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Abstract

The amplified fragment length polymorphisms (AFLP) method has become an attractive tool in phylogenetics due to the
ease with which large numbers of characters can be generated. In contrast to sequence-based phylogenetic approaches,
AFLP data consist of anonymous multilocus markers. However, potential artificial amplifications or amplification failures of
fragments contained in the AFLP data set will reduce AFLP reliability especially in phylogenetic inferences. In the present
study, we introduce a new automated scoring approach, called ‘‘AMARE’’ (AFLP MAtrix REduction). The approach is based
on replicates and makes marker selection dependent on marker reproducibility to control for scoring errors. To demonstrate
the effectiveness of our approach we record error rate estimations, resolution scores, PCoA and stemminess calculations. As
in general the true tree (i.e. the species phylogeny) is not known, we tested AMARE with empirical, already published AFLP
data sets, and compared tree topologies of different AMARE generated character matrices to existing phylogenetic trees
and/or other independent sources such as morphological and geographical data. It turns out that the selection of masked
character matrices with highest resolution scores gave similar or even better phylogenetic results than the original AFLP
data sets.
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Introduction

Amplified fragment length polymorphism (AFLP) data consist of

sets of anonymous multilocus markers, in contrast to sequence

based phylogenetic approaches. Unlike DNA sequencing, where

each nucleotide can be determined with high degree of confidence,

AFLPs can contain artificial amplifications or amplification

failures of fragments which will reduce AFLP reliability especially

in phylogenetic inferences - resulting in decreased resolution and/

or support of phylogenetic trees. In this study, we address the

difficulties in scoring AFLP profiles by measuring marker re-

producibility. This approach does not solve the problem of

homology assessment in AFLP data per se, but improves its

reproducibility and accuracy, which further increases the re-

liability of phylogenetic reconstructions based on AFLP markers.

The AFLP technique [1] is a commonly used approach in

evolutionary, ecological and population genetic studies [2,3]. Due

to the ease with which large numbers of characters can be

generated, AFLP markers recently became a valuable tool even for

genomic approaches in population genetics [3–5]. The combina-

tion of large numbers of characters and phylogenetic signal in

many AFLP data sets [6,7] has led to an increasing use of AFLP

markers in phylogenetic analyses as well. In these studies, AFLP

markers proved to be valuable characters to resolve phylogenetic

relationships particularly among closely related taxa, but also at

the family-level [3,8].

In short, AFLP profiles of individuals are generated by

amplifying preselected restriction digested DNA fragments and

electrophoretic separation of the amplicons. Subsequently, a fun-

damental step in all AFLP studies is the conversion of the AFLP

profiles into a binary presence-absence (1/0) character matrix.

This process is called scoring and includes two major challenges:

i. The definition of fragment size categories (hereafter also

referred to as bins), i.e. a correct assessment of statistical

variability of electrophoretic mobility of fragments, which is

necessary to avoid ‘‘oversplitting’’ of identical alleles into

separate characters or merging of non-identical alleles into

one character (technical homoplasy) [9].

ii. The assessment of fluorescent intensity, i.e. phenotype calling

based on presence or absence of fragments within each bin

and for each sample, where the presence of a fragment is

coded with 1 (‘‘present’’ allele) and the absence of a fragment

is coded as 0 (‘‘null’’ allele).

Finally, the binary character matrix forms the basis for all

evolutionary inferences. Scoring AFLP profiles is a highly de-

manding task and Bonin et al. [10] showed that the scoring

process is the most error-prone step in the AFLP procedure due to

the difficulty and subjectivity in correctly reading profiles. The

‘‘Holy Grail’’ of AFLP scoring has not been found yet and

screening the literature reveals many ways - from manually and
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semi-automated to automated scoring – how AFLP profiles were

scored [8,11–25]. In most studies scoring has been performed in

a semi-automated fashion by manually inspecting AFLP profiles

evaluated by commercial available software packages. The recent

development of several scoring scripts [9,26–29], however,

indicates the common need for automated scoring approaches

which go beyond those provided by commercial software. In

contrast to the widespread practice of manual and semi-automated

scoring, automated scoring can be objective (regarding the

automatic application of user specified parameter settings),

reproducible and far less time-consuming.

Arrigo et al. [9], for example, proposed an automated approach

(RawGeno) which focuses on the definition of bin width and

analyzed the influence of oversplitting of identical alleles or

technical homoplasy of non-identical alleles on estimates of genetic

diversity and genetic structure. They showed that wrong

definitions resulted in a loss of discriminatory power and decrease

the robustness of results in population genetic and phylogeo-

graphic analyses. Evaluating several error rate estimates [10,30] as

selection criteria for bin width, Arrigo et al. [9] introduced the

information content per bin (Ibin) as a new and valuable optimality

criterion.

Whitlock et al. [26] and Herrmann et al. [28] developed two

alternative marker selection scripts (AFLPScore and scanAFLP)

based on fragment fluorescent intensity (peak height) thresholds.

Both scripts allow reproducible selection and scoring of markers

after AFLP profiles were evaluated by commercial genotyping

software. Whereas Whitlock et al. [26] only used mismatch error

rate estimations [10] to optimize the AFLP scoring thresholds,

Herrmann et al. [28] also focus on population genetic parameters

like genetic diversity and principal coordinate analyses (PCoA).

Herrmann et al. [28] showed that scanAFLP reduced mismatch

error rates, i.e. noise in the data, while retaining patterns of

population genetic structure. Both approaches did not consider

aspects of bin width definition like Arrigo et al. [9].

The relevance of these studies for phylogenetic analyses is not

immediately obvious. In a phylogenetic context, Holland et al.

[31] suggested analyzing AFLP profiles with commercial scoring

software (GeneMapper by Applied Biosystems and GeneMarker

by SoftGenetics). They showed that optimizing scoring parameters

of commercial software, such as peak height, bin widths, and

minimum fragment size, significantly increases the quality and

resolution of the binary character matrix and resulting phyloge-

netic tree, respectively [3,31]. As optimality criterion and proxy of

accuracy, they used the resolution of phylogenetic trees to choose

between data matrices constructed with different parameter

settings. The resolution score of each resulting phylogenetic

tree/character matrix is based on bootstrap values. Based on

studies of Hillis and Bull [32] and Taylor and Piel [33], Holland

et al. [31] assumed that a high resolution score is correlated with

accuracy and indicates increasing phylogenetic information in the

character matrix. Further it can be expected that both the quality

and the number of characters will have an effect on accuracy and

resolution. To disentangle these two effects and to get a measure of

character quality independent of sequence length, Holland et al.

