existing Method
We compared our approach with a method developed by Saito

et al. [17] aimed at predicting nucleotide-binding sites by

identifying structural motifs for the nucleotide bases. This method

uses empirical scores derived from a set of non-redundant

nucleotide-protein complexes, divided into four sets: adenine-,

guanine-, nicotinamide- and flavin-containing nucleotides. The

authors derived an empirical scoring system from a learning

dataset of proteins. This score is associated to the spatial

distribution of protein atoms around the nucleobase moiety in a

12 Å radius, so that the frequencies of 13 types of protein atoms

are calculated. When analyzing a protein structure this system

assigns a score to each point of the grid in which the protein is

plunged, and then it clusters overlapping predicted nucleobases.

Finally the method ranks the predictions and retains the best 100

considering them as correct if they have a R.M.S.D. with the

known binding site equal or lower than 3 Å. We evaluated

predicted nucleobases in the same way, selecting from the cluster

of our prediction a nucleobase identical to the one bound by the

protein.

In order to compare the two methods we took the dataset used

to test the method developed by Saito, composed of 380 protein

structures divided into four sets: structures binding adenine-,

guanine-, nicotinamide- and flavin- containing molecules. We

excluded from the analysis 40 proteins that do not bind any

nucleotide. Moreover 36 proteins do not have sufficient data for

the calculation of the conservation of their residues (see the

‘‘Scoring of the predicted nucleotide-binding sites’’ paragraph in

the ‘‘Methods‘‘ section) or the software for the calculation of the

protein solvent excluded surface produced an error (see the

‘‘Filtering and clustering of the predicted nucleotide modules’’ in

the ‘‘Methods’’ section). The final dataset is composed of 306

protein structures. Our method performs better both on average

on all nucleotides and on specific nucleotide sets: considering the

first-ranked prediction their method has a performance of 31%,

29%, 32% and 40% while our method reaches a performance of

32%, 46%, 55% and 47% on adenine, guanine, nicotinamide and

flavin respectively. Saito et al.’s method is focused on the

nucleobase moiety, while we demonstrated that with some

nucleotides, such as the ones containing nicotinamide, the

carbohydrate module is more effective in predicting the nucleo-

tide-binding site. Therefore we also used the carbohydrate and the

phosphate modules to predict nucleotide-binding sites on the same

set of proteins. Our method still predicts nucleotide-binding sites

better then Saito’s method and remarkably shows that the

carbohydrate reaches a performance of 72% and 63% respectively

in the nicotinamide and flavin set of proteins. Complete results are

in Figure 5.

Figure 5. Comparison with another method for the prediction if nucleotide-bingind sites. Comparison between the method developed
by Saito [17] and the methodology presented in this work. The first group of bars on the left represents the performance of Saito’s method. The other
groups of bars represent the performance of our method for the different nucleotide modules. Bars are colored depending on the protein dataset:
proteins binding adenine- (blue), guanine- (red) nicotinamide- (green) and flavin-containing (purple) nucleotides.
doi:10.1371/journal.pone.0050240.g005
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Discrimination between Protein Structures Binding/not-
binding Nucleotides

We tested our method for its ability to discriminate nucleotide-

binding proteins from proteins that do not bind nucleotides. In

order to properly test the method we built a ‘‘negative’’ dataset of

protein structures that do not bind nucleotides containing the

same number of structures of the sc-PDB dataset. The structures

were obtained from BLASTClust homology-based groups of

protein chains (non-redundant at 30% of sequence identity), by

randomly choosing 924 groups that do not include any structures

binding a nucleotide. For each group we selected a random

protein chain. When predicting nucleotide-binding sites the

minimum allowed sub-architecture is composed of two consecutive

nucleotide modules (nucleobase-carbohydrate or carbohydrate-

phosphate). We used the same criterion for this test. For each

analyzed protein we selected only the top-scoring prediction and

assigned its score to the protein.

We did a tenfold cross-validation test using a 9:1 ratio for the

training and test sets. In the training phase we identified the

optimal scoring threshold as 166.33. This threshold was found to

better discriminate the two classes of structures (average Matthews

Correlation Coefficient of 0.6). The chosen threshold was then

applied to the corresponding test sets. The average MCC achieved

by our method during the cross-validation was 0.6, with an

average sensitivity of 0.64 and specificity of 0.93.

Application of the Method on Homology Models
One of the main problems of protein structural analysis is the

limited amount of available structures, even if their number is

increasing at a fast pace. In order to increase the application range

of our method we evaluated its performance on homology models.

