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Abstract

Stimulation of the receptor tyrosine kinase KIT by Stem Cell Factor (SCF) triggers activation of RAS and its downstream
effectors. Proper KIT activation is essential for the maturation, survival and proliferation of mast cells. In addition, SCF
activation of KIT is critical for recruiting mast cells to sites of infection or injury, where they release a mix of pro-
inflammatory substances. RIN3, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), is highly
expressed and enriched in human mast cells. SCF treatment of mast cells increased the amount of GTP-bound RAB5, and the
degree of RAB5 activation correlated with the expression level of RIN3. At the same time, SCF caused the dissociation of a
pre-formed complex of RIN3 with BIN2, a membrane bending protein implicated in endocytosis. Silencing of RIN3 increased
the rate of SCF-induced KIT internalization, while persistent RIN3 over-expression led to KIT down regulation. These
observations strongly support a role for RIN3 in coordinating the early steps of KIT endocytosis. Importantly, RIN3 also
functioned as an inhibitor of mast cell migration toward SCF. Finally, we demonstrate that elevated RIN3 levels sensitize
mastocytosis cells to treatment with a KIT tyrosine kinase inhibitor, suggesting the value of a two-pronged inhibitor
approach for this difficult to treat malignancy. These findings directly connect KIT activation with a mast cell-specific RAS
effector that regulates the cellular response to SCF and provide new insight for the development of more effective
mastocytosis treatments.
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Introduction

Mast cells are critical for allergic inflammatory responses,

including type I hypersensitivity, anaphylaxis, asthma, and

arthritis (reviewed in [1,2]). The most abundant tyrosine kinase

receptor on a mast cell surface is KIT (c-KIT, CD117) (reviewed

in [3–5]). Signaling is induced by the binding of its ligand, Stem

Cell Factor (SCF), and is required for mast cell maturation,

proliferation and migration. SCF also enhances mast cell

responses leading to allergic airway inflammation and hyperre-

activity [6]. KIT is expressed in germ cells and hematopoietic

stem/progenitor cells, but among mature somatic cells it is

restricted primarily to mast cells and melanocytes [7]. Gain of

function mutations in KIT are causative in hyper-proliferative

pathologies originating from these cells, including mast cell-

derived mastocytosis, a family of diseases characterized by mast

cell hyper-proliferation [8]. The spectrum of these diseases

ranges from asymptomatic, indolent systemic mastocytosis to

malignant, aggressive mast cell leukemia [9].

The endocytosis of receptor tyrosine kinases (RTKs), such as

KIT, begins with ligand-induced receptor dimerization and

transphosphorylation. This leads to engagement of downstream

signal transduction pathways, most notably those mediated by

RAS family GTPases, that drive the cell’s immediate and long-

term response to stimulation. Activated RTKs are typically

internalized through an endocytosis mechanism mediated by

clathrin and membrane deforming proteins including those in the

amphiphysin family of BAR domain proteins [10–12]. Internal-

ized RTKs may continue to send downstream signals from early

endosomes. Endocytosed receptors ultimately face one of two

fates: recycling and replacement on the plasma membrane or

degradation via the proteasome or lysosome. The RAB5 family of

GTPases mediate early steps in endocytosis including early

endosome fusion [13–16] and play an important role in

determining the fate of internalized receptors [17,18].

RIN3 is a member of the RIN family of RAS effectors [19], all

of which have a guanine nucleotide exchange factor (GEF) domain

with specificity for RAB5 family GTPases as well as a RAS

association (RA) domain and an SH2 domain. The most

extensively studied member of the RIN family is RIN1, which

directly controls the signaling and stability of EGFR and other

receptor tyrosine kinases [20–22] and may indirectly influence the

endocytosis of other receptors [23–26]. In epithelial cells, growth

factor stimulation of RTKs leads to activation of RAS effectors

such as RIN1, which in turn activates RAB5 proteins and

promotes RTK down regulation.

In this study we show that RIN3 displays a tissue-specific

expression pattern, with highest levels restricted to mast cells.
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RIN3 was an effective promoter of endogenous RAB5 activation

in human mast cells. RIN3 silencing accelerated the rate of KIT

internalization following SCF stimulation, while down regulation

of KIT was significantly enhanced by RIN3 over-expression. The

ability of mast cells to migrate toward SCF, which requires KIT

recycling and prolonged signaling, was inversely correlated with

RIN3 expression. Importantly, RIN3 over-expression sensitized a

mastocytosis cell line to treatment with the KIT inhibitor imatinib.

By regulating KIT response and stability, RIN3 may play a key

role in basic mast cell functions as well as pathologies involving

mast cell mediated chronic inflammation and mast cell hyperpro-

liferation.

Results

RIN3 is Highly Enriched in Mast Cells
The domain structure of RIN3 (Fig. 1A) suggests functional

similarity with RIN1, a known regulator of RTK endocytosis in

epithelial cells and neurons [23,24,27,28]. This led us to

hypothesize that RIN3 may serve as a regulator of RTK

endocytosis in a restricted and perhaps distinct set of cell types.

We therefore examined an expression database (BioGPS) and

found that human RIN3 mRNA was most highly expressed in

CD14+ monocytes (51 fold above median for all tissues) and mouse

Rin3 expression was highest in mast cells (24 fold above median

for all tissues). To examine if this relatively restricted expression

pattern was also true at the protein level, a panel of human cell

lines derived from various lineages was immunoblotted for

endogenous RIN3. Two mast cell lines, HMC and LAD2, showed

by far the highest expression of RIN3 protein (Fig. 1B).

Representative macrophage and osteoclast cells, which, like mast

cells, are derived from bone marrow, showed low or undetectable

RIN3 protein. This was also true for representative B cell,

myeloblast, T cell, fibroblast and gliobastoma lines.