[31] defined a normalized resolution score. These normalized

resolution scores showed that most of the differences in resolution

could be explained by a difference in the number of characters and

that the presence of more characters leads to higher resolution.

Holland et al. [31] also showed that parameter settings of

commercial software, which generated data matrices with the

least mismatch error rate [10], did not give superior phylogenetic

resolution due to the considerable loss of valuable characters. They

concluded that minimizing error rates in AFLP character matrices

is a trade-off between the number of lower and high quality

characters.

In the present study, we introduce a new automated scoring

approach, called ‘‘AMARE‘‘ (AFLP MAtrix REduction) to

evaluate the reliability of each marker and to simultaneously

perform error rate estimations. Compared with other scoring

approaches [9,26–29], AMARE focuses on replicates. AMARE

thus makes marker selection dependent on marker reproducibility

itself, which is the most rigorous way to control for artificial

amplification errors and an objective measure of data quality.

Using commercial software packages for bin width definition

and peak height detection, AMARE serves as a second filter for

marker selection. In short, AMARE tries to keep as many

characters as possible by inspecting the quality of replicates of

individuals. Low quality replicates are discarded from the data set

dependent on a replicate reliability threshold. Further, the user

defines an acceptance threshold of unreproducible markers. Sizing

precision, defined as the ability to obtain reproducible sizing of

DNA fragments from injection to injection on a capillary in-

strument, is not perfect [34]. Consequently, the user can indicate

a threshold of allowed distances between differently sized bins

corresponding to the standard deviation of the sequencer’s sizing

precision. Considering these parameters, AMARE makes a major

contribution to all other currently available automated scoring

approaches.

To decide between character matrices constructed with

different parameter settings of AMARE, we considered the effect

of marker selection on mismatch error rate estimations [10,31],

principal coordinate analyses (PCoA) [28], stemminess [35] and

resolution scores [31]. As in general the true tree (i.e. the species

phylogeny) is not known, we tested AMARE with empirical,

already published AFLP data sets [8,11,31], and compared tree

topologies of different AMARE generated character matrices to

existing phylogenetic trees and/or other independent sources such

as morphological and geographical data.

The aims of this study are (i) to show that AMARE improves the

signal-to-noise ratio in AFLP binary character matrices in an

objective and repeatable way by increasing the number of valuable

characters and reducing background noise; and (ii) to highly

encourage the AFLP community to make AFLP profiles publicly

available and binary matrix generation more transparent by using

fully automated scoring software.

Methods

Concept
The approach optimizes the signal-to-noise ratio in AFLP data

sets (single or multiple primer combinations). It identifies AFLP

genotyping errors as the number of unreproducibly scored

markers between replicated AFLP profiles of single individuals.

As a measure of overall data quality, it simultaneously estimates

general replicate error rates. Strength and accuracy of the

approach depend on the number of replicates and whether they

are representative for the whole data set.

Definitions
Bin. The AFLP profile of an individual is defined as a set of

fragments characterized by their electrophoretic mobility, i.e.

fragment size, and fluorescent intensity. Common genotyping

software categorizes AFLP profiles into bins sorted by fragment

size. A bin usually covers a size range of ,1 base (b), in which all

fragments are considered homologous and thus a single character/

marker. AFLP profiles are converted into a binary character

Automated Masking of AFLP Markers
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matrix by recording the presence/absence of fragments within

each bin.

Replicates. Replicates, i.e. replicated pairs of AFLP profiles,

are generated from re-amplification and re-analyses of identical

DNA sources of one individual or re-extraction of a single

individual/tissue. For each bin, AMARE assesses reproducibility

of markers evaluating pairs of replicated AFLP profiles. AMARE

transforms these replicates into pairs (i,j) representing the observed

state 0 (fragment absence) or 1 (fragment presence) within each bin

(Table 1). In Table 1, markers of bin 1, 2, 3, 4, 7, 8 and 9 are

reproducible, whereas markers of bin 5 and 6 are unreproducible

among replicated AFLP profiles of Individual A. For bin 10, AFLP

reactions of Individual AReplicate2 have failed for technical reasons,

therefore it got the entry ’’?’’. AMARE uses replicates of single

individuals and not incongruences between different individuals to

assess reproducibility of AFLP markers. Exclusion or inclusion of

a bin in the complete data matrix is thus based only on the given

set of replicates. The starting point is a matrix of n replicates,

populated with (?,?), (0,?), (?,0), (1,?), (?,1), (0,0), (1,0), (0,1), and

(1,1) pairs. The masking of bins is subsequently applied to the

complete binary character matrix of all sampled individuals. In

cases of more than two replicates of one individual, any further

replicate is not considered by AMARE, but can be kept in the

whole data set as control sample. AMARE uses three criteria

(thresholds) to mask the matrix:

N Bin reliability (BR): We define Nx (i,j) as the observed number

of the pair (i,j) at binx for all n replicates, where pair (i,j) is one

of the nine pairs (?,?), (0,?), (?,0), (1,?), (?,1), (0,0), (1,0), (0,1),

and (1,1). Bin reliability, BRx, is defined as the relative number

of reproducible markers for binx over all n replicates:

BRx~
Nx(0,0)zNx(1,1)

Nx(0,0)zNx(0,1)zNx(1,0)zNx(1,1)

BRx will range between 0 and 1. Ambiguously scored bins, e.g.

(?,?), (0,?), are not considered. A predefined threshold BR sets the

acceptance value of the minimal number of reproducible (0,0) and

(1,1) bin states. If binx has a BRx below the predefined threshold

BR, BRx#BR, binx is considered unreliable and will be masked in

the matrix. If binx contains only (0,0) pairs or has no (1,1) pairs

among replicates, it will be masked as well.

