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Abstract

We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of
connections around a preferred degree k. Using very simple rules for forming such preferred degree networks, we find
some unusual statistical properties not found in familiar Erdös-Rényi or scale free networks. By letting k depend on the
fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is
perceived. In our models, the behavioral adaptations can be either ‘blind’ or ‘selective’ – depending on whether a node
adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen
preferred network, we find that the infection threshold follows the heterogeneous mean field result lc=m~SkT=Sk2T and
the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With ‘blind’ adaptations,
although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details
of the adaptation. The ‘selective’ adaptive SIS models are most interesting. Both the threshold and the level of infection
changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links
(compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective
adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.
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Introduction

Concepts and tools from network science provide a powerful

framework for the description of many physical, biological, and

social systems, from the world wide web to neural architectures

and from Facebook to power grids [1,2]. In the initial years of the

growth of network science, researchers focused on characterizing

the network topology [1,3], and then studying the time-dependent

processes on complex static networks [4,5]. Often the ‘‘dynamics

on networks’’ was treated distinctly from the ‘‘dynamics of

networks.’’ However many recent studies have focused on more

realistic situations where dynamics of the network and dynamics on

the network are coupled together, with a non-trivial feedback loop

connecting them [6,7]. In this work, we study the spreading of

infectious diseases on a network of interpersonal connections

where the adaptive behaviors of the affected population influence

both the disease dynamics and the network topology.

The behavior of classic epidemic models such as susceptible-

infected-susceptible (SIS) model and the susceptible-infected-

recovered (SIR) model [8,9] has been widely studied on regular

lattices and on specific networks such as random, small world or

scale-free networks [4,10,11] (see [12] for review). These studies

assume that the disease spreads on a static network with

characteristics which are independent of the nodes. However, in a

dynamic social setting, people are likely to respond by social

distancing or quarantine – changes in behavior that are perceived

to reduce the likelihood of infection. Such behavioral adaptations

will change the network topology and feed back into the dynamics

of epidemic spreading. Recently, there has been growing interest

to include such adaptive behavior in epidemic models. Given the

wide range of human responses and their impact on the spread of

the disease, modeling all these possibilities seems difficult and

daunting. Thus, it is natural to consider simplified models with a

few effective parameters. While such models cannot predict the

epidemiological or social details quantitatively, they may be able to

provide insight into qualitative and universal features of how

adaptive behavior impacts the dynamics of epidemics. In this

spirit, we introduce our models and study their properties.

Funk et al [13] classify the current literature on adaptive

epidemic models based on the source of information (local or

global) and the type of information (belief or prevalence) about the

epidemic. Belief-based models emphasize individuals’ awareness of

a disease, and how they evaluate the associated dangers [14–17].

For example, some authors have modeled risk perception by

decreasing the infection rate with the fraction of infected

individuals in the local network of the node [18] and by

introducing voluntary vaccinations [19,20]. Prevalence-based

models emphasize the objective assessment of the extent of

epidemic spread and personal risk. Most of these studies have

concentrated on coupling disease dynamics with network adapta-

tions through rewiring of links [6,7,21–26] and studying the
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dynamics of S-I, S-S and I-I links. One might argue, however, that

such rewiring models make a somewhat unrealistic assumption,

namely, that individuals necessarily create a link with a healthy

person after cutting a link with an infected one.

We address some of the limitations of prevalence-based

epidemic studies by proposing a new type of network which

contains a natural parameter, k, the ‘preferred degree.’ An

individual (a node) with more/fewer contacts than k will tend to

cut/add links. This parameter allows us to easily model adaptive

behavior depending on the (perceived) level of threat from an

epidemic. Let us point out several other advantages of this

approach. Our network does not have unrealistically large degrees

responsible for epidemics with vanishing thresholds [27]. Our

model can easily be generalized to endow different nodes with

different k’s, e.g., to account for the presence of extroverts and

introverts [28,29] in our society. Recent work has attempted to

synthesize more realistic network such as those based on survey

and census data [30,31], and trajectories of mobile phone users

[32]. Models based on realistic features of social network such as

assortativity (homophily) [33] in social networks and range of

interactions (like close and casual) have received considerable

attention [34]. Our network model can be used to simulate

features of these ‘realistic’ networks by making preferred degree

distribution match the ‘true’ distribution and tuning the clustering

coefficient by methods such as the one developed by Volz [35].

We highlight few major differences between our approach and

the literature on prevalence and global information based adaptive

networks. In the rewiring approach [6,7], the total number of links

in the population is fixed for all time, regardless of the level of the

epidemic. By having a preferred-degree (which adapts to the state

of the epidemic), the total number of contacts in the population is

reduced when the disease spreads dramatically and returns to

‘‘normal’’ levels when the epidemic recedes. In this sense, our

adaptive preferred degree plays a role analogous to the rewiring

rate, in delaying the onset of an epidemic. Zanette and Risau-

Gusmán [22] consider case where susceptible agents can decide to

break links with their infected peers and links are permanently

broken. In our approach, no link is permanently broken as the

dynamics is kept active by infected nodes who can reconnect with

any susceptible.

