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Abstract

Background: H89 is a potent inhibitor of Protein Kinase A (PKA) and Mitogen- and Stress-Activated protein Kinase 1 (MSK1)
with some inhibitory activity on other members of the AGC kinase family. H89 has been extensively used in vitro but its anti-
inflammatory potential in vivo has not been reported to date. To assess the anti-inflammatory properties of H89 in mouse
models of asthma.

Methodology/Principal Findings: Mice were sensitized intraperitoneally (i.p.) to ovalbumin (OVA) with or without alum, and
challenged intranasally with OVA. H89 (10 mg/kg) or vehicle was given i.p. two hours before each OVA challenge. Airway
hyperresponsiveness (AHR) was assessed by whole-body barometric plethysmography. Inflammation was assessed by the
total and differential cell counts and IL-4 and IL-5 levels in bronchoalveolar lavage (BAL) fluid. Lung inflammation, mucus
production and mast cell numbers were analyzed after histochemistry. We show that treatment with H89 reduces AHR, lung
inflammation, mast cell numbers and mucus production. H89 also inhibits IL-4 and IL-5 production and infiltration of
eosinophils, neutrophils and lymphocytes in BAL fluid.

Conclusions/Significance: Taken together, our findings implicate that blockade of AGC kinases may have therapeutic
potential for the treatment of allergic airway inflammation.
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Introduction

Asthma is a very common chronic inflammatory disease

affecting over 300 million people worldwide [1] and its

prevalence is rising [2]. Although most patients respond very

well to current therapies, including corticosteroids and b2-

agonists, about half of them still report episodes of uncontrolled

asthma [3]. Moreover, a small portion (5–10%) of asthmatic

patients fails to respond to corticosteroids [1,4,5] highlighting a

need for new therapies. It has been proposed that enhanced

kinase activity could be responsible, at least in part, for this

corticosteroid resistance [5,6,7].

Because asthma is a very complex inflammatory disease,

involving a broad spectrum of cytokines, chemokines and other

inflammatory mediators [8,9], it is unlikely that targeted

inhibition of a single molecule or receptor might result in an

effective treatment [1]. Indeed, the efficiency of corticosteroids is

based on repression of many transcription factors [10]. Kinases

play a major role in regulating the expression of inflammatory

genes in asthma [7] and kinase inhibitors are now in preclinical

development for the treatment of inflammatory diseases,

including asthma [1,7].

N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfona-

mide) (H89) is a potent inhibitor of the cAMP-dependent Protein

Kinase A (PKA) [11] and Mitogen- and Stress-activated Kinase 1

(MSK1) [12,13], and shows some selectivity for other members of

the AGC kinase family, including p70 ribosomal protein S6 kinase

1 (S6K1) and Rho-associated kinase (ROCK)-II [14,15]. Both

PKA and MSK1 can activate transcription factors implicated in

inflammatory gene expression, including NF-kB [12,13,16,17] and

CREB [18,19,20,21].

A previous report indicates that H89 can inhibit IL-5 promoter

activity and IL-5 expression in Th2 cells in vitro [22]. Considering

the central role of IL-5 in eosinophil biology and in the

pathophysiology of asthma [23], we investigated the effect of

H89 in mouse models of asthma [24,25].

Materials and Methods

Mice
Male BALB/c and C57BL/6 mice were purchased from

Charles River Laboratories. Animals were maintained under

controlled environmental conditions with a 12 h/12 h light/

dark cycle according to the EU guide for use of laboratory

animals. Food (UAR-Alimentation) and tap water were available

ad libitum. Animal experimentation was conducted with the

approval of the local ethics committee that regulates animal

research at the University of Strasbourg (‘Comité Régional d’Ethique

en Matière d’Expérimentation Animale de Strasbourg’ (CREMEAS)).
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Allergen Sensitization and Challenge
Acute asthma model. Nine week-old BALB/c mice were

sensitized (i.p.) on days 0 and 7 with 50 mg chicken egg albumin

(OVA, Grade V) adsorbed on 2 mg aluminium hydroxide (alum)

in saline (23918-6, Sigma-Aldrich). Control animals received i.p.

injections of alum in saline only. Mice were challenged on days 18,

19, 20 and 21 by intranasal (i.n.) instillations of 10 mg OVA in

saline or with saline alone for controls (12.5 ml/nostril). These

challenges were performed under anesthesia (i.p.) with 50 mg/kg

ketamine (ImalgeneH, Merial) and 3.33 mg/kg xylazine (Rom-

punH, Bayer).