RIN3 was detected by immunohistochemistry in tissue samples

from mastocytosis patients (Fig. 1C). While RIN3 expression was

easily detected in the mast cells, bordering epidermal cells showed

signal intensity about equal to tissue stained with secondary

antibody only. These results confirm that RIN3 expression is

characteristic of primary human mastocytosis cells, and did not

result from the generation of mast cell lines.

We next compared the expression of RIN3 to other members of

the RIN family of proteins (Fig. 1D). Expression of RIN3 was high

in all three mast cell lines examined (LAD2, LUVA, and HMC1.1)

with little expression in representative epithelial and glioblastoma

cell lines (Fig. 1D). RIN1, the best characterized of the RIN

paralog family, showed highest expression in glioblastoma cells

and low but detectable expression in epithelial cells but was

undetectable in the mast cell lines. RIN2 expression was detected

in all cell types with relatively high expression in the LUVA mast

cell line.

RIN3 is a GEF for RAB5 GTPases. We therefore compared the

expression profile of RIN3 to that of RABGEF1 (Rabex-5), a

RAB5-targeted GEF known to play a role in mast cell function.

RABGEF1 promotes internalization and affects the downstream

signaling of both FceRI, the high affinity IgE receptor, and KIT in

mast cells [29,30]. RABGEF1 also influences the endocytosis of

RTKs in other cell types [31]. We found RABGEF1 expression in

all cell lines probed (Fig. 1D), as expected based on its reported

expression in multiple cell types (BioGPS.org and [32]).

The protein and mRNA data show that RIN3 expression is

highly skewed, with notably elevated levels in mast cells. This

restricted expression profile contrasts with what was seen for

RIN1, RIN2 and the more distantly related RABGEF1, which

show quite different tissue distribution biases or are widely

expressed. Taken together, these findings suggest that RIN3

makes a unique contribution to mast cell function.

RIN3 Interacts with Endogenous BIN2 in Mast Cells
Previous studies [19] reported that RIN3 interacts with BIN1, a

BAR domain protein that binds to lipid membranes and induces

bending associated with trafficking events [33,34]. Endogenous

Figure 1. RIN3 is highly expressed and enriched in human mast
cells. (A) The domain structure of RIN3. Red = proline-rich motifs. (B)
Immunoblot analysis of RIN3 expression in human cell lines. 1:NIH3T3
w/RIN3 (+ctr), 2:NIH3T3 (2ctr), 3:HMC1 (mast), 4:LAD2 (mast), 5:THP1
(macrophage), 6:SaOs2 (osteoclast), 7:RAMOS (B cell), 8:K562 (myoblast),
9:Jurkat (T cell), 10: MCF10A (epithelial), 11:IMR90 (fibroblast), 12:U118
(glioblastoma). RIN3 appears as a double or single band depending on
exposure time of the immunoblot. TUBB = b-tubulin. (C) Human
mastocytosis sections stained using immunohistochemistry for RIN3
or secondary only as a control. Sections stained with anti-mast cell
tryptase are shown to identify the infiltrating mast cells. (D) Lysates
from three human mast cell lines (LAD2, LUVA, HMC1.1), an epithelial
cell line (MCF10A), and a neuronal cell line (U118) were run on an SDS-
PAGE gel and immunoblotted for RIN family members (RIN1/2/3) as well
as RABGEF1, another GEF for RAB5.
doi:10.1371/journal.pone.0049615.g001
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BIN1 protein was below the level of detection in LAD2 cells. A

paralog BAR domain protein, BIN2, is more highly expressed in

hematopoietic cells compared to BIN1 [35]; therefore, we

evaluated RIN3 binding to BIN2 in LAD2 cells. Cells were

stimulated with 100 ng/mL SCF, and RIN3 was immunoprecip-

itated from cell lysates. BIN2 was bound to RIN3 in unstimulated

cells, but this interaction was lost as early as 2 minutes after

stimulation with SCF (Fig. 2A). This result indicates that RIN3

and BIN2 are normally connected to each other, either directly or

as part of a complex, in resting mast cells. But soon after SCF

treatment, and concurrent with KIT stimulation and internaliza-

tion, RIN3 and BIN2 appear to dissociate from each other.

We next examined whether the association of BIN2 and RIN3

reflects the normal physiological state of resting mast cells by

looking for the re-association of BIN2 and RIN3. LAD2 cells were

stimulated with SCF to disrupt the RIN3::BIN2 complex and then

allowed to recover in SCF-free medium. Four hours after the

return of cells to SCF-free medium, RIN3 and BIN2 had re-

associated (Fig 2B). This result suggests that RIN3 and BIN2 are

part of a shared complex in resting mast cells, that stimulation of

KIT leads to disruption of this complex and release of BIN2, and

that the complex re-forms upon return to the resting state.

RIN3 Negatively Regulates KIT Internalization
RIN1 is known to regulate the endocytosis and downstream

signaling of receptor tyrosine kinases (RTKs) in epithelial cells

[23,36]. We hypothesized that RIN3 may be playing a role in

regulating KIT, the Stem Cell Factor (SCF) receptor and most

abundant RTK found on mast cells. To test our hypothesis, we

measured the internalization of KIT following stimulation with

SCF. We chose to perform these experiments in LAD2 cells, which

express wild type KIT and are highly dependent on SCF for

proliferation in culture [37]. RIN3 was silenced using a targeted

siRNA. We observed a consistent decrease in RIN3 protein levels

compared to control siRNA transfected cells, which were

indistinguishable from mock infected cells (Fig. S1A). Control

and RIN3 silenced LAD2 cells were stimulated with SCF at 5 ng/

mL, a relatively low but still physiological concentration that

facilitates measurement of early events after KIT activation.