We culled a set of 110 protein structures from the sc-PDB dataset

by selecting 10 random structures for each of the eleven nucleotide

types considered in this work.

We searched template structures for each of the proteins in this

dataset, using BLAST with the following thresholds: sequence

identity between 30% and 99% and maximum e-value of 10e26.

We used Modeller (v.9.9) [33] to build 942 homology models with

all the template structures identified, and calculated the Global

Distance Test (GDT) [34] score for each model. We used the

method described in this work to predict nucleotide binding sites

and evaluated its performance as a function of the GDT score of

the model. To evaluate the correctness of the prediction each

model was superimposed on the query protein. The performance

(percentage of proteins with top-ranked correct predictions) drops

from 63% to 42% when going from the PDB structure to the

models with the highest GDT (see Figure 6). Therefore, even when

using the best homology models, there are structural variations

that impair the correct prediction of nucleotide-binding sites.

However the performance of the method remains higher than

35% for GDT values over 50, thus demonstrating that these

models can be effectively used for prediction.

Figure 6. Performance of the method on protein homology models. The performance of the method (Y axis), measured as the percentage of
protein structures in which the first-ranked prediction correctly identifies the true nucleotide-binding site, plotted as a function of the GDT value (X
axis) of the homology-models.
doi:10.1371/journal.pone.0050240.g006
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Conclusions

In this work we developed a new method to predict nucleotide-

binding sites in protein structures. In particular we investigated

whether the concept of modularity [16] can be used to reconstruct

nucleotide-binding sites starting from the predicted locations of

their constituent modules. The method compares a query protein

structure with a dataset of template binding sites for nucleotide

modules, namely the nucleobase, the carbohydrate and the

phosphate. The predicted binding sites are evaluated by consid-

ering their distribution on the protein surface and the conservation

of the residues that identify their binding site. The method has

been tested on a set of 924 non-redundant protein structures

binding eleven types of nucleotides. We performed a cross-

validation in order to find the combination of parameters that

provides the optimal scoring threshold; the method reaches F-

scores of 0.48, 0.47 and 0.64 when predicting nucleobases,

carbohydrates and phosphates respectively.

We also considered the performance of the method in ranking

the predictions irrespective of any scoring threshold. The method

ranks as first a prediction that identifies the nucleotide-binding site

in 48%, 48% and 68% of protein structures for the nucleobase,

carbohydrate and phosphate respectively. When considering the

first five ranks the method reaches a performance of 71%, 65%

and 86%. Our results show that the phosphate module is the one

that, on average, better identifies nucleotide-binding sites, while

the two other modules perform better on specific nucleotides, like

FAD NAD and NAP. Nearly half of the correct first ranked

predictions for nucleobases and carbohydrates and the majority of

them for the phosphates involve structural similarity between

different folds, confirming the outcome of previous studies and the

promiscuity of phosphate binding sites.

Moreover the method has been tested on a set of 64 non-

redundant proteins whose structure has been solved both with and

without the nucleotide. This was done to test the ability of the

method in a real world case, where the structure has been solved in

the unbound state. The performance decreases by 7% when

considering only the first ranked predictions, showing that the

method is reliable in the annotation of new structures solved in the

unbound state.

We also investigated the possibility of combining predicted

binding sites for different nucleotide modules with the aim to

reconstruct the whole nucleotide-binding site, or part of it, from

the predictions. After scoring and ranking the predictions the

method ranks as first a correct prediction in 59% of the proteins

tested. This demonstrates that the predicted module positions can

be effectively extended to reconstruct the structure of the

nucleotide-binding site. Moreover we saw that in 98% of these

successful cases each module was bound by a non-homologous

protein chain, thus demonstrating that binding sites can be

predicted on proteins with novel folds. Our approach has a

superior performance when compared with an existing method

that predicts nucleotide-binding sites using the position of the

nucleobase moiety. Moreover we show that in some cases other

nucleotide modules are better than the nucleobase in identifying

the binding site. For instance the carbohydrate is better than the

nucleobase in identifying binding sites for nicotinamide-containing

nucleotides. Our results show that the present method can be a

useful resource in functional annotation of nucleotide-binding

proteins when homology-based approaches fail. Our method does

not try to build the conformation of the nucleotide molecule.

Rather, the aim is to pinpoint the location of the binding site, thus

providing a useful starting point for other methodologies such as

protein-ligand docking. The method is available and download-

able at http://pdbfun.uniroma2.it/nucleos.
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