Moderate asthma model. 9 week-old C57BL/6 mice were

sensitized i.p. on days 0 and 7 with 50 mg OVA or with saline for

control animals. Mice were challenged (i.n.) on days 47, 50 and 53

with 10 mg OVA in saline or saline alone for control animals.

Treatment with H89
H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfo-

namide], di-HCl Salt) (10 mg/kg) (LC Laboratories, PKC

Pharmaceuticals Inc., Woburn, MA, USA) suspended in 5%

DMSO in saline was administered i.p. two hours before each

OVA challenge (or two hours before the last OVA challenge only

for Figure S3). Control animals received equivalent volumes

(200 ml) of 5% DMSO in saline.

Measurement of Airway Responsiveness
Airway responsiveness to aerosolized methacholine (MCh)

(Sigma Chemicals) at increasing concentrations was measured 24

hours after the last OVA challenge (on day 22 in the acute model

and on day 54 in the moderate model) by whole body barometric

plethysmography (Emka Technologies, Paris, France) [26]. As

previously reported [27,28], mice were stabilized in the plethys-

mograph chamber for 30 min until stable baseline, and then

exposed to aerosolized saline (30 sec) as a control. Mice were then

challenged every 20 min with aerosolized MCh (0.05, 0.1, 0.2 and

0.3M) for 30 sec each, and the enhanced pause (PenH) was

recorded during 5 min and used as an index of airway obstruction.

Total and Differential Cell Counts in Bronchoalveolar
Lavage (BAL) Fluid

BAL and differential cell counts were performed as previously

reported [27,28]. Briefly, mice were anaesthetized i.p. (Ketamine

50 mg/kg – Xylasine 3 mg/kg). After semi-excision of the trachea,

a plastic canula was inserted, and airspace washed with 0.5 ml of

0.9% NaCl injected with a 1 ml syringe. This operation was

performed 10 times. The initial concentrated supernatant of the 2

first lavages (volume = 260.5 ml administered, ,0.5 ml back) was

collected for cytokine measurements. The rest of the bronchoal-

veolar lavage was centrifuged (600 g for 10 min, 4uC), and cell

pellets pooled. After lysis of erythrocytes with distilled water

followed by osmotic re-equilibration, the cell pellet was suspended

in 500 ml of 0.9% NaCl and used for total cell counts on a

hemocytometer chamber. For differential cell counts, cells were

cytocentrifuged at 700 rpm for 10 min (Shandon cytospin), and

labelled with Diff-QuickH staining. Differential cell counts on at

least 400 cells were obtained using standard morphological

criteria.

Histological Analysis
Lung tissues were fixed (4% paraformaldehyde) and paraffin-

embedded. 6-mm sections were cut, mounted on Superfrost glass

slides (Fischer Scientific), and stained with H&E or periodic acid-

Schiff (PAS) or toluidine blue (all from Sigma-Aldrich). To

determine the severity of the inflammatory cell infiltration,

peribronchial cell counts were performed based on a 5-point

scoring system described by Myou et al. [29]. The extent of mucus

production was quantified using a 5-point grading system

described by Tanaka et al. [30].

ELISAs
IL-4, -5 and -10 were quantified in BAL fluids collected 24 h

after the last OVA challenge using ELISA kits (BD Pharmingen)

according to the manufacturer’s instructions. OVA-specific IgE,

IgG1, IgG2a (for Balb/c mice) and IgG2c (for C57BL/6 mice)

serum levels were determined by ELISA as previously described

[31].

Statistical Analysis
Data are presented as means 6 SEM. Differences in airway

responses between different groups were statistically analyzed

using a two-way ANOVA followed by a Bonferroni post-test. For

all other experiments, statistical differences were analyzed using

Student’s t test. Data were considered significantly different when

P,0.05.