Stimulated mast cells were then analyzed for cell surface KIT by

flow cytometry. RIN3 silencing did not influence the basal level of

detectable KIT prior to SCF treatment (Fig. 3A, left), but by 10

minutes post stimulation the cells with reduced RIN3 expression

showed a marked decrease in cells exhibiting high intensity surface

KIT compared to control cells (Fig. 3A, middle). This difference

was even more pronounced at 20 minutes post stimulation, when

RIN3 silenced cells had a well defined, low staining intensity peak

and little overlap with the high intensity peak of control cells

(Fig. 3A, right). At 20 minutes post stimulation knock down cells

have finished internalization of the receptor while a population

within the control cells still had high levels of surface KIT. Cells

with reduced RIN3 have a significantly greater percent of KIT

surface reduction 20 minutes post stimulation compared to control

(Fig. 3B). Control and knock down cells reached the same low level

of surface KIT by 90 minutes post stimulation (Fig. S1B). RIN3

silencing was confirmed by immunoblot (Fig. 3C). These results

indicated that RIN3 plays a role in setting the rate at which

activated KIT is internalized in mast cells.

To verify that accelerated KIT internalization was the result of

RIN3 silencing, we restored RIN3 expression by transduction with

an adenovirus expression vector. The resulting ectopic RIN3 level

in transduced cells was higher than endogenous RIN3 in control

cells but whole cell lysate levels of KIT were unchanged (Fig. 3E).

Cells with restored RIN3 (Fig. 3E) showed a KIT internalization

rate close to that seen in control cells, and lower than that of RIN3

silenced cells (Fig. 3D&F). The proportion of cells that retained

surface KIT at 20 minutes post stimulation (peak overlap area,

Fig. 3D) was greater in cells with restored RIN3 expression,

confirming that RIN3 silencing was responsible for accelerated

internalization. Hence, the more rapid KIT internalization rate

observed in RIN3 siRNA-transfected cells (Fig. 3A) can most easily

be explained by a reduction in RIN3 protein level.

Internalized KIT receptors, like other RTKs, can be recycled

back to the cell surface in order to return the cell to an SCF-

responsive condition. To examine KIT recycling, LAD2 cells were

starved overnight, stimulated for 90 minutes with 5 ng/mL SCF

and then placed in medium without SCF. Cells that had been

starved of SCF showed high levels of KIT on their surface (Fig.

S1B). For cells that were stimulated with SCF and then allowed to

incubate in SCF-free medium for 0, 45, or 90 minutes, we

observed a gradual recovery of surface KIT. The recovery rate for

control and RIN3 silenced cells was indistinguishable. Hence,

RIN3 does not appear to directly control the rate of KIT receptor

recycling back to the surface post SCF stimulation.

RIN3 Positively Regulates RAB5 Activation in Mast Cells
Because RIN3 is a known GEF for the RAB5 family of small

GTPases [19], we examined whether the levels of activated RAB5

correlated with RIN3 expression levels. In order to measure

activated endogenous RAB5 we utilized a 46ZFYVE-GST

construct that contains four copies of the 40 amino acid zinc

finger domain of the RAB5 effector Rabenosyn that preferentially

Figure 2. RIN3 interacts with endogenous BIN2. (A) Cells were
stimulated with 100 ng/ml SCF for indicated time points and lysates
were immuno-precipitated with anti-RIN3 or beads alone (ctrl). Whole
cell lysate (WCL) and IP samples were immunoblotted for RIN3 and
BIN2. The immunoblots shown are representative of two independent
experiments. At five minutes post-stimulation the amount of BIN2
precipitated was reduced by 8166% compared to unstimulated
(ImageJ), p,0.05. (B) Cells were stimulated with 100 ng/ml SCF for 0
or 5 minutes, then lysed immediately or resuspended in SCF free
medium to recover for 4 hours at 37uC before lysis. Lysates were
immunoprecipitated and immunoblotted as in A.
doi:10.1371/journal.pone.0049615.g002
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binds to the active (GTP-bound) conformation of RAB5. There

was no significant difference between the basal levels of active

RAB5 in control versus RIN3 knock down cells (Fig. 4A). SCF

stimulation, which was confirmed by elevated pERK levels, led to

Figure 3. RIN3 negatively regulates the internalization of KIT post SCF stimulation. (A) Cells transfected with control (solid) or RIN3 siRNA
(dashed) were stimulated with 5 ng/ml SCF for indicated time points. Cells were stained for surface intensity of KIT and analyzed by flow cytometry.
Gray line indicates unstained control. (B) Table shows the percent surface reduction of KIT from three independent flow cytometry experiments.
Surface reduction at 20 minutes post stimulation is significantly increased in RIN3 knock down cells, p,0.05. (C) Immunoblot indicating the level of
RIN3 knockdown. (D) Cells were transfected with RIN3 siRNA and then infected with GFP (siRNA/GFP) or RIN3 (siRIN3/RIN3) adenovirus. Surface
intensity of KIT was determined by flow cytometry at 0 mins (solid) and 20 mins (dotted) post stimulation. Percent reduction: ctrl/GFP (not shown):
59%, siRIN3/GFP: 67%, siRIN3/RIN3:57%. (E) Immunoblot for RIN3 and KIT levels in transfected/infected cells. (F) Graph represents percent surface
reduction at 20 minutes post stimulation from two independent experiments. Percent reduction of ctrl/GFP versus siRIN3/RIN3 is not significant
(p.0.34). Percent reduction siRIN3/GFP versus siRIN3/siRIN3 is significant (p,0.05).
doi:10.1371/journal.pone.0049615.g003

RIN3 Function in Mast Cells
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higher levels of active RAB5 in control cells (average of 80%

increase, p,0.001). In contrast, there was no significant change in

the amount of active RAB5 in RIN3 silenced cells (p.0.80)

following SCF stimulation. As a result, following SCF treatment

there was significantly less active RAB5 in the RIN3 silenced cells

than in control cells (p,0.025). Less activated RAB5 in the cell

post stimulation would be expected to reduce early endosome

fusion. Under these circumstances, internalized KIT may stay in

the early endosome for a prolonged period.