We begin by modeling the simplest case, where all nodes are

characterized by a single k, i.e., a homogeneous population. The

network is dynamic, so that nodes can add or delete links, in an

attempt to reach or maintain k. When a disease spreads on this

network, the detailed dynamics of adding/cutting links changes in

response to the epidemic. In the following, we propose a model

reflecting global prevalence-based information, by letting k depend

only on w, the fraction of infected individuals in the entire

population. We model two typical human response: (a) If

individuals are not aware who is infected and who is healthy (an

‘invisible’ disease, e.g., AIDS), they may cut (or add) links blindly

in response to news of a raging epidemic. We will refer to this

adaptive behavior as ‘blind response.’ (b) If the disease is ‘visible’

(e.g., the flu), an individual is more likely to be more discriminating

when cutting or adding a contact – a response we naturally label as

‘selective.’ Here, the dynamics of network will depend on the state

of the recipient node: Susceptible individuals will preferentially cut

links with the infected and add links with other susceptibles. For

the blind adaptations, we investigate three types of behavior: the

reckless (where k remains constant, then drops abruptly only when

w reaches some large value), the typical (where k decreases linearly

with increasing w, leveling off at some constant kmin), and the

nosophobic (who cut ties precipitously as soon as w deviates from

zero). We find that the epidemic threshold does not change, but

the level of epidemic depends on the ‘degree of fear’ in the

population. For the selective adaptations, we focus only on the

reckless and typical types. Here, both the threshold and the level of

infection change. We develop a mean field theory for local

adaptations by writing equations for node and link dynamics. The

predictions of this theory predict all the qualitative features of the

simulations.

Our paper is organized as follows: In section I, we set the scene:

presenting the formation of preferred degree networks and

introducing an SIS dynamics on this network (initially with no

adaptive features). We will summarize two theoretical approaches:

a simple mean field theory (MF) and more sophisticated annealed

adjacency matrix (AAM) method [36]. We also compare our

results for the critical lc with predictions of heterogeneous mean

field theory [37,38]. In section II, we turn to study populations

with adaptive response to a raging epidemic. In section III, we

describe our main results for adaptive epidemic propagation.

Section III.a deals with blind adaptations where a given nodes

cannot ‘‘see’’ the disease states of the connected nodes.. The SIS

phase diagram and degree distribution for these adaptive cases are

much richer than those in non-adaptive networks. Much of the

phase diagram is captured quite well by a simple mean field

theory. In section III.b, we discuss the cases with selective

adaptations. Simulation results are compared with a mean field

theory, the details of which can be found in Appendix S1 (see

supplementary information). We conclude, in the last section, with

a discussion of our results and their implications for future

research.

Analysis

I SIS on preferred degree networks
I.a Network formation. To explore the behavior of

epidemics on dynamic networks, let us first present the foundation,

i.e., a network with preferred degree(s). Following the lines

introduced in [28], we briefly review how such a network is formed

and evolves. Details of the statistical properties of such networks

are also of interest, but will be presented in another publication

[29]. For simplicity, we first consider a homogeneous population,

i.e., a system with N nodes (individuals) of identical behavior,

evolving stochastically. In each time step, a random node n
(~1,2, � � � ,N) is selected and its degree, kn, is noted. Then, an

attempt to add (cut) a link is made, with probability wz(kn)
w{(kn)ð Þ . Although an infinite variety of w+’s is possible, we

impose some general properties which mimic typical human

behavior, e.g., wz(0)%1 and w{(k&1)?1, as well as the logical

constraint w{(0)~0. A simple choice, used in all our simulations,

is w{(k)~1{wz(k), with

wz(k)~
1ze{kj

1ze(k{k)j
, ð1Þ

recognizable as a Fermi-Dirac function. Here, j plays the role of

‘inflexibility’ (or ‘rigidity’) of the personality, so that a node

(individual) with j~? will always cut/add a link when it finds

itself with more/fewer links than k. Indeed, apart from a brief

digression in the next paragraph, the step function is used in all the

simulations presented here. In the code, we choose k to be slightly

larger than an integer, so that a node with kƒk will attempt to

add a link. Note also that, with w{~1{wz, the network will

always change, by the addition or deletion of a link. The partner

node for this action is randomly chosen out of the eligible pool.

Thus, the ‘recipient’ has no control over a link to it, whether

created or destroyed. In a Monte Carlo step (MCS), N such
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attempts are made, so that there is one chance, on the average, for

each node to add or cut a link.

With a preferred degree, our network is clearly not scale-free.

Also, unlike the case of a Erdös-Rényi network, the degree

distribution in the steady state here, r(k), is not Gaussian. Though r
depends on the details of w+, we discover a universal feature:

exponential tails when k is far from k. In Figure 1, we show typical

simulation results for r (with N~5000,k~25,50). Indeed, for a

group of completely rigid individuals (j??), r(k) is a Laplace

distribution (!e{ln 3Dk{kD). With a more flexible group (jƒ1), the

maximum around k is rounded off, up to a width of &1=j, before

crossing over to the same kind of exponential tails. This behavior is

heuristically understood in the context of an approximate master

equation, details of which can be found elsewhere [29,39]. Our

main focus in the remainder of this article will be the SIS dynamics

associated with the nodes, evolving along with this changing

network.

I.b SIS on static and dynamic preferred degree

networks. Having presented the dynamics of a network with

static nodes, we now endow the nodes with their own degrees of

freedom. Following the standard SIS model [8], we assign a binary

state variable, sn~0,1, to node n, corresponding to that individual

being susceptible (S) or infected (I ). The system evolves by discrete

attempts to update a randomly chosen node. If it is infected, then it

recovers with rate m : I
m

S. If it is susceptible, then the

disease is transmitted with rate l from each of its infected contacts

SzI
l

IzI ( Here we set the time step equal to 1 making

rates same as probabilities). We consider infection as a simulta-

neous event, so that an S in contact with m infected nodes will

contract the disease with probability 1{ 1{lð Þm (?ml if l%1).