Results

Effect of H89 on OVA-induced Airway
Hyperresponsiveness

OVA-sensitization and subsequent challenge is known to lead to

the development of airway hyperresponsiveness (AHR) in the

acute asthma model. We therefore assessed the effect of the AGC

kinase inhibitor H89 (10 mg/kg, administered i.p. 2 h before each

challenge) on airway responses to aerosolized methacholine (MCh)

by a non-invasive method measuring the enhanced pause [Penh]

at 24 h after the last challenge. As expected, OVA sensitized/

challenged BALB/c mice exhibited increased Penh responses to

MCh as compared to saline-treated mice. Treatment with H89

significantly inhibited AHR in OVA sensitized/challenged mice,

whereas it had no effect on airway responses in control mice

(Fig. 1A). By contrast, OVA sensitized/challenged C57BL/6 mice

did not develop AHR in the moderate asthma model (Fig. 1B).

Effect of H89 on OVA-induced Inflammatory Cell Influx in
BAL Fluid

OVA sensitized/challenged mice displayed a significant in-

crease in total cell infiltrate in BAL fluid in both models as

compared to control mice (5.1-fold and 2.5-fold for the acute and

the moderate model, respectively) (Fig. 2A & 2B). In the acute

model, this cell infiltrate consisted of 50.1% eosinophils and 47.4%

macrophages (Fig. 2A) with 2.1% neutrophils and 0.7%

lymphocytes (Fig. 2C). Treatment with H89 decreased eosinophil

numbers by 80%, neutrophil numbers by 64% and lymphocyte

numbers by 74% without any effect on macrophage (Fig. 2A &
2C). In the moderate model, the cell infiltrate consisted of 39.3%

eosinophils, 58.5% macrophages, 1.9% neutrophils and 0.3%

lymphocytes and was entirely inhibited by H89 (Fig. 2B & 2D).

Effect of H89 on Peribronchiolar Inflammation and Mucus
Production in the Lung

Lung tissues collected 24 h after the last challenge showed

marked peribronchiolar inflammation in both acute and moderate

asthma models (Fig. 3A). H89 inhibited this infiltration of

inflammatory cells by 63 and 79% in the acute and moderate

models, respectively (Fig. 3B).

Anti-Inflammatory Effects of H89 in Asthma
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Periodic acid-Schiff (PAS) staining revealed a strong goblet cell

hyperplasia and mucus overexpression in OVA sensitized/

challenged mice in both models (Fig. 4A). This feature was also

significantly inhibited by H89, by 53% and 88% in the acute and

the moderate models, respectively (Fig. 4B).

Effect of H89 on Mast Cell Numbers in the Lung
OVA sensitized/challenged mice displayed a significant in-

crease in lung mast cell numbers in both models as compared to

control mice (3.4-fold and 2.6-fold for the acute and the moderate

model, respectively) (Fig. 5A & 5B). Treatment with the AGC

kinase inhibitor H89 significantly reduced lung mast cell numbers

Figure 1. Effect of H89 on the development of airway hyperreactivity in the acute asthma model. A–B. Penh responses to aerosolized
methacholine in control mice (square) and OVA-sensitized/challenged mice (circle) treated with vehicle (black) or H89 (10 mg/kg) (grey) in the acute
(A) and moderate (B) asthma models. (B = baseline). Data represent mean values 6 SEM (bars) from n = 629 mice for control groups and n = 12 mice
for OVA sensitized/challenged groups (OVA). *P,0.05 and ***P,0.001 vs corresponding controls; ###P,0.001 vs group indicated; NS: not significant.
doi:10.1371/journal.pone.0049512.g001

Figure 2. Effect of H89 on numbers of leukocytes in BAL fluid. A–B. Effect of H89 (10 mg/kg) (grey blocks) or vehicle (black blocks) on total
leukocyte (Total), eosinophil (Eos) and macrophage (Mac) numbers in BAL fluid 24 hours after the last challenge in control (Ctr) and OVA-sensitized/
challenged mice (OVA) in the acute (A) and moderate (B) asthma models. C–D. Effect of H89 (10 mg/kg) (grey blocks) or vehicle (black blocks) on
neutrophils (Neu) and lymphocytes (Lym) numbers in BAL fluid 24 hours after the last challenge in control (Ctr) and OVA-sensitized/challenged mice
(OVA) in the acute (C) and moderate (D) asthma models. Data represent mean values (blocks) 6 SEM (bars) from n = 629 mice per group (saline) and
n = 9212 mice per group (OVA). *P,0.05, **P,0.01 and ***P,0.001 vs corresponding controls; ##P,0.01 and ###P,0.001 vs group indicated; NS:
not significant.
doi:10.1371/journal.pone.0049512.g002

Anti-Inflammatory Effects of H89 in Asthma
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in the moderate model, but remained without any effect in the

acute model (Fig. 5A & 5B).