We next measured RAB5 activation in RIN3 over-expressing

LAD2 cells. As in the previous experiments, SCF stimulation of

control cells caused an increase in the level of active RAB5. Even

before SCF stimulation, however, RIN3 transduced cells had

higher levels of active RAB5 (Fig. 4B, 20% average increase,

p,161025), presumably due to stimulus-independent GEF

activity from over-expressed RIN3. There was no significant

difference in the amount of activated RAB5 post stimulation

between control and RIN3 over-expressing cells (p.0.2), however,

Figure 4. RIN3 promotes RAB5 activation. (A) LAD2 cells transfected with control or RIN3 siRNA were stimulated with 100 ng/ml SCF for 15
minutes. Cells were lysed and activated RAB5 was pulled down using 4X-ZFYVE-GST on glutathione beads as indicated in Methods. Precipitates from
the beads were immunoblotted for RAB5 (RAB5GTP). The whole cell lysates were immunoblotted for total RAB5, RIN3, pERK (to show stimulation),
ERK, and TUBB (loading control). Graph represents data from three independent experiments, **p,0.01. (B) Cells infected with Ad-GFP or Ad-RIN3
and treated as in (A). Graph represents data from three independent experiments, ***p,1 6 1025.
doi:10.1371/journal.pone.0049615.g004
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which might indicate a ceiling for RAB5(GTP) levels due to

negative regulation by RAB5-directed GAPs.

RIN3 Over-expression Promotes KIT Down Regulation
In contrast to the accelerated KIT internalization observed in

RIN3 silenced mast cells, RIN3 over-expression in the same cells

had no effect on the rate of KIT internalization following

stimulation with SCF (data not shown). We noted, however, that

unstimulated RIN3 over-expressing cells had reduced surface KIT

expression compared to control cells. The reduction of surface

KIT, as determined by flow cytometry (Fig. 5A and B), was

dependent on the relative level of RIN3 over-expression (Fig. 5C).

When RIN3 was moderately over-expressed (RIN3lo) surface KIT

was significantly reduced compared to cells expressing GFP; this

reduction was even more pronounced in cells with high RIN3

over-expression (RIN3hi) (Fig 5B, p,0.05, p,0.025). As a control,

the relative levels of transferrin receptor (TFRC) were measured

under the same conditions. High-level over-expression of RIN3

did not significantly alter TFRC surface expression (Fig 5B). In

these same cells, we also tested to see if whole cell lysate levels of

KIT and TFRC were changed with increasing RIN3 levels. We

observed that total cellular KIT decreased markedly as RIN3

levels increased (Fig. 5C&D); however, TFRC levels remain

largely unaffected, with a slight decrease at the highest level of

RIN3 expression. Previous work [38] has shown that expression of

constitutively active RAB5 decreases the surface and whole cell

lysate levels of EGFR in HeLa cells. Like EGFR, KIT normally

undergoes continuous cycles of internalization with endosome-

localized receptors either returned to the cell surface or degraded.

This persistent receptor turnover occurs through RAB5 mediated

endocytosis, and suggests that RIN3 over-expression, which leads

to higher basal levels of activated RAB5, is promoting receptor

degradation over recycling. To test this we incubated control or

RIN3 over-expressing LAD2 cells with the proteasome inhibitor

MG132. Control cells showed a modest increase in KIT levels,

while RIN3 over-expression cells showed a more dramatic

increase in KIT levels (Fig. 5E). This result suggests that RIN3

over-expression leads to decreased KIT levels due to increased

degradation.

RIN3 Negatively Regulates Cell Migration Toward SCF
Activated mast cells release SCF, the KIT ligand, which recruits

more mast cells to sites of allergen infiltration and infection.

Because RIN3 silencing caused accelerated KIT internalization,

we asked whether RIN3 might also influence the physiological

response of mast cells to SCF. To examine this, we measured the

ability of mast cells with altered RIN3 expression levels to migrate

toward SCF. These experiments were performed using high

(100 ng/ml) SCF to elicit a robust migratory response. Control

cells showed approximately four-fold more migration toward SCF

medium compared to SCF-free medium (Fig. 6A). RIN3 silenced

mast cells exhibited a modest but significant increase in migration

toward SCF (ctrl siRNA: 217619 cells; RIN3 siRNA: 277638

cells, p,0.01), but exhibited no difference from control cells in

their rate of migration toward SCF-free medium (Fig. 6A;

p.0.15), demonstrating the KIT-dependence of this effect.

To test whether RIN3 functions as a negative regulator of mast

cell migration, we established RIN3 over-expressing mast cells by

adenovirus transduction. Migration of these cells toward SCF was

markedly reduced when compared with mast cells infected with a

control adenovirus expressing GFP (Fig. 6B). In these experiments

RIN3 over-expression resulted in a two-fold reduction in

migration (Ad-GFP: 156620 cells; Ad-RIN3:75611 cells;

p,0.01). As noted for RIN3 silenced cells, RIN3 over-expression

did not alter the rate of basal cell migration toward SCF-free

medium, suggesting that basic cell motility functions were

unaffected.