N Replicate reliability (RR): Replicate reliability, RRy, is defined

as the relative number of reproducible markers between

replicates y of a single individual over all n bins. We define My

(i,j) as the observed number of pair (i,j) between replicates y of

a single individual, where the pair (i,j) is one of the nine pairs

listed before. RRy is then defined as:

RRy~
My(0,0)zMy(1,1)

My(0,0)zMy(0,1)zMy(1,0)zMy(1,1)

Replicates are masked if the marker reproducibility is below

a certain threshold, RRy # RR. RRy can range from 0 to 1.

N Minimum bin distance (BD): Bin distance, BDz, defined as the

distance between differently sized bins. A threshold BD is set to

demand a minimum distance between differently sized bins.

Both bins are masked, if BDz#BD. BD must be between 0 and

1 otherwise BD is greater than a bin width of one nucleotide.

Error rate calculations. Error rates among replicates are

calculated: (1) the replicate mismatch error rate rBONIN [10],

rBONIN~
Nx(0,1)zNx(1,0)

Nx(0,0)zNx(0,1)zNx(1,0)zNx(1,1)

is defined as the relative number of unreproducible N(0,1) and

N(0,1) summed over all n replicates and (2) the average JACCARD

mismatch error rate rJACCARD [31],

rJACCARD~
Nx(0,1)zNx(1,0)

Nx(0,1)zNx(1,0)zNx(1,1)

which divides the number of unreproducible N(0,1) and N(1,0)

markers by the sum of reproducible N(1,1) and unreproducible

N(0,1) and N(1,0) markers. The error rate reflects the quality of the

replicates; the higher the error rate, the higher the proportion of

unreproducible markers among replicates.

Matrix Masking
The idea of the masking process is to mask unreliable bins

within an AFLP binary character matrix in order to improve the

overall reliability of the character matrix and thus minimize

genotyping errors. The starting point is the assumption that

a representative sample of replicates, i.e. .10% of all sampled

individuals, can help to identify unreliable bins. Unreliable bins

are defined as bins which show a high number of incongruent

scorings among these replicates. A threshold of BR is used to

identify these bins. We use a step-wise increment of the BR and

RR thresholds to identify character matrices with replicate

mismatch error rates (rBONIN or rJACCARD) ,0.1 and a maximum

number of bins. After unreliable bins have been identified among

replicates they will in consequence be masked in the complete data

as well.

The approach of bin masking among replicates can be

separated into four blocks (Figure 1):

N Step 1: First, Replicate reliability, RRy, is checked and

replicates are masked, if RRy#RR is true.

N Step 2: Secondly, all bins with BRx#BR and without any

congruent pairs (1,1) among replicates are masked. AMARE

masks all bins without any (1,1) pairs among replicates to avoid

spurious background noise in the data. If a bin displays only

(0,0) pairs among replicates it is masked as well (by default),

because shared fragment absences (null alleles) are particularly

prone to homoplasy due to the multiple and independent ways

in which a fragment can be lost [3,6].

N Step 3: The third step consists of a distance check, where all

bins which have bin distances less or equal to the allowed BD

between differently sized bins are permanently masked. If bins

are masked in step 3, RRy for each single replicate potentially

changes again. Thus, the process loops back to step 1

maintaining replicate and bin masking achieved in the first

round of step 1 and 2. The process will iterate through step 1, 2

and 3 until no further bin or replicate are masked. Replicate

mismatch error rates are then calculated for the character

matrix (see Figure 1). If the mismatch error rate (rBONIN or

rJACCARD) ,0.1 and the number of remaining bins .5, AMARE

generates a new character matrix for the complete data.

Predefined thresholds of BR = 0.95 and RR = 0.95 are most

likely too conservative [31] and will lead to an excessive

masking of bins and loss of signal in the complete data matrix.

Automated Masking of AFLP Markers
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We therefore decided to use increments of BR and RR to

search for matrices with replicate mismatch error rates (rBONIN

or rJACCARD) ,0.1 and a minimum bin number .5.

N Step 4: In step 4, RR is incremented by 0.1 from 0 to 0.9. For

each RR threshold, steps 1, 2 and 3 are repeated generating

potentially different output matrices.

After the execution of these four steps, BR is incremented by

0.01 starting from a user defined minimal threshold until

BR = 0.95. For each BR, steps 1, 2, 3 and 4 are again executed

(Figure 1). Thus, for example, if BR was initially set to 0.7, the

process potentially generates 26610 different output matrices. The

approach records all matrices with an error rate (rBONIN or rJACCARD)

,0.1. However, for empirical data we observed that only 4–10

matrices are in fact generated with (rBONIN or rJACCARD) ,0.1 and

a minimum bin number .5. The user might most likely choose

the largest (n96m9)-character matrix where n9 is the number of

replicates and m9 is the number of bins after masking.

Implementation
AMARE is written in Perl. A Perl interpreter must be present in

order to execute the software. AMARE requires a preliminary step

for bin definition and peak height detection using commercial

genotyping software. As input file, AMARE reads exported AFLP

binary character matrices in either GeneMapper (Applied

Biosystems) or CEQTM System Fragment Analysis v. 9.0.25

(Beckman Coulter) table format. A mixture of both formats is not

possible. The input file contains the AFLP profiles of all sampled

individuals including replicates. The subsequent analysis of bin

reliability, replicate reliability and error rate estimation is only

based on included replicates. AMARE includes three main matrix

reduction steps for both formats, plus one initial masking step for

the CEQTM System Fragment Analysis v. 9.0.25 (Beckman

Coulter) table format. This table format supplies detailed

information on the number of ‘‘Fragments’’ and ‘‘Samples’’ for

each individual bin. A difference in the number of ‘‘Fragments’’

and ‘‘Samples’’ means that some samples have two markers

(double peaks) within one bin. AMARE masks the bin in the whole

character matrix due to the sizing inaccuracy of markers within

this bin. Masked bins of the initial masking step are not further

considered in the subsequent analysis process.

AMARE concatenates multiple AFLP matrices and then

analyzes the concatenated supermatrix in one process. Missing

sample data in single matrices are replaced by ‘‘?’’, which are not

further considered in the analyses.