Again, a MCS is defined as N such attempts.

A good measure of the ‘level of the epidemic’ is the fraction of

infected nodes: w:Snsn=N. Clearly, a population with w~0 will

not evolve, a state known as ‘absorbing.’ If the initial state has

ww0, then the epidemic may die out (i.e., w?0) quickly or only

over very long times, since there is a non-vanishing probability

(*e{N ) for a fluctuation to drop w to 0. In the latter, known as an

‘active state,’ w is typically positive, meaning that the epidemic is

typically ‘‘ alive and well.’’ Whether the system becomes active or

not will depend on network topology and the ratio l=m. For

simplicity, we fix m~0:5 in all our simulations and use l as a

control variable. The goal is a phase diagram: Given l and a

particular network, will the epidemic die or stay active? and where

is its threshold: lc?

While a well-defined set of such questions can be formulated for

infinite systems running for indefinite times, the task is less simple

when confronted with simulations with finite systems and finite run

times. In particular, since our systems will reach absorbing states in

finite time, it is difficult to pin point the threshold, near which the

typical w is vanishingly small. To overcome this difficulty, we

introduced a trick into our simulations. To prevent our system

from falling into the absorbing state, we do not allow the last I to

recover. We refer to such a node as an ‘immortal’. We stress that

we do not fix a single node as immortal, but simply prevent the last

infected node from recovering. The advantage of this approach is

clear: Our system never ceases to evolve, so that time averages in a

steady state can be used to study ensemble averages (both denoted

by S:T). Of course, we should keep in mind that, in the ‘inactive

state,’ SwT=0 but O 1=Nð Þ. Further measurements can be

implemented to characterize this state in more detail. For

example, distributions of w are expected to be exponential (e{cw)

and how c varies with l should be revealing.

We first studied static networks with a preferred degree, to

provide a baseline for later investigations with co-evolving

networks. For this study, we generated 50 network realizations

using the scheme specified above (using 10K MCS for each run)

and kept them quenched as we continued with the evolution of the

nodes. After thermalization for 1000 MCS, we measure w every

10MCS and then averaged over the 50 networks. The results for

this (quenched) average w, as a function of l, display a clear signal

of the expected transition from inactive to active regimes of the

epidemic. Away from lc, the fluctuations over a run are about 1%.

The averages from the 50 realizations also do not differ by more

than this amount. Not surprisingly, close to the transition,

fluctuations are more substantial (*10%). Exploring the critical

region quantitatively is a worthwhile pursuit, but beyond the scope

of this study.

Figure 1. Degree distribution of preferred degree networks. Networks with N~5000 nodes and various inflexibility parameters j (see Eq. 1).
Panels (a) and (b) corresponds to k~25 and k~50 respectively. The j?? corresponds to the totally inflexible individuals and results in a Laplace
distribution.
doi:10.1371/journal.pone.0048686.g001
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Next, we turn our attention to SIS on dynamic networks, where

we must account for the fact that network and disease dynamics

typically proceed at different time scales in society. Given that we

are modeling the former as a response to a spreading epidemic, we

will assume that network timescales are slower. In this spirit we

choose the epidemic spreading to be 1=ra (rav1) times faster than

the network adaptations. That is, for every one MC step of the

network, we perform 1=ra MCS of nodes. Mostly, we use ra~0:1.

The SIS dynamics on a static network consists of letting ra?0. In

practice, we performed runs with ra~0:001 and found that w lð Þ is

not very sensitive to ra and that the ra~0:001 data are

indistinguishable from those in static networks above. In

Figure 2, we present results from runs with ra~0:1 (open black

squares) and ra~0:001 (solid blue triangles), leading us to the

conclusion that, within our statistical errors, the time scales of

network dynamics have little effect on an epidemic in a

homogeneous population. We point to the readers that we present

the results for time averaged data. Detailed investigations into the

fluctuating dynamics is beyond the scope of the present work. For

a recent work on instantaneous time description of network

dynamics we refer the reader to [40]. In the next subsection, we

will present theoretical perspectives of this system and how such

phenomena can be understood.

I.c Simple mean field theory and the annealed adjacency

matrix approach. To attack a statistical system theoretically,

the first and simplest tool is a mean field (MF) approach. Since our

interest is the long time behavior of wt l,mð Þ, this first step consists

of writing a simple equation for the evolution of wt. Following

standard MF analysis, we write

dwt

dt
~{mwtz 1{r wtð Þð Þ 1{wtð Þ, ð2Þ

where the first term models the I ’s recovering. In the second term,

r xð Þ~ 1{lð Þkx
is the probability that an S is not infected by any of

its infected contacts. By setting the derivative to zero in Eq. 2, we

find stationary solutions (fixed points): w~wt??. For small/large

l, the stable w is zero/positive, corresponding to the inactive/

active state. The transition is predicted to occur at

lMF
c ~1{e{m=k , ð3Þ

which reduces, for m%k, to an easily understandable result:

lMF
c ^m=k. In the active state, w lð Þ is given by the solution to

mw~ 1{r wð Þð Þ 1{wð Þ. In other words, it is the inverse of the

explicit l wð Þ :

l~1{
1{ 1zmð ÞwMF

1{wMF

( )1=kwMF

: ð4Þ

The result is presented as the solid line (magenta on line) in

Figure 2 and shows that, while slightly higher than the simulation

results, it indeed captures the essentials of the epidemics. In the

vicinity of criticality, the exponent in wMF! l{lcð Þb takes the

expected MF value bMF ~1.