RIN3 Sensitizes HMC1.1 Mastocytosis Cells to the KIT
Inhibitor Imatinib

The most common genetic alterations in mastocytosis are

mutations that activate KIT and confer a degree of SCF-

independent growth. Imatinib, which inhibits KIT and several

other tyrosine kinases, provides therapeutic benefits for some

mastocytosis patients. We tested whether RIN3 over-expression,

which causes KIT down regulation, might increase imatinib

sensitivity. HMC1.1 is an established mastocytosis cell line with a

KITV560G mutation. HMC1.1 cells show moderate sensitivity to

imatinib with an EC50 of 50–150 nM [39]. HMC1.1 cells were

transduced with a RIN3 lentivirus vector to create stable over-

expression cells, which showed a reduction in steady state KIT

levels (Fig. 7A). Importantly, we observed no effect of RIN3 over-

expression on cell proliferation in the absence of drug (Fig. 7B).

After a 24-hour incubation in medium containing 0.2 or 2 mM

imatinib, control cells showed a drop in viability as determined by

MTS assay (Fig. 7B). The HMC1.1 cells over-expressing RIN3

showed an additional, synergistic reduction in cell viability. Hence,

by facilitating KIT down regulation, RIN3 sensitizes mastocytosis

cells to the therapeutic kinase inhibitor imatinib. RIN3 silencing

produced no significant difference in imatinib sensitivity (data not

shown), perhaps because the relative drug resistance of these cells

is influenced by many factors.

RIN3 Silencing does not Affect Degranulation
Finally, we examined whether RIN3 is involved in regulating

signals from FceRI, the high affinity IgE receptor on mast cells.

FceRI activation by antigen (Ag)-clustered IgE causes rapid mast

cell degranulation with the release of histamine and other

inflammation mediators. Degranulation was measured as b-

hexosaminidase release following treatment of LAD2 cells with

biotinylated IgE and streptavidin (Fig. S2). We observed no

significant difference in degranulation timing or intensity when

comparing RIN3 silenced cells and control cells (0 ng/ml p.0.66,

1 ng/ml p.0.90, 5 ng/ml p.0.49, 10 ng/ml p.0.51, 100 ng/ml

p.0.40). It remains possible that RIN3 influences other events

downstream of FceRI activation, such as migration or secretion,

but this determination would require extensive investigation

beyond this study.

Discussion

The limited expression profile of RIN3 is unique among the

RIN family proteins that function as RAS effectors and RAB5

activators. Our observation that RIN3 is enriched in, and largely

restricted to, mast cells suggests that it evolved to provide a

function specific to endocytosis of mast cell receptors. RABGEF1,

which includes a RAB5 GEF domain but is otherwise unrelated to

RIN proteins, is also found in mast cells ([29] and this work). In

contrast, however, the RABGEF1 gene shows a broad pattern of

expression that is more consistent with a basic trafficking function

utilized by a wide range of cell types.

The observation that RIN3 silencing accelerates internalization

of stimulated KIT was initially surprising. Previous work had

reported that mast cells from Rabgef12/2 mice show delayed KIT

internalization [29]. This difference highlights the importance of

considering GEF activity in the context of the entire protein. In

addition to its VPS9 type (RAB5-directed) GEF domain,

RABGEF1 has a zinc finger domain that has been implicated in

RIN3 Function in Mast Cells
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Figure 5. KIT down regulation is enhanced by RIN3 activity. (A) Cells infected with Ad-GFP (black line) or Ad-RIN3 at high (dotted line) and
low (dashed line) concentrations were stained with PE/Cy7 labeled anti-KIT and analyzed by flow cytometry for basal surface expression of KIT. Gray
line represents unstained control. (B) Graphs showing surface intensity of anti-KIT and anti-TFRC as determined by flow cytometry. Surface expression
of GFP transduced cells was set to one. Data are compiled from two independent experiments, *p,0.05. (C) Lysates from cells from A and B were
immunoblotted to determine the amount of RIN3 over-expression and basal KIT and TFRC levels. (D) Graphs showing intensity of immunoblot signal
for KIT and TFRC compiled from two separate experiments, *p,0.05. (E) The proteasome inhibitor MG132 partially restores KIT expression.
Immunoblot for KIT levels in cells incubated for 3 hours with vehicle (ethanol) or 10 mM MG132 after overnight SCF starvation. This immunoblot is
representative of two independent experiments; KIT levels increased by 24.5612.5% for GFP infected cells and 47.563.5% for RIN3 infected cells.
doi:10.1371/journal.pone.0049615.g005

RIN3 Function in Mast Cells
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targeting HRAS for ubiquitination [40]. By contrast, the much

larger RIN3 protein includes an RA (Ras-Association) domain,

SH2 domain and prominent PR (proline-rich) domain. Of

particular relevance, we show that RIN3 interacts with BIN2, an

Figure 6. RIN3 inhibits mast cell migration toward SCF. (A) LAD2 cells transfected with control or RIN3 siRNA were allowed to migrate toward
SCF. This experiment was performed twice in triplicate, **p,0.01. (B) Cells infected with Ad-GFP or Ad-RIN3 were allowed to migrate toward SCF.
Experiment was performed in triplicate, **p,0.01. Immunoblots for RIN3 and TUBB are shown to the right of each graph. Immunoblot quantification
(LI-COR) indicated a 26% reduction in KIT (normalized to GAPDH).
doi:10.1371/journal.pone.0049615.g006

Figure 7. RIN3 over-expression sensitizes mastocytosis cells to imatinib. (A) HMC1.1 cells infected with empty vector (ctrl) or RIN3 lentivirus
were incubated with increasing amounts of Imatinib for 24 hours. (B) The graph represents MTS assay results for cell viability. Assays were performed
in quadruplicate, ***p,1 6 1025.
doi:10.1371/journal.pone.0049615.g007

RIN3 Function in Mast Cells

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e49615



amphiphysin related protein with a BAR domain typically used to

promote membrane bending during endocytosis and vesicular

trafficking. BIN2 was bound to RIN3 in resting cells and the two

proteins dissociated soon after KIT stimulation by SCF, but the

complex was re-formed after stimulated cells returned to a resting

state. We propose a working model (Fig. 8) as a basis for probing

signaling events triggered by KIT stimulation and RAS activation.