For each individual threshold set, AMARE generates i) a single

log file reporting the masking of bins and replicates and ii)

a character matrix in text (.txt) and nexus (.nex) format, if error

rate conditions and minimum number of remaining bins are met.

A summary of all threshold sets and corresponding error rates are

stored in the main log file. Nexus files can be directly executed in

other programs like PAUP. Additionally, AMARE plots a graph-

ical overview of the original and each masked replicate matrix.

Several options can be specified by the user:

1. Concatenation of multiple AFLP character matrices

2. Bin distance threshold, BD

3. Minimum bin reliability threshold, BR

4. Replicate error rate calculation (rBONIN or rJACCARD)

Despite the implementation in Perl, AMARE runs very fast. It

analyzes 200 different sets of threshold for large data sets with

more than 50 replicates and more than 500 bins in less than 10

seconds on a normal desktop computer. AMARE is freely

available from http://software.zfmk.de.

Performance on Real Data
In general the true tree (i.e. species phylogeny) is not known and

optimal thresholds for AFLP marker selection may be tested either

within well-defined expectations or simulation-based approaches.

However, simulations such as AFLP in silico are currently not

feasible, as factors influencing bin width and peak height are still

poorly understood to be simulated accurately [31].

In the present study the performance of AMARE was tested

with empirical, already published AFLP data sets [8,11,31]

spanning different levels of taxonomic divergence. To decide

between different AMARE generated character matrices, we

compared corresponding AMARE topologies to phylogenetic

results of the original AFLP data sets and/or other independent

sources such as morphological and geographical data. For each

original and AMARE generated character matrix, we further

assessed the effect of marker selection on mismatch error rates

(rBONIN and rJACCARD), principal coordinate analyses (PCoA), stemmi-

ness and resolution scores. Mismatch error rates (rBONIN and rJACCARD)

were estimated with AMARE, whereas PCoA was calculated using

FAMD [36]. A perl script was written to calculate the stemminess

value of each resulting tree topology. Stemminess is a tree shape

parameter and is defined as the proportion of the sum of internal

branch lengths over the total sum of branch lengths of the tree

[35]. A low stemminess value indicates a star-like tree, whereas

a higher value suggests a more tree-like topology. To calculate the

resolution score, we performed 1000 bootstrap replicates for each

character matrix. According to Holland et al. [31], all the

bootstrap scores over 50% were summed and then divided by

the maximum number of internal branches in each tree to give

a value between 0% and 100%.

Data set of dasmahapatra et al. [8]. Originally, AFLP

profiles were visualized by autoradiography and scored by eye.

The authors excluded samples with odd AFLP profiles, where

most bands were not observed in other profiles and only used

consistently amplified loci with sharp bands and minimal size

variation. Nineteen replicates of individuals representing five

species were generated for all primer combinations to assess the

replicate mismatch error rate, rBONIN.

Table 1. AMARE replicate transformation.

Bin 1 2 3 4 5 6 7 8 9 10

Individual AReplicate1 0 0 1 1 0 0 1 1 0 0

Individual AReplicate2 0 0 1 1 1 1 1 1 0 ?

Pairs (0,0) (0,0) (1,1) (1,1) (0,1) (0,1) (1,1) (1,1) (0,0) (0,?)

This example shows how AMARE transforms replicates into pairs (i,j) representing the observed state 0 (fragment absence) or 1 (fragment presence) within each bin.
doi:10.1371/journal.pone.0049119.t001
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Figure 1. Flow chart of AMARE.
doi:10.1371/journal.pone.0049119.g001
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In the present study, we used the complete AFLP binary 0/1

character matrix as provided by the authors. AMARE matrices

were obtained by setting the minimum BR threshold to 0.7 and

the BD threshold to 0.0 (because there was no information on

fragment length sizes). Both, error rates (rBONIN and rJACCARD) were

calculated. Phylogenetic analysis were carried out in PAUP*

v4.0b10 [37] using neighbor-joining (NJ) on Nei-Li [38] distances

corresponding to the analyses of Dasmahapatra et al. [8]. Internal

node support was assessed by nonparametric bootstrapping (1000

replicates). Nei-Li distances were used for resolution score,

principal coordinate and stemminess analyses.

Data set of bonin et al. [11]. Originally, AFLP profiles were

visualized and scored by eye with GeneScan Analysis v. 3.7

(Applied Biosystem) and Genographer v. 1.6.0 (http://hordeum.

oscs.montana.edu/genographer/). Basically, all markers with

a lower peak intensity of 10% of the highest peak’s intensity and

loci with less than 3% of band absence for all individuals were

excluded from the data set. The authors generated 23 replicates of

individuals for five out of ten primer combinations to estimate the

replicate mismatch error rate, rBONIN.

As AMARE is based on replicates, we could only use the five

primer combinations with replicates. AMARE matrices were

obtained by setting the minimum BR threshold to 0.7 and the BD

threshold to 0.15 according to the standard deviation of the

sequencer̀s sizing precision (ABI Prism 3100 DNA sequencer,

Applied Biosystems). Both replicate error rates (rBONIN and rJACCARD)

were calculated. Phylogenetic analyses were carried out with

PAUP* v4.0b10 [37] using NJ on Nei-Li [38] distances

corresponding to the original study of Bonin et al. [11]. We

analyzed the AFLP binary 0/1 character matrix including all ten

primer combinations as provided by the authors, the AFLP binary

0/1 character matrix including the five primer combinations with

replicates and the AMARE generated data matrix. Internal node

support was assessed by nonparametric bootstrapping (1000

replicates). Nei-Li distances were used for resolution score,

principal coordinate and stemminess analyses.

Data set of holland et al. [31]. The authors automatically

scored the AFLP profiles of the Ourisia and the Ipomoea data set

with GeneMapper v. 3.7 (Applied Biosystems). Optimal parameter

settings in GeneMapper for the two data sets were peak height

threshold (PHT) 50, minimum fragment length (MFL) 50 (Ipomoea)

and 100 (Ourisia), and bin width (BW) 0.5. As measure of data

quality, both replicate mismatch error rates (rBONIN and rJACCARD)

were calculated for each data matrix. The Ourisia data set

contained six and the Ipomoea data set five replicates of individuals

for all primer combinations.