In a dynamic or a quenched random network, this approach

may seem too simplistic. In previous studies of SIS models on

irregular, static networks, better approximations have been

developed. Examples include the heterogeneous mean field (HMF)

theory [37,38] and the annealed adjacency matrix (AAM)

approach [36]. The former takes into account a distribution of

degrees, such as r kð Þ in our case, and provides the critical

threshold at lHMF
c ~mSkT=Sk2T, i.e., lHMF

c ~ m
SkT = 1z Dk2

SkT2

n o
. It

has been widely applied, with considerable success, to study critical

dynamics on various networks. For our study here, we present in

Figure 1 the few cases of r kð Þ for the preferred degree networks

used, showing that SkT~k as expected and Dk2=SkT2 1%.

Hence, the simple MF prediction (lMF
c ^m=k) is quite adequate.

Further, as our interest lies in the dominant behavior of the

epidemic over the entire phase diagram, rather than details of the

transition, there is no compelling need for using this complex

method. As our network is dynamic, the AAM method may

provide better predictions. Let us briefly summarize this approach

[36] here. While the full dynamics involves a fluctuating adjacency

matrix, in the AAM, the elements anl of the full fluctuating

adjacency matrix are approximated by the probability that nodes

n and l are connected. The infection probability of nodes are

evolved through a discrete Markov equation (Eq. 1 in ref. [36]).

Steady state values of infection probabilities are used to calculate

wAAM
. Applying this technique to our problem, we find that wAAM

(red circles in Figure 2) follows wMF
(magenta lines) quite closely at

the transition region. As for w lð Þ in higher l’s, we show only the

static network data and wAAM
in the inset of Figure 2. As expected,

the infected fraction simply saturates at wmax~1=(1zm). Clearly,

the agreement between simulation results and all theoretical

approaches is quite good. Thus, as a first step towards

understanding epidemics on more complex, adaptive networks,

we will rely on the simpler mean field theory.

II Adaptive response to a raging epidemic
In the networks presented above, whether static or dynamic, the

degree of each node is effectively fixed in time (*k in our model).

However, when an epidemic is present, individuals are likely to

exhibit ‘social distancing’ behavior, by cutting ties or reducing the

number of non-essential contacts (as documented in, e.g., [41,42]).

Apart from being an inherently natural response, cutting ties may

also occur due to externally imposed public policies [41,43]. When

the state of the disease is not easily discernible (e.g., AIDS), one’s

response will be to sever links blindly. On the other hand, if the

Figure 2. The SIS phase diagram for non-adaptive network.
Fraction of infected population versus relative infection rate is plotted
the vicinity of the transition point lc=m~0:04 and compared with
mean-field theories, for N~5000,k~25,m~0:5, and two values of ra .
The numerically integrated AAM equations ( Eq 1. in [36]) are shown as
open circles (red online), and results from the simple mean-field theory
of Eq. 4 are plotted as solid lines (magenta online).
doi:10.1371/journal.pone.0048686.g002
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disease is ‘visible’ (e.g., the flu), one can be more selective, by

cutting only contacts with the infected. Such adaptive behaviors

can be easily accommodated in our model by letting k change, in

response to the level of the infection. In this work, we will study the

effects on the epidemic due to both ‘blind’ and ‘selective’

adaptations. In particular, we investigate infection levels, w, and

degree distributions, r kð Þ, in the steady states.

II.a Models of response. To incorporate adaptive behavior,

our first task is to specify how the population will lower the

preferred degree, k, in response to a rising infection level. When

an individual becomes aware of an epidemic, the response is likely

a combination of rational/prudent behavior and irrational

perceptions of the dangers. Though a typical population is diverse

and heterogeneous, we begin with the simplest system: a

homogeneous population with a unique response based on just

one piece of information of the epidemic, namely, the global

infection level w. In other words, we let every node update with the

same k wð Þ. For convenience, k wð Þ is introduced via a ‘fear factor’

f wð Þ:

k wð Þ~k0f wð Þ; f 0ð Þ~1: ð5Þ

Here, k0 is just the preferred degree for an uninfected population,

while f is a monotonically decreasing function, which serves to

reduce the preferred degree. Of the infinitely many behavioral

patterns that can be modeled, we consider only three kinds here

(Figure 3):

N Reckless individuals are oblivious to a low level of epidemic

present in the population. They keep the same k until the

epidemic reaches a certain threshold: wh. (We assume wh to be

some fraction of wmax.) At this point, they abruptly change

their preferred degree to kmin. Keeping in mind that a typical

person would maintain a minimal set of contacts (family,

caretakers, etc.) even in the face of a raging epidemic, we

simply choose kmin to be independent of w for all levels higher

than wh. Explicitly, freckless(w)~H wh{wð Þz kmin=k0ð ÞH
w{whð Þ, where H is the Heaviside step function. For

simulations, we choose k0~25, kmin~10, and wh to be 60%

of the maximum wmax~1= 1zmð Þ. Since we fix m at 0:5, we

use wh~0:4.

N Typical individuals are likely to cut their contacts in a more

measured fashion. For them, we choose a linearly decreasing

f wð Þ. If this decrease is rapid enough, then these individuals’

comfort level would reach the lower limit (kmin) before the

infection rate reaches its maximum level wmax. Again for

simplicity, we let their k remain at kmin for all higher levels of

infection. Explicitly, ftypical(w)~ 1{awð ÞH wh{wð Þz kmin=k0ð Þ
H w{whð Þ, where the slope and the threshold are related by

awh~1{kmin=k0. For this set of simulations, we chose the same

parameters as above: wh~0:4,k0~25,kmin~10.