RAS would then recruit and stimulate effector proteins, including

RIN3. This enhances the RAB5 GEF activity of RIN3 while also

causing the release of BIN2. Although our data do not directly

address the role of BIN2 in subsequent events, BAR domain

proteins are known to promote plasma membrane bending of the

type required during endocytosis. BAR domain proteins can

dimerize with other family members and can also form

homodimers [41]. Given the low level of BIN1 in LAD2 cells, a

BIN2 homodimer might well be operating in this system. Notably,

BIN2 expression is restricted to hematopoietic granular cells [35]

and mast cells (this work), suggesting an evolved partnership with

RIN3.

Highly over-expressed RIN3 led to reduced steady state levels of

total and surface resident KIT protein, likely due to elevated levels

of endogenous activated (GTP-bound) RAB5. Similar reductions

of receptor tyrosine kinases (RTKs) have been seen upon over-

expression of related RAB5 GEF domain proteins: RINL over-

expression can reduce the basal level of EphA8 [42] and RIN1

over-expression can decrease EGFR protein levels [43]. In

unstimulated wild type cells, RTKs such as KIT are typically

internalized and recycled back to the plasma membrane. When

RAB5 activity is elevated, early endosomes with internalized KIT

are more likely to undergo fusion and follow a receptor

degradation pathway. This interpretation is supported by the

rescue of KIT levels in RIN3 over-expressing cells treated with a

proteasome inhibitor. Total KIT levels were unchanged when

RIN3 was silenced, but under these conditions we observe very

little RAB5 activity pre- or post-SCF stimulation. RIN3 silencing

had no affect on mast cell degranulation following activation of the

high affinity IgE receptor, FceRI. This is notable because, like

KIT, FceRI activates RAS and its effector proteins. In addition,

Rabgef1 knockout [30] and Rab5a knock down [44] each enhance

IgE-induced degranulation of bone marrow derived mast cells.

RIN3 silenced cells exhibited greater migration toward SCF.

These cells internalized KIT more quickly than normal and they

have lower levels of active RAB5 following SCF treatment. This

might lead to a prolonged stay in the early endosome, with more

downstream signaling and a greater chance for KIT recycling back

to the plasma membrane while migrating toward SCF. Converse-

ly, RIN3 over-expressing mast cells demonstrated less migration

toward SCF. In these cells, decreased levels of surface and total

KIT, which correlate with elevated basal levels of active RAB5,

would be expected to diminish downstream signaling and

biological output. There was no difference in migration toward

SCF-free medium when RIN3 was silenced or over-expressed.

This implies that changes in migration are due to SCF mediated

responses and not due to changes in affinity for fibronectin. The

ability to migrate toward SCF is fundamental to mast cell function,

suggesting that a deeper understanding of RIN3 signaling may

provide new avenues for intervention in mast cell pathophysiology.

KIT gain-of-function mutations are common in mastocytosis

and a limited number of other hyperproliferative disorders.

Imatinib is an effective tyrosine kinase inhibitor for KIT, as well

as ABL and PDGF receptor [45]. This drug has been used with

considerable success in the treatment of BCR-ABL1 positive

chronic myeloid leukemias [46]. Imatinib has also shown some

effectiveness in the treatment gastrointestinal tumors with mutant

KIT [47]. In addition, imatinib has been shown to prevent and

lessen the symptoms of rheumatoid arthritis [48], an inflammatory

joint disease with mast cell involvement [49]. Previous studies have

established that reduced KIT expression, in conjunction with

tyrosine kinase inhibitors, can decrease proliferation and increase

apoptosis in the mastocytosis cell line HMC1.1, which carries the

KITV560G activating mutation [50]. We demonstrate here that

RIN3 over-expression markedly sensitizes HMC1.1 cells to

imatinib treatment. This may open new avenues for synergistically

enhancing the potency of KIT tyrosine kinase inhibitors. Such

combination therapies would be applicable to malignancies

characterized by KIT gain-of-function mutations, as well as

chronic inflammation pathologies with mast cell involvement.

Materials and Methods

Antibodies
To make human RIN3 antibodies, the full length protein was

first expressed as a 6 6His fusion from a baculovirus expression

Figure 8. Model of RIN3 function in mast cells. (A) In resting cells
BIN2 is bound to RIN3 at a proposed BIN2 Binding Domain (BBD). (B)
SCF binding to KIT stimulates RAS. RAS activates RIN3, though a RAS
Association (RA) domain, and other effectors (RAF, PI3K). RIN3 releases
BIN2, which might then become available for membrane association.
The RIN3 GEF domain activates RAB5 to promote early endosome
fusion and trafficking. Internalized KIT may continue signaling, be
recycled to the plasma membrane, or be targeted for degradation.
P = tyrosine phosphorylation; U = ubiquitination; SH2 = Src homology 2
domain (not examined in this work).
doi:10.1371/journal.pone.0049615.g008
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vector in Sf9 cells. Metal affinity chromatography (Ni-NTA beads,

Qiagen) purified protein was used to generate rabbit polyclonal

antibodies (21st Century Biochemicals) that were used for

immunoblot staining at a 1/5,000 dilution, for immunoprecipita-

tion at a 1/250 dilution and for immunohistochemistry at 1/

5,000.