In the present study, the AFLP profiles (ABI.fsa files) as

provided by the authors were automatically scored with Gene-

Mapper v.4.1 (Applied Biosystems). At first, we used the optimal

parameter settings as described by the authors to get a comparable

data matrix. For our own data matrix generation, however, we

chose the parameter settings PHT 50, MFL 50 (Ipomoea) and 50

(Ourisia) and BW 0.85. Subsequently, AMARE was used as

a second filter. The BR threshold was set to 0.7 and the BD

threshold to 0.15 according to the standard deviation of the

sequencer̀s sizing precision (3730 Genetic Analyzer, Applied

Biosystems). Both error rates (rBONIN and rJACCARD) were calculated.

Phylogenetic analyses were carried out in PAUP* v4.0b10 [37]

using NJ on uncorrected distances corresponding to Holland et al.

[31] analyses. Internal node support was assessed by nonpara-

metric bootstrapping (1000 replicates). Uncorrected distances were

used for resolution score, principal coordinate and stemminess

analyses.

Results

Dasmahapatra et al. [8]
The authors genotyped 109 specimens from 23 pinniped species

and two outgroup species for 310 AFLP markers with estimated

error rates of rBONIN = 0.004 and rJACCARD = 0.019. The resolution

score of the original character matrix was 46%, the percentage of

variation explained by the first three axes of the PCoA 87%, and

stemminess calculations of the resulting topology gave a value of

0.85 (Table 2a).

As described above, AMARE gradually increases the user

specified minimum BR threshold until BR = 0.95 and generates

character matrices for each individual threshold set. Altogether,

AMARE generated four different character matrices for the

pinniped data set. Compared to the original character matrix, the

resolution score decreased for all four AMARE matrices. PCoA

and stemminess values, however, increased for the four matrices.

Compared to the original pinniped matrix, the error rate (rBONIN)

increased for matrix 1a and matrix 2a, but decreased for matrix 3a

and 4a (Table 2a). Among the four AMARE matrices, we chose

character matrix 1a, although it did not consistently give the best

results over all the quality estimations (resolution score = 28%;

PCoA = 92%; stemminess = 0.98) (Table 2a). The resulting phy-

logeny, however, was most similar to the topology based on the

original pinniped data set (Figures 2, 3). Character matrix 1a

consisted of 108 selected markers and was generated by the

following parameter settings of AMARE: BR = 0.7–0.78,

RR = 0.0–0.9 and BD = 0.0. The estimated replicate mismatch

error rates were rBONIN = 0.009 and rJACCARD = 0.014.

The NJ tree was rooted with Meles meles (Mustelidae). The trees

of the original and of the AMARE masked character matrix were

topologically almost identical and had only minor differences in

branch support (Figures 2, 3). The main differences concerned the

position of M. leonina and the monophyly of two species,

L. carcinophagus and P. caspica. In the NJ tree of the original AFLP

matrix, M. leonina was placed as sister group to the Lobodontini

and L. carcinophagus as well as P. caspica each formed monophyletic

groups (Figure 2). In contrast, M. leonina was sister to O. rossii and

neither L. carcinophagus nor P. caspica were monophyletic in the

AMARE NJ tree (Figure 3). Comparing original and AMARE

masked replicate data matrices, the proportion of invariant (0,0)

bins accounted for 200 markers in the original character matrix

(Figures 2, 3).

Bonin et al. [11]
The authors scored 190 individuals of the common frog (Rana

temporaria) for 328 AFLP markers. Replicates of individuals,

however, were generated for only five primer combinations. The

estimated mismatch error rates of this matrix were rBONIN = 0.034

and rJACCARD = 0.104 for 222 scored AFLP markers and 189

individuals. Resolution score and PCoA analyses gave 11% and

26%, respectively. The stemminess value of the tree was 0.113

(Table 2b).

Nine distinct character matrices were generated by AMARE.

Compared to the original character matrix, stemminess and PCoA

values increased, whereby error rates (rBONIN and rJACCARD) decreased

for each AMARE generated matrix. All AMARE matrices had

a lower resolution score than the original matrix (Table 2b).

We selected character matrix 9b with 158 markers and

estimated error rates of rBONIN = 0.013 and rJACCARD = 0.032. The

underlying parameter settings of AMARE were BR = 0.91–0.95,

RR = 0.9 and BD = 0.15. Due to the strict RR threshold, replicates

of the individual TE1 were excluded from the data set. The

resolution score of matrix 9b was 7.7%, the PCoA value 52% and
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the stemminess 0.13. Phylogenetic reconstructions based on matrix

9b gave best results grouping common frog individuals according

to sample sites (Figure 4).

The phylogenetic reconstructions of the original AFLP data

matrices were based on ten (328 markers) and five primer

combinations (222 markers) and showed no major changes

compared to the phylogenetic reconstruction based on the

AMARE masked matrix (Figure 4). Individuals of Saint-Rémy-

de-Maurienne formed a monophyletic group in all NJ trees and

were closely related to a clade mainly comprising individuals of

Lac des Tempêtes. In the tree based on the AMARE generated

matrix, both populations were genetically more differentiated from

all other populations than in the original trees. Individuals of Lac

des Aiguillettes were monophyletic only in the NJ tree of the

Table 2. Overview of character matrices and quality estimates.

a) Dasmahapatra et al. [8]*

Matrix BR RR
# of
taxa

# of
replicates

# of
markers

resolution
score PCoA&

Error rate
(rBONIN)

Error rate
(rJACCARD) stemminess

Original – – 109 19 310 45.59 86.51 0.00400 0.01900 0.850662887

1a 0.70–0.78 0.0–0.9 109 19 108 28.06 91.65 0.00877 0.01432 0.977431345

2a 0.79–0.89 0.0–0.9 109 19 107 27.96 91.64 0.00689 0.01118 0.977357985

3a 0.90–0.94 0.0–0.9 109 19 102 26.42 92.65 0.00206 0.00346 0.977265256

4a 0.95 0.0–0.9 109 19 98 26.72 93.44 0.00000 0.00000 0.980829109

b) Bonin et al. [11]*

Matrix BR RR # of
taxa

# of
replicates

# of
markers

resolution
score

PCoA& Error rate
(rBONIN)