N Nosophobia is an irrational fear of contracting diseases. To

model such a population, we let f drop exponentially, as soon

as the slightest infection is detected. These individuals would

eventually avoid all personal contact. Explicitly, we have

fnosophobic(w)~exp({w=ws). With ws setting the severity of this

phobia, we use ws~0:1 in our simulations.

Of course, any real population will have a mix of these

behaviors, with perhaps time dependent compositions. Our hope

is that studying these homogeneous cases separately will help us

untangle the effect of different adaptive behavior on the epidemics.

To summarize our model so far, when a node is chosen for

updating its links, we measure its degree k and take note of the

overall infection level (w). Then we add/cut a link if k is less/

greater than k wð Þ. Choosing which link to add/cut and its affect

on disease dynamics will be the focus of the next section.

Results

III Epidemic propagation in adaptive networks
III.a Blind adaptation. With an invisible disease, an

individual does not know which of his/her contacts (or potential

contacts) is infected. As a result, adapting to the news of say, a

rising level of the epidemic, he/she simply cuts links to randomly

chosen partners (as described in Section I) until a smaller k wð Þ is

reached. Similarly, if kvk wð Þ, the new contact will be also chosen

blindly. Setting aside the interesting question of how w changes

with time as a result of a changing network topology (in response

to the feedback from k wð Þ), we focus on the steady states after the

system settles down.

In Figure 4, we show the simulation results for w lð Þ in these

three cases (with mostly j~1, flexible individuals, for simplicity),

as well as the case above: a non-adaptive network. We first observe

that the epidemic thresholds are essentially unchanged by any of

the adaptive strategies. This fact is understandable, since the

threshold is defined by w rising from zero and our transition is

continuous. Thus, fear in the population has yet to take hold, and

k remains close to k0. Beyond the threshold, the effects of the

different fear factors are self-evident. The reckless follow the non-

adaptive until w reaches wh (chosen to be 0.4 here), and then

abruptly adjust their response so that the infection remains more

or less at this level. In the inset, we see that w resumes its upward

trend after l=m^0:2, and reaches close to the maximal level

wmax~2=3 by l=m^1:0. By contrast, the infection level in the

typical case increases at a slower pace immediately after lc.

Around l=m^0:2, wtypical lð Þ coincides with the reckless, since

both networks are controlled by the same kmin~10. Finally, as

expected, infections in a nosophobic population are strongly

suppressed. Indeed, the critical properties near the transition may

be altered. Since k wð Þ is effectively zero for w *> ws ln k0 (i.e.,

0:1 ln 25^0:35 here), it is not surprising that the infection levels

are far lower than the other two types.

More quantitatively, simple MF theory should provide an

acceptable explanation for these results. From the analysis above, a

k wð Þ can be readily incorporated, so that lMF
c remains unchanged:

Figure 3. Adaptive fear factor. The ‘‘fear factor’’ f (w) depending on
the global infected fraction w (see Eq. 5) associated with different
behavioral patterns listed in section II.a.
doi:10.1371/journal.pone.0048686.g003
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1{e{m=k0 . Above this value, the only modification is the l-w
relationship, and Eqn. (4) now reads

l~1{
1{ 1zmð ÞwMF

1{wMF

( )1=(k0wMF f wMFð Þ)
: ð6Þ

Although the fear factor appears explicitly here, this expression is

quite cumbersome. A simple way to regard the effects of

adaptation is the following: To produce the same level of infection

(w), the infection rate (l) must be enhanced over the non-adaptive

population. Quantitatively, {ln 1{lð Þ (%l, for small l such as in

our examples) must increase by a factor of 1=f wð Þ. In this way, it is

easy to see that the MF prediction of the critical exponent b will

remain unchanged, unless f is appropriately non-analytic at w~0

(i.e., b~b
0

if 1{f!wb
0

with b
0
v1). At the other extreme, the

saturation levels are given by setting the left side of Eqn. (6) to

unity. Unless the fear factor is so intense that f vanishes at a value

of w less than 1= 1zmð Þ, then, strictly speaking, these do not

depend on the details of the adaptive strategy f wð Þ. However, for

the severely fearful such as the nosophobic, the infection essentially

levels off at a w considerably lower than wmax.

Comparing with simulation data, we see that the MF

predictions (Figure 4) tend to lie a little above simulation data,

with the exception of few points near region associated with the

abrupt drop in k wð Þ for the reckless population. We believe this

effect may be the result of large fluctuations in the degree

distribution. Individuals caught in this regime may cut ties

drastically (at the news of w rising above wh), causing the infection

to decline. But this good news would lead to the population

reversing course just as abruptly, so that large fluctuations should

continue. To test this conjecture, we now present degree

distributions as an indication of how serious these fluctuations

can be.

In the absence of infection, the degree distribution should be

similar to those in Figure 1, around the preferred k0. Far from the

transition, the epidemic has settled in and, for both the typical and

the reckless, the distribution should also be similar, but settling

around kmin instead ( Figure 5 ). Not surprisingly, the picture is

more complex for the nosophobic, especially for large l, since the

preferred degree is strongly dependent on the level of the infection

and approach zero, which tends to isolating the nodes. Here, let us

focus on the effects of the abrupt behavior of the reckless, the case

that also displays the most interesting behavior (large fluctuations,

Figure 5 a,b). For the other two types, we note the predictably mild

changes in the degree distribution, as l increases (Figure 5c,d).