Other antibodies, their sources and the dilutions used for

immunoblot probing were: rabbit anti-RIN1 [51] 1/1,000; rabbit

anti-RAB5 (Abcam ab18211) 1/250; rabbit anti-RAS (Novus Bio

EP1125Y) 1/5000; rabbit anti-KIT (Cell Signaling 3392) 1/500;

mouse anti-KIT (Abcam Ab81) 1/500; mouse anti-a tubulin

(Sigma) 1/3000; mouse anti-KIT conjugated to PE/Cy7 (Biole-

gend 104D2) 1/100; rabbit anti-GAPDH (Abcam) 1/3000; mouse

anti-pTyr clone 4G10 (Millipore) 1/500; rabbit anti-RABGEF1

(Sigma) 1/1,000; rabbit anti-BIN2 [35] 1/3000; mouse anti-

transferrin receptor (Invitrogen) 1/500; anti MCT (DakyCytoma-

tion) 1/2000.

Cell Culture
The human cell lines used in this work (LAD2, LUVA,

HMC1.1 and HMC1.2) were previously established, have been

described in the published work cited below and were obtained

with institutional approval. The LAD2 cell line [37] was a

generous gift from A. Kirshenbaum (NIH, Bethesda, MD). They

were maintained in StemPro with 100 ng/ml SCF at less than

500,000 cells/ml. The HMC1.1 and HMC1.2 cell lines were

generous gifts from Dr. J.H. Butterfield (Mayo Clinic, Rochester,

MN) [52] maintained in Iscove’s DMEM with 10% FBS, 1%

glutamax, and 0.01% mono-thioglycerol. The LUVA cell line was

a generous gift from J. Steinke (Asthma and Allergic Diseases

Center, University of Virginia) [53] maintained in StemPro

without SCF. Parental HMC cells were obtained from Dr. Chad

Oh (Department of Pediatrics, Harbor-UCLA Medical Center).

Degranulation Assay
Degranulation was determined by amount of b-hexosaminidase

released as previously described [37]. LAD2 cells were primed

with 100 ng/mL biotinylated IgE (Abbiotec) in HEPES buffer

(10 mM HEPES, 137 mM NaCl, 2.7 mM KCl, 0.4 mM

Na2HPO4, 5.6 mM glucose, 1.8 nM CaCl2, 1.3 nM MgSO4

pH 7.4)+0.4% BSA for 1 hour at 37uC. Cells were washed three

times and resuspended in HEPES + BSA at 20,000 cells per well.

Indicated amount of streptavidin (Sigma) was added to each well;

each concentration was done in triplicate. After 30 minutes

incubation, cells were pelleted and lysed in 1% Triton X-100 in

PBS. Supernatants were aliquoted into a 96 well plate; b-

hexosaminidase activity for both the supernatants and the lysates

were determined by incubation with p-nitrophenyl N-acetyl-b-D-

glucosamide. Percent release was calculated as amount in

supernatant/(supernatant + lysate).

Immunoprecipitation and Immunoblotting
For immunoblotting, proteins were transferred to ECL mem-

branes and blocked with 5% milk in PBS. Primary antibodies were

incubated overnight at 4uC in 5% milk in PBST (PBS+0.1%

Tween). This was followed by three washes in PBST and one hour

incubation with secondary antibodies at room temperature. This

was true for all antibodies with the exception of 4G10 antibody,

which was used according to Millipore’s recommendations.

Membranes were developed using the ECL plus immunoblotting

reagent (VWR). Immunoblots exposed on film were quantified

using ImageJ software. All other immunoblots were quantified

using a Li-Cor Odyssey scanner and software.

For immunoprecipitation experiments, LAD2 cells were starved

of SCF in complete StemPro media overnight, then stimulated

with SCF for indicated time points and concentrations of growth

factor. Cells were centrifuged, washed once in PBS, and lysed in

NP-40 buffer (150 mM NaCl, 50 mM Tris pH 8.0, 1% glycerol,

1% NP-40) on ice for 15 minutes. Lysates were spun at 16000 6g

and the pellet was discarded. To enrich for RIN3 and its binding

partners, RIN3 antibody was added to cell lysate with protein A

and protein G beads and incubated at 4uC with rotation for three

hours to overnight. Immunoprecipitated samples were gently spun

down at 8006g and the pelleted beads were washed twice in lysis

buffer. Beads were boiled in 56 SDS loading buffer to release

proteins from beads. Samples were then analyzed by SDS PAGE

and immunoblotting.

Expression Constructs, Lentiviruses and Adenoviruses
RIN3 cDNA (Open Biosystems) was PCR amplified and cloned

into pBluescript KS to create pKS-RIN3. A FLAG tag was fused

onto the C-terminus of the protein to create RIN3-FLAG. This

was subsequently inserted into an M4 vector that was used for

lentiviral production as previously described [36].

A 6 6 Histidine tag was added to RIN3 using the following

oligonucleotides 59- TCGACCACCACCATCACCATCAC-

CATCACTAACTAGT and 59- GTAGACTAGTTAGT-

GATGGTGATGGTGATGGTGGTGG. RIN3-His was then

cloned into the donor vector pFastBac (Invitrogen) in order to

produce baculovirus for Sf9 cell infections following established

procedures.

Adenoviral vector construction was performed by homologous

recombination in E. coli, as previously described [54]. The Ad5/

F35 viral vector contains a 2,115-bp-long chimeric fiber gene

consisting of the Ad5 tail and the Ad35 shaft and knob domains

[55]. RIN3-FLAG was cloned into the pShuttle-CMV plasmid

and transformed into recombinogenic E. coli strain BJ5183 that

had already been transformed with a plasmid containing the Ad5/

F35 vector genome. Full-length recombinant adenoviral vectors

genomic plasmids were amplified after re-transformation into

Stabl3 cells, and transfected into Ad293 cells to generate an initial

virus stock. The virus was then propagated in progressively larger

scale cell cultures, and after the final amplification step, the virus

was purified using an AdEasy Purification kit (Clontech). A

TCID50 assay was performed to determine the titer (IU/ml) of the

working virus stock. Low and high RIN3 over-expression cell lines

were created by adjusting the multiplicity of infection for

adenovirus and LAD2 cells (range from 2 to 20 infectious units

per cell).