Effect of H89 on OVA-induced Th2 Cytokine Production
in BAL

We next assessed the levels of Th2 cytokines IL-4 and IL-5 in

BAL fluid collected 24 h after the last challenge. OVA-treated

mice showed significantly increased levels of IL-4 and IL-5 in both

asthma models. These increases were abolished by H89 in both

models (Fig. 6A, B, C, D), without modifying baseline levels of

control mice (Fig. 6A & 6C).

Effect of H89 on OVA-induced Immunoglobulin (Ig)
Levels

Serum was collected 24 h after the last OVA challenge. OVA

treatment led to a significant increase in OVA-specific IgE, IgG1

and IgG2a/c levels, as compared to control mice in both asthma

models (Fig. 7). Treatment with H89 significantly reduced both

OVA-specific IgE, IgG1 and IgG2c levels in the moderate model

(Fig. 7B, 7D & 7F). By contrast, H89 had no effect on serum

OVA-specific Ig-production in the acute model (Fig. 7A, 7C &
7E).

We also measured IgA levels in BAL fluids collected 24 h after

the last challenge with OVA (Fig. S1 and Methods S1). OVA

treatment led to a significant increase in total IgA levels, as

compared to control mice in both asthma models (Fig. S1A &
S1B). This increase was totally inhibited by treatment with H89 in

both models (Fig. S1A & S1B). We also observed a significant

increase in OVA-specific IgA in the acute model, but not in the

moderate model, and this increase was partially reversed by

treatment with H89 (Fig. S1C & S1D).

Discussion

N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfona-

mide) (H89) was first described more than 20 years ago as an

inhibitor of Protein Kinase A (PKA) [11]. It was later reported to

also inhibit Mitogen- and Stress-Activated protein Kinase 1

(MSK1) with a potency similar to that for PKA, and showed some

selectivity for other members of the AGC kinase family, including

p70 ribosomal protein S6 kinase 1 (S6K1) and Rho-associated

kinase (ROCK)-II [14,15]. H89 has been used extensively in vitro

as a PKA and MSK1 inhibitor but, to the best of our knowledge,

its anti-inflammatory potential in vivo has not been reported to

date. The present study demonstrates that H89 exerts strong anti-

inflammatory properties in mouse models of asthma.

Several models of allergic asthma have been developed in mice.

Although these models promote a T helper type 2 (Th2) cell–

biased pulmonary inflammation, apparent disparities exist reflect-

ing differences in the strains of mice examined and/or in the

protocols used for antigen sensitization and challenge [32,33]. For

these reasons, we decided to assess the anti-inflammatory

properties of H89 using two models of allergic asthma and two

commonly used strains of mice. The ‘acute’ model we used

consisted of sensitization of Balb/c mice by intraperitoneal (i.p.)

injection of chicken egg ovalbumin (OVA) adsorbed on the

adjuvant aluminum hydroxide (alum), followed by repetitive

intranasal (i.n.) challenges with OVA. The use of alum promotes

a strong eosinophilic inflammation in the lung, and airway

hyperresponsiveness (AHR) that are however independent of IgE

Figure 3. Effect of H89 on lung tissue inflammatory cell infiltration. A. H&E-stained lung sections demonstrating peribronchial inflammatory
infiltrates 24 hours after the last OVA challenge (magnification 6 200). (B–C) Inflammation score in lung sections from control (Ctr) and OVA
sensitized/challenged (OVA) mice treated with vehicle (black blocks) or H89 (grey blocks) in the acute (B) and moderate (C) asthma models. Data
represent mean values 6 SEM (bars) from n = 6 mice per group. ***P,0.001 vs corresponding controls; ###P,0.001 vs group indicated.
doi:10.1371/journal.pone.0049512.g003

Anti-Inflammatory Effects of H89 in Asthma
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production, B cells or mast cells [34]. The ‘moderate’ model we

used in C57BL/6 mice consisted of i.p. sensitization with OVA in

the absence of adjuvant, followed by i.n. challenges with OVA.