The overall shape of r kð Þ remaining essentially the same, but due

to adaptations the center slowly shifts with w and l.

For the reckless population, the conjectured behavior –dramatic

swings when the infection level is near wh, is well captured in the

broadening of r kð Þ. From the data shown in Figure 5a, we see that

the distributions are, as expected, centered close to k0 for l 0:04
(l*0:04 corresponding to the threshold wh*0:4). Thereafter,

many individuals in the population begin to cut contacts. By

l~0:05, r kð Þ is quite distorted compared to the simple Laplace

distribution. Specifically, we see that a sizable fraction of the

population has cut their preferences down towards kmin~10. To

display a complete range of infection rates, we chose to simulate

with rigid individuals (j~?) for simplicity (Figure 5b). Here, we

see the complete crossover as l increases, from a distribution

centered around k0 to one around kmin. If we plot a reflected and

appropriately shifted version of the l~0:065 distribution (i.e.,

r(~kk{k) for an appropriate ~kk), the result is essentially identical to

the raw r kð Þ for l~0:050. A similar collapse is observed for the

cases with l~0:055 and l~0:060, r kð Þ. Thus, we may associate

lf {t%0:057 with a transition, from a population dominated by k0

(i.e., non-adaptive behavior) to one controlled by kmin (i.e., typical).

Since r� kð Þ displays always a single peak, which shifted rapidly

between kmin and k0, we would label this as a continuous

transition.

III.c Selective adaptation. If the state of infected individuals

is manifest (i.e., disease is ‘visible’), it is natural for individuals to be

more selective in choosing their contacts. Such behavior might

also be driven by policy interventions such as isolating the infected

and/or closing public meeting grounds (e.g., schools) [41,43]. In

particular, how an individual adds/cuts links will now depend on

the states of his/her contacts. We choose the following ‘think

globally, act locally’ model which we believe is a reasonable

representation of such adaptive behavior.

We initially set up a static preferred degree network with a

preferred degree k~k0. Infection is started in some fraction w0 of

the nodes and spreads according to the standard SIS dynamic

rules described before. As in the blind adaptation case, the

preferred degree k~k0f (w) depends on the global infection level

w. Unlike the previous method, when a node is chosen to update

its links, the rules will depend on whether the node is susceptible or

infected. Let us assume that an I does not care about the state of

the contacts and randomly adds/cuts links as before. However, an

S will behave more selectively, having a bias in favor of other S’s

after it decides to add or cut a link. To model this bias, we

introduce a parameter, c, with which the favored choice is selected

over the undesirable one. Letting subscripts denote the initiator-

receptor pairs, pSI and pSS denote, respectively, the probability

with which an S cuts a link to an I or an S. Obviously, we impose

pSIzpSS~1. Similarly, let ~ppSI and ~ppSS denote the probabilities it

will create, respectively, a link to an I and an S (with ~ppSIz~ppSS~1).

Explicitly, we choose the following.

N An S with degree k§k will cut a link from a randomly chosen

I with probability

pSI~
ckI

ckIzkS

, ð7Þ

Figure 4. Non-adaptive and adaptive preferred degree SIS
phase diagram. We have chosen N~5000, k0~25 and kmin~10 for
all three adaptive models (See Figure 3). The solid lines represent the
mean field solution to these models based on Eq. 6.
doi:10.1371/journal.pone.0048686.g004
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or to a randomly chosen susceptible with probability

pSS~1{pSI . Here kI ,kS are the number of I ,S contacts it

has. Now, it is clear that the larger c is, the more our S will

choose to cut links to its infected contacts (c~1 corresponds to

non-preferential adaptation).

N Similarly, an S with degree kvk will create a link to a

randomly chosen S with probability

~ppSS~
ckS

ckSzkI

, ð8Þ

or to a randomly chosen infected with probability

~ppSI~1{~ppSS. Again, we see a large c biases more towards

adding links to other S’s.

N Since infected nodes do not have any incentive for selective

adaptation, we make these nodes adapt blindly as follows:

pII~~ppII~
kI

kIzkS

; pIS~~ppIS~
kS

kIzkS

: ð9Þ

To allow for individuals to react at a different rate compared to

that of recovery or infection, as in blind adaptation case, we

update the links at a rate ra (v1) compared to the update of the

state of the nodes.

With the rules described, we studied selective adaptations for

reckless and typical cases (see section. II.a ) for moderate system

sizes N~500,1000. We found that system size satisfying Nwk2
max

is sufficient to produce the ‘thermodynamic’ limit. While we note

that steady state configuration depend only on the ratio l=m, we

alert the readers that our parameters m,wh for selective adaptation

are different from the blind adaptation case. We choose

m~0:01%mblind~0:5, and the cut off infection level for k~kmin

to be 60% of the maximum value wh~0:6wmax~0:6=(1zm)&0:6.

In Figure 6a, we show the degree distribution of susceptibles,

infected and total populations below the epidemic threshold for a

typical behavioral adaptation case. Except for one immortal, the

whole population is composed of susceptibles. The total degree

distribution essentially reflects the susceptibles. However, the

immortal can have different degrees during the course of SIS

dynamics which will be reflected in the quenched distribution of

infected. Figure 6b shows the network structure with the lone

infected connected to the big cluster of susceptibles. In Figure 6c,

we show the degree distribution of susceptibles, infected and total

populations above the epidemic threshold with parameters ra~0:1
and l=m~0:22. We see that all the degree distributions overlap.