Flow Cytometry
To measure internalization, LAD2 cells were starved of SCF

overnight and stimulated with 5 ng/ml SCF at 37uC for times

indicated. Cells were spun down, washed once in cold PBS. For

the KIT recovery assay LAD2 cells were starved of SCF overnight

and stimulated with 5 ng/ml SCF for 90 minutes at 37uC. Cells

were spun down, washed once in room temperature PBS and

resuspended in fresh StemPro without SCF. They were incubated

at 30uC for times indicated then washed in cold PBS. Staining was

performed the same for both assays: cells were resuspended in

PBS+0.1% BSA with PE/CY7-anti-KIT (Biolegend 104D2)

diluted 1/100 or Alexa Fluor 647-anti-CD71 (Santa Cruz) diluted

1/50 and incubated for 45 minutes at 4uC. After washing once in

PBS+0.1% BSA, they were passed through a 2 mm filter, and run

on FACS (BD FSR II) using BD FACS Diva software. Results

were analyzed using FlowJo. FACS graphs were gated on the

viable cell population.
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RIN3 Knockdown
Knock down experiments were conducted using the ON-

TARGETplus system from Dharmacon. The non-targeting

siRNA (ON-TARGETplus Non-targeting siRNA #3) and siRNA

targeted to RIN3 (GCAGCAUGUUCCACGCUUU) were trans-

fected with Dharmafect 1 according to manufacturer’s directions.

The final concentration of RNA in each culture was 3 nM; LAD2

cells were at a concentration of 1.25 6 105 cells/ml. To restore

RIN3 expression, the Ad-RIN3 adenovirus was added 24 hours

post siRNA transfection.

Immunohistochemistry
Immunohistochemical analysis was performed on formalin-

fixed, paraffin-embedded sections from mastocytosis patients

(UCLA Translational Pathology). Sections were de-waxed at

60uC and rehydrated with Safeclear and ethanol, then incubated

in 0.5% trypsin at 37uC for 20 minutes for antigen retrieval.

Endogenous peroxidase activity was blocked with 3% H2O2 for 15

minutes. Samples were blocked in 5% goat serum for 30 minutes

before being incubated overnight with anti-RIN3 or anti-MCT.

Slides were washed three times in PBS and incubated with

biotinylated goat anti-rabbit secondary for 40 minutes. Staining

was performed using avidin-biotin complex (ABC, Vectastain) and

detected using 3,diaminobezidine (DAB, Vectastain). Samples

were counterstained with hematoxylin and neutralized with

ammonia hydroxide. Slides were then dehydrated and coverslips

were attached with Permamount.

Migration Assay
Migration assays were performed using a modified Boyden

Chamber (8.0 um pore size). The bottom of the chamber was

coated overnight with 800 ng/mL fibronectin. LAD2 cells were

starved of SCF overnight and resuspended at 5 6105 cells/mL in

fresh media without SCF. Chambers were place above media with

or without 100 ng/mL SCF and allowed to migrate for 1 hour at

37uC. Chambers were then washed in PBS, fixed with 4% PFA for

15 minutes, and stained with 0.1% crystal violet in 10% ethanol

for 20 minutes. Cells were wiped from the top chamber that was

then washed in PBS to remove excess stain. Cells were counted by

light microscopy.

Activated RAB5 Pull Down
BL21 cells were transformed with pGEX 46ZFYVE-GST, a

tagged RAB5 effector domain (Balaji and Colicelli, unpublished).

After induction for 3 hours at 37uC, cells were lysed by sonication

in buffer containing 20 mM Tris, 250 mM NaCl, 10% glycerol,

and 0.01% Triton. Glutathione sepharose was added to lysate and

incubated for 1 hour. Beads were centrifuged and resuspended in

NP-40 lysis buffer. Cells were prepared with SCF starvation

overnight in then 0 or 5 minutes of 100 ng/mL SCF treatment at

37uC. Cells were then spun down, washed once in cold PBS and

lysed in NP-40 buffer with the addition of 1 mM DTT and

10 mM MgCl2. Glutathione beads preloaded with effector were

added to each lysate and allowed to bind for one hour followed by

immunoblot detection of total RAB5.

MTS Assays
HMC1.1 cells were plated at 50,000 cells per 100 ml in each

well of 96 well plate. Imatinib was added at 0, 0.2, and 2 mM to

each well. Cells were incubated at 37uC, 5% CO2 for 24 hours.

Twenty microliters of MTS AQ reagent (Promega) was added to

each well, mixed, and incubated for 3 hours at 37uC, 5% CO2.

Absorbance at 490 nm was read on (Victor3, 1420 Multilabel

Counter, PerkinElmer) and normalized to media only control.

Supporting Information

Figure S1 RIN3 silencing does not affect KIT surface
recovery. (A) Representative blot comparing levels of RIN3 in

mock, ctrl siRNA, and RIN3 siRNA transfected cells. Transfection

with siRNA did not affect wild type levels of RIN3. (B) Cells were

transfected with control (blue) or RIN3 siRNA (red). Surface

expression of KIT was measured by flow cytometry before

stimulation (top left), after stimulation with 5 ng/ml SCF (top

right) and at two time points of recovery in SCF free media

(bottom panels). Gray line represents unstained control. Immu-

noblot indicates level of RIN3 in lysates.

(PDF)

Figure S2 RIN3 silencing does not affect degranulation.
The amount of granule release was measured in cells with control

(white bars) or knock down levels of RIN3 (gray bars). All cells

were primed with biotinylated IgE and then incubated with

indicated concentrations of streptavidin (antigen). Percent granule

release was calculated as b-hexosaminidase activity: supernatant/

(supernatant + lysate). Graph is compilation of two independent

experiments performed in triplicate.

(PDF)
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