Error rate
(rJACCARD)

stemminess

Original – – 189 23 222 10.69 26.44 0.03400 0.10400 0.11268627

1b 0.70–0.78 0.0–0.8 189 23 177 10.09 51.87 0.02653 0.06742 0.118347772

2b 0.79–0.82 0.0–0.8 189 23 176 09.65 52.02 0.02544 0.06462 0.115813324

3b 0.83–0.86 0.0–0.8 189 23 175 09.60 52.09 0.02460 0.06234 0.117876953

4b 0.87–0.91 0.0–0.8 189 23 170 09.94 51.84 0.02148 0.05508 0.121583951

5b 0.92–0.95 0.0–0.8 189 23 151 06.95 50.31 0.01325 0.03469 0.123875627

6b 0.70–0.77 0.9 188 22 177 09.77 52.08 0.02260 0.05714 0.115907542

7b 0.78–0.86 0.9 188 22 176 09.96 52.23 0.02144 0.05418 0.115681322

8b 0.87–0.90 0.9 188 22 173 08.52 52.07 0.01944 0.04930 0.120184544

9b 0.91–0.95 0.9 188 22 158 07.67 52.19 0.01266 0.03223 0.125378018

c) Holland et al. [31]: Ourisia¤

Matrix BR RR # of
taxa

# of
replicates

# of
markers

resolution
score

PCoA& Error rate
(rBONIN)

Error rate
(rJACCARD)

stemminess

Original – – 24 6 2011 66.55 22.38 0.143 0.531 0.088816069

1c 0.70–0.83 0.0–0.7 24 6 530 40.73 24.72 0.080 0.163 0.112753464

2c 0.84–0.95 0.0–0.7 24 6 286 38.16 26.20 0.000 0.000 0.117756188

3c 0.70–0.74 0.8 22 4 515 47.06 26.36 0.090 0.153 0.11130232

4c 0.75–0.95 0.8 22 4 340 45.77 26.90 0.000 0.000 0.123701587

d) Holland et al. [31]: Ipomoea¤

Matrix BR RR # of
taxa

# of
replicates

# of
markers

resolution
score

PCoA& Error rate
(rBONIN)

Error rate
(rJACCARD)

stemminess

Original – – 25 5 1425 68.02 33.77 0.163 0.490 0.129984309

1d 0.70–0.79 0.0–0.7 25 5 406 42.03 38.15 0.090 0.172 0.189308632

2d 0.80–0.95 0.0–0.7 25 5 216 36.97 40.13 0.000 0.000 0.223652373

3d 0.70–0.74 0.8 24 4 411 51.74 38.76 0.090 0.148 0.216727081

4d 0.75–0.95 0.8 24 4 269 43.12 42.64 0.000 0.000 0.254480608

Selected character matrices are indicated in bold, original character matrices in italics.
* =Nei-Li distances were used for resolution score, principal coordinate and stemminess analyses.
¤=Uncorrected distances were used for resolution score, principal coordinate and stemminess analyses.
&=percentage of variation explained by the first three axes of the principle coordinate analyses (PCoA).
doi:10.1371/journal.pone.0049119.t002
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Figure 2. Rooted neighbor-joining tree of the original character matrix of Dasmahapatra et al. [8]. The original character matrix
comprised 310 selected markers. The tree is based on Nei-Li genetic distances. Numbers represent % bootstrap support obtained from 1000
bootstrap replicates and are shown only when $50%. Replicated individuals are indicated in green. A graphical overview of the replicates character
matrix is shown below. In this matrix each row represents a replicate pair of a single individual and each column a bin. Light blue cells specify
reproducible (0,0) bin states, dark blue cells reproducible (1,1) bin states and red cells unreproducible (0,1) bin states. Scale bar indicates Nei-Li
distance.
doi:10.1371/journal.pone.0049119.g002
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Figure 3. Rooted neighbor-joining tree of the AMARE reduced character matrix of Dasmahapatra et al. [8]. The AMARE reduced
character matrix comprised 108 selected markers. The tree is based on Nei-Li genetic distances. Numbers represent % bootstrap support obtained
from 1000 bootstrap replicates and are shown only when $50%. Replicated individuals are indicated in green. A graphical overview of the replicates
character matrix is shown below. In this matrix each row represents a replicate pair of a single individual and each column a bin. Light blue cells
specify reproducible (0,0) bin states, dark blue cells reproducible (1,1) bin states and red cells unreproducible (0,1) bin states. Scale bar indicates Nei-Li
distance.
doi:10.1371/journal.pone.0049119.g003
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original AFLP matrix with 10 primer combinations. Bootstrap

support values were similar between trees based on different

character matrices, though there was no bootstrap support $50

for the monophyly of the population of Saint-Rémy-de-Maurienne

in the AMARE tree.

Holland et al. [31]
The resulting binary character matrices generated by Gene-

Mapper v. 4.1 comprised 2011 (Ourisia) and 1425 (Ipomoea) selected

markers. The Ourisia data set contained 24 specimens representing

13 species and the I. batatas data set 25 specimens including

I. tiliacea as outgroup species. The estimated error rates of the

Ourisia character matrix were rBONIN = 0.143 and rJACCARD = 0.531

and of the Ipomoea character matrix rBONIN = 0.163 and rJAC-

Figure 4. Data set of Bonin et al. [11]. The unrooted neighbor-joining trees are based on Nei-Li genetic distances calculated from A) the orignal
character matrix with 328 markers (10 primer combinations), B) the original character matrix with 222 markers (the 5 primer combinations including
replicates) and C) the AMARE masked character matrix with 158 markers. Bootstrap support values$50% (1000 bootstrap replicates) are labeled withN and are only shown for more basal splits. Each sample site is indicated by its own colour. A graphical overview of the replicates character matrix is
shown below. In this matrix each row represents a replicate pair of a single individual and each column a bin. Light blue cells specify reproducible
(0,0) bin states, dark blue cells reproducible (1,1) bin states and red cells unreproducible (0,1) bin states. Scale bar indicates Nei-Li distance.
doi:10.1371/journal.pone.0049119.g004
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CARD = 0.49. The resolution score of the original Ourisia matrix was

67%, the PCoA yielded 22% and the stemminess value was 0.089.