However the infected people are more strongly interconnected

than with the susceptibles (see Figure 6d), which is indicated by

non-zero modularity coefficient [44,45] of Q = 0.2384.

Figure 5. Steady state degree distribution of adaptive network. Degree distribution of (a) reckless with j~1 (see Eq. 1) (b) reckless and
inflexible individuals (j~?), (c) Typical and (d) Nosophobic individuals (see Sec 3.A for details) with j~1. We have chosen N~5000,k0~25,kmin~10
for all these cases. The infection rates l are chosen to illustrate transition behavior in degree distributions.
doi:10.1371/journal.pone.0048686.g005
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In Figure 7a and c, we show the SIS phase diagram for reckless

and typical adaptations obtained by Monte-Carlo simulations. In

the figure, black squares, blue circles and magenta triangles

correspond to relative network adaptation rates ra~0:1,0:2,0:4
respectively. We observe that unlike the blind adaptation case, the

epidemic threshold varies both with the network adaptation rate

and behavioral response to different fear levels. The threshold

increases with increasing ra – an understandable feature, as faster

responses by the S’s should suppress the infection rates. In both

cases, the transition from a healthy state to an active infectious

state is considerably more rapid than in the blind adaption case.

Indeed, for the reckless population with faster network response

(larger ra), we observe a discontinuous transition (or a very steeply

rising continuous one). In both cases, there is a second crossover,

near w&0:6, to a gently rising w l=mð Þ curve. These can be traced

to our choice of k wð Þ, which contains a singularity (discontinuity or

kink) at wh %0:6ð Þ.
Since the adaptation is in response to a ‘local’ environment of a

susceptible individual, a more sophisticated mean field theory

needs to be formulated. To distinguish this from the mean field

approach above, we will refer to it as the ‘local mean field theory’

(LMFT). In particular, we introduce three more variables: lSI ,lSS ,

and lII , defined as the mean number of SI ,SS and II links per

node, respectively. While the evolution equation for w is just

modified to be dw=dt~{mwzllSI , the equations for the l’s are

much more involved. Deferring to the Appendix S1 (see

supplementary information ) the details of how these are

formulated and studied, let us focus here on the results of the

stationary solutions, Eqns. (A4, A11) of Appendix S1, and how

they compare with simulation data. Illustrated in Figure 7b and d,

the general conclusion is that there is reasonable qualitative

agreement between LMFT and Monte Carlo results.

For the case with reckless adaptations, the response to infections

is quite rich while the agreement is better than expected. In

particular, LMFT predicts three stable fixed points: one associated

with the inactive w~0, another associated with wh, and the third,

with a ‘normal’ endemic state. The presence of the second fixed

point is probably the result of the discontinuity in our kreckless(w).
Moreover, for a moderate range of l, the LMFT displays

bistability. Of course, in a stochastic simulation, one of these will

be metastable with a discontinuous transition in w lð Þ. Such

differences are common, much like bistability in a Landau theory

Figure 6. Degree distribution and network structures with typical local adaptations. Panels (a) and (b) show systems below the epidemic
threshold, while (c) and (d) show systems above the threshold. The parameters chosen are N~500,k0~25,kmin~10,c~10k0, ra~0:1, l=m~0:1.
doi:10.1371/journal.pone.0048686.g006
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of ferromagnetism below criticality vs. metastability/stability in a

statistical system. Overall, we see that simulation data generally

support the existence of three branches, in good agreement with

LMFT. In more detail, we find that the nature of the first

transition (threshold of the epidemic, from the inactive state to

w%wh) is well predicted by LMFT. Comparing the location of the

discontinuous transition is, of course, very difficult. Nevertheless,

simulations indicate these locations to lie within the LMFT limits

of bistability. In any case, there is good reason to believe that the

(bare) value of ra (from simulations) will be ‘renormalized’ by

fluctuations, so that a better theory may converge towards the

data. Turning to the second transition, at higher l, we see that it is

associated with w exceeding wh, which in turn leads to a jump in k
(from k0 to kmin). Thus, the network will become homogeneous

again: With degree kmin, the theoretical w lð Þ follows

lkmin= lkminzmð Þ. This prediction agrees with simulations, once

l far exceeds the transition values. More intriguingly, LMFT

predicts the nature of this transition to depend on ra. While it is a

typical bifurcation for the lower ra’s, it a involves tri-stability region

(l=m~0:5{0:65), with all the three branches are stable for the

ra~0:4 case. In the latter case, the LMFT displays oscillating time

dependence in all the variables in the w~wh branch, pointing to

the possibility of limit cycles and Hopf bifurcations. Perhaps just

an artifact of the discontinuity in kreckless wð Þ, these fascinating

aspects deserve further study. Comparisons with data are more

ambiguous. For example, simulations favor gentle crossovers

rather than discontinuities in w lð Þ or dw=dl. Remarkably, the

location of these crossover are not too far from the transition

predicted by the LMFT.