Although we did not observe the development of any significant

AHR in these conditions, adjuvant-free models of asthma

reproduce several features of human asthma including the

inflammatory infiltrate and are fully dependent on mast cells

when performed in mice on the Th1-prone C57BL/6 background

[24,25] but not in mice on the Th2-prone Balb/c background

[35].

We show that H89 is a potent inhibitor of AHR associated with

the acute asthma model. Lung inflammation, mucus production

and infiltration of eosinophils were reduced by treatment with H89

in both asthma models. Interestingly, treatment with H89 totally

inhibited macrophage recruitment in BAL fluid in the moderate

model without any effect on infiltrated macrophages in the acute

model, suggesting their mode of activation is different. We also

observed low but significant numbers of neutrophils and lympho-

cytes in BAL fluid, whose recruitment was also blocked by H89 in

both models. These anti-inflammatory properties of H89 most

likely occurred through suppression of Th2 cytokine production as

demonstrated here for IL-4 and IL-5 measured in BAL fluid,

which is in agreement with findings reporting that H89 can inhibit

IL-5 promoter activity and IL-5 production by Th2 cells in vitro

[22]. Treatment with H89 likely modulates expression of many

other inflammatory genes in the lung. For example, Kawaguchi

and collaborators showed that treatment of the human bronchial

epithelial cell line, BEAS-2B, can suppress IL-17F-induced IL-11

production in vitro [36] and we previously reported that H89 can

reduce the release of the main mast cell growth factor stem cell

factor (SCF) from human lung fibroblasts in primary culture [12].

In addition, we show here an immunomodulatory effect of H89

inhibiting the rise of OVA-specific IgE, IgG1 and IgG2c in the

moderate mast cell-dependent model, without any effect in the

acute, adjuvant-helped and mast cell-independent condition. By

contrast, as concerning IgA production, H89 significantly reduced

total IgA levels in BAL fluids in both asthma models, as well as the

increased OVA-specific IgA levels in BAL fluids from OVA-

treated mice in the acute model. OVA-specific IgA were not

enhanced in the moderate model and H89 did no show any effect.

Such a limitation of the immune response in these asthma models

is a new effect of this AGC kinase inhibitor H89.

The in vitro profile of H89 suggests several potential new targets

in asthma. Among those, PKA and MSK1 both appear very

attractive considering their central role in regulating the activity of

pro-inflammatory transcription factors implicated in asthma, in

particular NF-kB [12,13,16,17]. Inhibition of the NF-kB pathway

reduces inflammation in asthma models [37,38,39,40], and several

inhibitors of IKK2/IKKb, an upstream kinase of NF-kB

activation, have been successfully tested preclinically [41].

MSK1 is activated by the p38 and ERK MAP kinases [18] and

similarly to NF-kB, several MAP kinase inhibitors are at different

stages of preclinical testing for asthma [7].

In addition, MSK1 might even be implicated, at least in part, in

the anti-inflammatory properties of glucocorticoids through a

mechanism involving a glucocorticoid receptor-dependent export

Figure 4. Effect of H89 on mucus cell hyperplasia in the lung. A. Periodic acid Schiff (PAS)-stained lung sections demonstrating hyperplasia of
mucus-producing goblet cells 24 hours after the last OVA challenge (magnification6200). (B–C) Mucus score in lung sections from control (Ctr) and
OVA sensitized/challenged (OVA) mice treated with vehicle (black blocks) or H89 (grey blocks) in the acute (B) and moderate (C) asthma models. Data
represent mean values 6 SEM (bars) from n = 6 mice per group. **P,0.01 and ***P,0.001 vs corresponding controls; ##P,0.01 and ###P,0.001 vs
group indicated.
doi:10.1371/journal.pone.0049512.g004

Anti-Inflammatory Effects of H89 in Asthma
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of MSK1 from the nucleus to the cytoplasm [42]. Moreover, H89

potentiates the inhibitory effects of glucocorticoids on TNF-

stimulated gene expression in vitro, an effect that the authors

attributed to inhibition of MSK1 rather than PKA [43].