The original Ipomoea matrix had a resolution score of 68%, a PCoA

value of 34% and a stemminess value of 0.13 (Table 2c and d).

AMARE generated four different character matrices for the

Ourisia data set. Whereas PCoA and stemminess values increased

for all four AMARE matrices, resolution scores and error rates

decreased compared to the original character matrix (Table 2c).

Among AMARE generated matrices, we selected the character

matrix 1c with 530 markers and estimated error rates of

rBONIN = 0.08 and rJACCARD = 0.163. The resolution score and PCoA

value of the matrix were 41% and 22%, respectively. Stemminess

calculations yielded a value of 0.11. The AMARE parameter

settings of matrix 1c were as followed: BR = 0.7–0.83, RR = 0.0–

0.7 and BD = 0.15. Though the tree topology of the AMARE

masked matrix was partly different from that of the original Ourisia

data set, it corresponded to results based on a much larger Ourisia

data set published by Meudt et al. [19]. According to the results of

the stemminess calculations, the AMARE NJ tree was more tree-

like than the NJ tree of the original character matrix (Figure 5).

Basically, the AMARE NJ tree resolved two clades, one

comprising all large-leaved and the other comprising all small-

leaved Ourisia species. Additionally, a lineage including the three

alpine species O. simpsonii, O. glandulosa and O. spathulata was

identified within the small-leaved group. In the phylogeny based

on the original character matrix not all large-leaved species

grouped together, and O. m. calycina was found in the small-leaved

group as sister group to O. simpsonii. In general bootstrap support

was lower in the AMARE phylogenetic tree. Matrix size was

reduced from 2011 to 530 markers (Figure 5).

AMARE generated four different character matrices for the

Ipomoea data set. PCoA and stemminess values increased for the

four AMARE matrices, whereas resolution scores and error rates

decreased in comparison to the original Ipomoea character matrix

(Table 2d). We chose the character matrix 1d with 406 markers for

further analysis based on the following parameter settings:

BR = 0.7–0.79, RR = 0.0–0.7 and BD = 0.15. The estimated was

rBONIN = 0.09 and rJACCARD = 0.172, the resolution score was 42%, the

PCoA yielded 38% and the stemminess value was 0.19. The

topologies of both phylogenetic trees were very similar and

specimens of I. batatas were separated into a mainland (South

America) and an island clade (Figure 6). Whereas the New

Zealand Commercial I. batatas ‘‘Mary Anne’’ and ‘‘Toka Toka

Gold’’ were sister to all other I. batatas in the AMARE NJ tree,

they showed a sister group relationship to I. batatas from Peru in

the tree of the original data matrix. According to stemminess

calculations, the AMARE NJ phylogeny was more tree-like than

the NJ phylogeny based on the original matrix. Bootstrap support

in the AMARE phylogeny, however, were lower than in the

original tree. A comparison of the replicate matrices (Figure 6)

showed a decrease in the number of selected markers from 1425 to

406.

Discussion

Optimality Criteria
Holland et al. [31] demonstrated that strict masking of unreli-

able bins optimizing error rates among replicates might become

counter productive in phylogenetics due to the considerable loss of

valuable characters. Instead, they proposed to select character

matrices with maximal resolution scores accepting a certain

amount of unreliable bins. In the present study, we tested the

performance of AMARE with empirical data sets and assessed the

effect of marker selection on error rate estimations [10], resolution

scores [31], PCoA [28] and stemminess [35] calculations. We

showed that AMARE increases the PCoA and stemminess values

of AFLP character matrices, and reduces mismatch error rates and

resolution scores (Table 2). The reduction of resolution scores

seems surprising at first hand, but can be explained by the fact that

characters with exclusive (0,0) bin states among replicates are

masked in the complete data. This masking leads to a loss of

conflict-free fragment absence (0) characters in the masked matrix

and thus reduces the resolution score. Null alleles (i.e. fragment

absences) are certainly less reliable characters than fragment

presence (1) characters [3,6]. We therefore consider high

resolution scores of unmasked character matrices as potentially

inflated scores. AMARE generates multiple masked character

matrices. It turns out that in three out of four tested data sets

(Table 2: 1a, 1c, and 1d) the selection of masked character

matrices with highest resolution scores gave best results. In case of

the Ourisia data set [31], the selected AMARE matrix (1c) even

gave a topologically more congruent phylogenetic result than the

original matrix, when compared with morphological and molec-

ular data of a much larger data set of the genus Ourisia [19]. PCoA

and stemminess values increased for AMARE generated matrices

compared to the original data sets, suggesting that both quality

estimates represent adequate optimality criteria for matrix

selection (Table 2). Among the different AMARE masked

character matrices, phylogenetic reconstructions based on matri-

ces with highest PCoA and stemminess values were less resolved

than AMARE matrices with lower PCoA and stemminess values

(not shown). Equally, AMARE masked matrices with lowest error

rates yielded poorly resolved phylogenies, possibly as too many

characters have been masked to support robust tree reconstruc-

tions.

Empirical Data
The re-analyses of published empirical data corroborates the

usefulness of the AMARE approach. Both data sets of Bonin et al.

[11] and Dasmahapatra et al. [8] were manually scored. In each

case, phylogenetic reconstructions based on the original data

matrices were similar in topology to those based on selected

AMARE matrices (Figures 2, 3, 4). The pinniped data set [8] was

extremely reduced from 310 to 108 selected markers. A

comparison of the pinniped replicate matrices (Figures 2, 3)

showed that mainly markers with invariant (0,0) bin states were

masked in the original character matrix. The performance of

AMARE depends on a representative sample of replicates. In case

of the pinniped data set replicates were not representative for the

whole data set (see Figures 2, 3) and marker selection was just

based on the genetic diversity of the family Otariidae. The family

Phocidae was only represented by the replicates of the species

M. monachus. In fact, topological differences between the AMARE

tree and the original phylogeny were especially found in the

Phocidae clade. Bootstrap support values $50 decreased in the

AMARE tree compared to the original pinniped tree. This

resulted most likely from a strongly reduced number of markers

and the reduction of conflict-free (0,0) bin states which increased

bootstrap support in the original pinniped tree. A comparison of

the error rate (rBONIN) between the original and AMARE masked

character matrix showed that the lower error rate (rBONIN) of the

original pinniped data matrix was mainly due to the high amount

of (0,0) bin states lowering the apparent error rate [31].