For the ‘typical’ adaptive behavior, we find two stable fixed

points corresponding to the inactive or endemic states. Moreover,

for a moderate range of l, the LMFT displays bistability, i.e., it

predicts a discontinuous transition. The agreement between

LMFT and simulation results is arguably good for ra~0:1,

finding even the kink associated with ktypical(w) at wh. For larger

l=m, the branch of the LMFT bistable region and the data follows

lkmin= lkminzmð Þ for all ra’s. For the larger ra’s, the theory

continues to predict a discontinuous transition at the threshold,

while the data show a steadily decreasing discontinuity. It is quite

possible that these end on a multicritical point, beyond which the

behavior is more typical of a ‘second order’ transition. Such subtle

issues can only be clarified with a larger systematic simulation

study. The reasons for the discrepancy between LMFT and

simulations are unclear. We speculate that some of the approx-

Figure 7. SIS phase diagram for selective adaptations. The fraction of infected population w, versus l=m for different network adaptation rates,
with parameters N~1000, k0~25, kmin~10, c=k0~10. Panels (a) and (c) show the Monte-Carlo simulation results for reckless and typical behaviors
(see Sec. II.a) respectively. In panels (b) and (d), the simulation results are compared to local mean field theory (described in Appendix S1) predictions.
The black squares, blue circles and magenta triangles represents the network adaptation rates ra~0:1,0:2 and 0:4 respectively. The corresponding
mean fields results are plotted as lines with respective colors in (b) and (d). The dotted, dot-dash and dashed lines represent the bistable regions
obtained from mean field solutions when initial infection fraction is varied from w0~0:05 to 0:8 and initial links chosen from following the hysteresis
curve.
doi:10.1371/journal.pone.0048686.g007
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imations used were too crude, e.g., replacing the local degrees with

the global averages (see Appendix S1 in supplementary informa-

tion for details) and assuming degree distributions to adopt

instantaneously to the steady state adaptive preferred degree (with

a time dependent k). These are issues worthy of further

investigation. Clearly, there is considerable room for improvement

as many questions remain to be explored before we arrive at a

satisfactory theory.

Conclusions

The study of dynamical processes on networks has been very

active for several decades. Most investigations have focused on

either a dynamic set of nodes on a static network (e.g., spins on a

lattice or epidemics in a population with fixed connections) or a

dynamic network with static nodes (e.g., small world networks,

scale free networks). Only recently have researchers focused their

attention on dynamics of co-evolving networks where both nodes

and links are dynamic, with particular attention to opinion

dynamics and epidemic spreading. Here we consider the classic

SIS model of epidemic spreading, on a network that adapts to the

level of the infection. Introducing a new class of networks in which

individuals (nodes) favor a certain number of contacts (k, the

preferred degree), we model various types of adaptive behavior by

letting k depend on the level of the epidemic, through w, the

infected fraction of the population. For such networks, we typically

find degree distributions that are neither Gaussian nor scale-free.

Instead, the universal feature appears to be exponential tails when

the degree is far from k.

Using Monte-Carlo methods, we simulated populations in

which healthy individuals may become ill by being in contact with

a fluctuating set of infected nodes, while diseased persons recover

spontaneously with some rate. We considered three types of

adaptive behavior representing the degree of fear in the public,

which were modeled by different adaptive preferred degree as a

function of global infection level. Further, these network adapta-

tions can be blind, i.e., a central node does not know the disease

state of its contacts, or selective where the disease state of the

neighbors is known and the central node responds by selectively

cutting or creating links. For the blind adaptations we find that the

epidemic threshold does not change with the degree of fear,

however the level of epidemic in the active phase decreases with

increasing fearful response. A good agreement with the simulation

data can typically be found with a simple mean field theory. For

the selective adaptations, much more interesting dynamics emerge.

The epidemic threshold changes substantially with increasing rate

of network adaptations (ra). The epidemic transition is discontin-

uous, unlike the blind adaptation case which shows a continuous

transition. The level of epidemic in the active phase changes with

both the network adaptation rate and the degree of fear in the

public. We have presented a local mean field theory with

equations for both node and link dynamics for selective

adaptations. For reckless and typical cases, it predicts bistable

regions in which both, a healthy and an active infectious phase

persist - a standard indicator of discontinuous transitions. There is

qualitatively good agreement between mean field predictions and

simulation data. Sources for the (quantitative) differences abound,

from the crude level of approximations used to the subtle effects of

fluctuations.

Within the scope of our study, many issues remain to be

investigated and better understood. Clearly, our mean field

treatment relied on significant approximations; how can this

approach be improved? Do the observed discontinuous transitions

share typical aspects of ‘first-order’ transitions, e.g., hysteresis and

metastability? If so, does our system fall into the universality class

of the standard SIS problem? Are there new exponents, associated

with the network fluctuations and its dynamics? At a more detailed

level, insights into much of the properties of the network (e.g.,

degree distributions, clustering, modularity, etc.), especially in the

case with selective adaptations, would be very desirable.

Apart from the two types of adaptation we have presented,

many extensions can be pursued. In a typical society, the

population is inhomogeneous, so that an individual’s perception

of the infection level may not be the same as the overall w. Letting

the adaptive behavior depend on this perceived level, we consider

variations in strategies by simply adding a white noise to w. Our

preliminary studies with ‘blind’ adaptations, not reported above,

indicate that the effect of this type of noise on the epidemic

appears to be minimal. Beyond our simple model, the most

immediate generalization is to include spatial structures, both

homogeneous and heterogeneous. For example, extroverts and

introverts have very different preferred degrees. How does an

epidemic develop across these different communities? There is a

general belief that extroverts are more prone to contagious

diseases. A further generalization would be to study epidemics on

realistic networks with known degree distributions and clustering.

Such networks can be synthesized by heterogeneous preferred

degree networks with appropriate built through ‘small world’

algorithms. We postpone such work to a future publication.

Naturally, the long term interest in such studies is to develop a

good understanding so that reasonable public policies can be

formulated in response to a real epidemic.

Supporting Information

Appendix S1 Local mean field theory for selective
adaptation.

(PDF)
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