Surprisingly however, MSK proteins were recently shown to

limit proinflammatory signaling ‘downstream’ of Toll-Like Re-

ceptors (TLRs) through a mechanism involving induction of

expression of the MAP kinase phosphatase (MKP)-1 [44] and IL-1

receptor antagonist (IL-1Ra) [45]. In agreement with these results,

MSK1/2 knockout mice showed increased inflammation com-

pared with wild-type mice in a model of oxazolone-induced

allergic contact dermatitis [46]. These reports also show that MSK

knockout mice have reduced IL-10 expression under inflammatory

conditions [44,45]. However, we did not observe any effect of H89

on IL-10 expression in BAL fluid from OVA sensitized/challenged

mice in the two asthma models we used (data not shown).

We previously showed that H89 can directly inhibit NF-kB

activation in primary human lung fibroblasts stimulated with IL-

1b in vitro, through a mechanism involving suppression of MSK1-

mediated phosphorylation of the NF-kB subunit p65 at serine 276

[12]. We show here that H89 can also suppress IL-1b-mediated

release of the NF-kB -dependent gene IL-6 from peritoneal

macrophages ex vivo (Fig. S2A and Methods S1), suggesting a

role for H89 on the inflammatory macrophage phenotype.

OVA-treatment increased the number of mast cells in both

asthma models. Interestingly, H89 treatment had no effect on lung

mast cell numbers in the acute model where AHR and lung

inflammation can develop in the absence of mast cells as shown

from studies in mast cell-deficient animals [25]. By contrast, H89

significantly reduced lung mast cell numbers in the moderate

asthma model which is highly dependent on the presence and

activation of mast cells for airway inflammation and remodeling

[24,25]. We show that treatment of bone marrow-derived cultured

mast cells (BMCMCs) with H89 does not inhibit antigen- and IgE-

induced mast cell degranulation and IL-6 production in vitro (Fig.
S2B & S2C and Methods S1). Thus it is likely that the decrease

in mast cell numbers observed in H89-treated mice in the

moderate model reflects the lower levels of IgE in these animals

and the subsequent reduced IgE-dependent mast cell activation

rather than direct effects of H89 on mast cells.

We finally show that although H89 is a potent anti-inflamma-

tory drug when administered before each challenge, a single

treatment with H89 before the last challenge has no effect on

AHR or numbers of inflammatory cells in BAL fluids in the acute

asthma model (Figure S3 and Methods S1). As a positive

control, we included a group receiving a single administration of

the clinically efficient glucocorticoid dexamethasone (DEX).

Although single treatment with DEX was less efficient than

treatment with DEX before each challenge, as we reported

previously [27], it reduced AHR (although the difference did not

reach significance) and slightly but significantly reduced numbers

of eosinophils in BAL fluid (Figure S3).

In conclusion, we here demonstrate that the AGC kinase

inhibitor H89 inhibits airway inflammation and hyperresponsive-

ness in two murine models of asthma when administered before

each challenge. Although particular care must be taken when

attempting to extrapolate findings from animal models of a disease

to their human counterparts, our results suggest that H89 or other

AGC kinase inhibitors might be candidates for alternate treatment

in glucocorticoid-resistant asthma patients. One could imagine

that a combination of H89 or other AGC kinase inhibitors with

Figure 5. Effect of H89 on mast cell numbers in the lung. A.
Acidic toluidine blue-stained lung sections 24 hours after the last OVA
challenge (magnification 6 200). Black arrows indicate toluidine blue-
positive mast cells (B–C) Quantification of mast cell numbers in lung
sections from control (Ctr) and OVA sensitized/challenged (OVA) mice
treated with vehicle (black blocks) or H89 (grey blocks) in the acute (B)
and moderate (C) asthma models. Data represent mean values 6 SEM
(bars) from n = 6 mice per group. **P,0.01 and ***P,0.001 vs
corresponding controls; ##P,0.01 vs group indicated.
doi:10.1371/journal.pone.0049512.g005

Figure 6. Effect of H89 on Th2 cytokine levels in BAL fluid. BAL
fluid was collected 24 hours after the last OVA challenge. The levels of
IL-4 (A–B) and IL-5 (C–D) were determined using ELISA in the acute (A
& C) and moderate (B & D) asthma models in control (Ctr) and OVA-
sensitized/challenged (OVA) mice treated with vehicle (black blocks) or
H89 (grey blocks). Data represent mean values 6 SEM (bars) from
n = 628 mice per group. *P,0.05, **P,0.01 and ***P,0.001 vs
corresponding controls; #P,0.05 and ##P,0.01 vs group indicated.
doi:10.1371/journal.pone.0049512.g006

Anti-Inflammatory Effects of H89 in Asthma
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glucocorticoids could allow the use of lower drug exposure, and

thus reduce adverse events associated to the chronic use of

glucocorticoids in asthma.