The AMARE masked replicate matrix of the common frog data

set [11] showed an relative increase of phylogenetic valuable (1,1)

bin states and a decline of erroneous (1,0) bin states (Figure 4). In

the frog data set replicates represented the genetic diversity of the

whole data set. In this example, however, we could only use five
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Figure 5. Ourisia data set of Holland et al. [31]. The neighbor-joining trees are based on uncorrected genetic distances calculated from A) the
original character matrix with 2011 markers and B) the AMARE masked character matrix with 530 markers. Bootstrap support values $50% (1000
bootstrap replicates) are labeled withN and are only shown for more basal splits. Replicated individuals are indicated in green. The Australian species
Ourisia integrifolia is sister to all New Zealand species and thus the root of the tree. A graphical overview of the replicates character matrix is shown
below. In this matrix each row represents a replicate pair of a single individual and each column a bin. Light blue cells specify reproducible (0,0) bin
states, dark blue cells reproducible (1,1) bin states and red cells unreproducible (0,1) bin states. Scale bar indicates uncorrected genetic distance.
doi:10.1371/journal.pone.0049119.g005
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Figure 6. Ipomoea data set of Holland et al. [31]. The neighbor-joining trees are based on uncorrected genetic distances calculated from A) the
original character matrix with 1425 markers and B) the AMARE masked character matrix with 406 markers. Bootstrap support values $50% (1000
bootstrap replicates) are labeled with N. Replicated individuals are indicated in green. Ipomoea tiliacea represents the root of the tree. A graphical
overview of the replicates character matrix is shown below. In this matrix each row represents a replicate pair of a single individual and each column
a bin. Light blue cells specify reproducible (0,0) bin states, dark blue cells reproducible (1,1) bin states and red cells unreproducible (0,1) bin states.
Scale bar indicates uncorrected genetic distance.
doi:10.1371/journal.pone.0049119.g006
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out of ten primer combinations due to the limited generation of

replicates. Probably the use of all ten primer combinations would

have resulted in a phylogenetic tree with a more robust grouping

of individuals according to sample sites.

Both, the Ourisia and the Ipomoea data set [31] were automat-

ically scored with commercial available scoring software. In each

case, phylogenetic reconstructions based on the AMARE masked

data matrices were more tree-like than the phylogenies based on

the original data sets (Figures 5, 6). For data matrix generation, we

decided to use a different bin width (BW) definition than those

recommended by Holland et al. [31]. We considered the

recommended BW of 0.5 too small, splitting identical alleles into

separate characters [9]. Instead, we chose a BW of 0.85

considering the standard deviation of 0.15 of the sequencer̀s

sizing precision (3730 Genetic Analyzer, Applied Biosystems) to

prevent a merging of adjacent but separate markers into one

character.

The number of selected markers extremely decreased from 2011

to 530 markers in the AMARE masked Ourisia character matrix.

The phylogenetic tree clearly resolved a large-leaved and a small-

leaved group within the genus (Figure 5). This result corresponded

to the result based on a much larger Ourisia data set published by

Meudt et al. [19]. Furthermore, within the small-leaved group

a monophyletic lineage with the three alpine species O. simpsonii, O.

glandulosa and O. spathulata was found. The data of Meudt et al.

[19] also supported a monophyletic alpine group within the small-

leaved clade though including O. confertifolia, O. glandulosa and O.

spathulata. Meudt et al. [19] argue, however, that O. simpsonii could

be also included in this alpine group based on morphological

characters. In the AMARE tree O. confertifolia did not group within

the alpine lineage, but was sister to O. s. sessilifolia.

The AMARE phylogeny of the Ipomoea data set was more tree-

like than the original Ipomoea tree and showed a higher genetic

differentiation into a mainland and an island group (Figure 6).

Replicates always grouped as sister taxa in the AMARE

phylogeny, but not in the original Ipomoea tree. This is due to

the fact that AMARE selects markers dependent on the marker

reproducibility among replicates. Replicates were representative in

the Ourisia data set, but not in the Ipomoea data set. In the Ipomoea

example, genetic diversity was only represented by the replicates of

the mainland group. Generally, the number of replicates was very

low in both data sets. The original and AMARE masked replicate

matrices of both data sets were not directly comparable because

different BWs were used to generate respective matrices.

Generally, error rates were quite high due to the small number

of replicates [31]. Bootstrap support values $50 strongly de-

creased in the AMARE NJ trees. Not only the number of markers

was much higher in the original AFLP data matrix but also the

small BW of 0.5 could have artificially increased bootstrap values

by splitting one character into two eventually doubling bootstrap

support values in the original phylogeny.

Conclusions
The application of AFLPs has demonstrated its merits in

population genetics and phylogenetics. However, due to the nature

of the AFLP technique the assessment of marker homology and

reliability has been an issue since the introduction of this method.

Several attempts have been published which have been designed

to increase scoring reliability particularly in population genetics.

These attempts address automated scoring of AFLP profiles

concerning peak height and bin width [9,26,28,29,31]. A special

issue of concern has been the lack of a reliable and fully automated

control of marker reproducibility itself.

In this study, we showed that the AFLP scoring process can be

fully automated and issues of bin width, peak height, and

reproducibility can be addressed in a combined approach using

commercial software packages and AMARE. AMARE imple-

ments characteristics of manually scoring processes in an objective,

fast, and perfectly reproducible way and goes beyond published

efforts in population genetics and phylogenetics relying on AFLP

technique. We showed that making marker selection dependent on

marker reproducibility improved the signal-to-noise ratio of AFLP

character matrices. The ease with which enormous amounts of

AFLP data can be generated makes automated scoring inevitable.
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