Supporting Information

Figure S1 Effect of H89 on total and OVA-specific IgA
levels in BAL fluid. BAL fluid was collected 24 hours after the

last OVA challenge. The levels of total IgA (A–B) and OVA-

specific IgA (C–D) were determined using ELISA in the acute (A
& C) and moderate (B & D) asthma models in control (Ctr) and

OVA-sensitized/challenged (OVA) mice treated with vehicle

(black blocks) or H89 (grey blocks). Data represent mean values

6 SEM (bars) from n = 428 mice for control groups and n = 8214

mice for OVA sensitized/challenged groups (OVA). *P,0.05,

**P,0.01 and ***P,0.001 vs corresponding controls; #P,0.05 vs

group indicated.

(TIF)

Figure S2 H89 reduces IL-1b-induced macrophage acti-
vation but not IgE- and antigen-mediated mast cells
activation. A. Peritoneal macrophages were pre-incubated with

H89 (10 mM) or vehicle (DMSO, ,0.01%) for 30 min before

addition of IL-1b (final concentration: 1 ng/ml) or medium alone

for control samples. IL-6 levels were measured by ELISA in the

supernatant 6 h after stimulation with IL-1b. B–C. Bone marrow-

derived cultured mast cells (BMCMCs) were loaded with anti-

DNP IgE (1 mg/ml) overnight. Cells were then washed and pre-

incubated with H89 (10 mM) or vehicle (DMSO, ,0.01%) for

30 min before addition of antigen (DNP-HSA) at the indicated

concentration or PMA + A23187 (as a positive control for mast

cells degranulation). Mast cell degranulation was assessed by

measuring b-hexosaminidase release after 1 h of stimulation with

DNP-HSA (B), and IL-6 levels were measured by ELISA in the

supernatant 6 h after stimulation with DNP-HSA (C). All data are

means 6 SEM from three separate experiments performed in

duplicate. *P,0.05, **P,0.01 and ***P,0.001 vs corresponding

controls; #P,0.05 vs group indicated.

(TIF)

Figure S3 Efficiency of a single administration of
dexamethasone or H89 before the last challenge in the
acute asthma model. A. Penh responses to aerosolized

methacholine in control mice (square) and OVA sensitized-

challenged mice (circle) treated with a single i.p. injection of

vehicle (black), H89 (10 mg/kg) (grey) or dexamethasone (DEX)

(1 mg/kg; Sigma) (white) 2 h before the last OVA challenge in the

acute asthma model. B–C. Effect of H89 (10 mg/kg) (grey blocks),

DEX (1 mg/kg) (white blocks) or vehicle (black blocks) on total

leukocyte (Total), eosinophil (Eos) and macrophage (Mac)

numbers (B), or neutrophils (Neu ) and lymphocytes (Lym)

numbers (C) in BAL fluid 24 hours after the last challenge in

control (Ctr) and OVA-sensitized/challenged mice (OVA) in the

acute asthma model. Data represent mean values 6 SEM from

n = 6212 mice per group (control) and n = 12 mice per group

(OVA). **P,0.01 and ***P,0.001 vs corresponding controls;
##P,0.01 and ###P,0.001 vs group indicated.

(TIF)

Methods S1 Supplementary methods.

(DOCX)
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Figure 7. Effect of H89 on serum OVA-specific Ig levels. Serum
was collected 24 hours after the last OVA challenge. The levels of OVA-
specific IgE (A–B), OVA-specific IgG1 (C–D), OVA-specific IgG2a (E) and
OVA-specific IgG2c (F) were determined using ELISA in the acute (A, C
& E) and moderate (B, D & F) asthma models in control (squares) and
OVA sensitized/challenged (circles) mice treated with vehicle (black
blocks) or H89 (grey blocks). Data represent mean values 6 SEM (bars)
from n = 426 mice per group (saline) and n = 6212 mice per group
(OVA). *P,0.05, **P,0.01 and ***P,0.001 vs corresponding controls;
#P,0.05 and ##P,0.01 vs group indicated.
doi:10.1371/journal.pone.0049512.g007
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