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Abstract

Introduction: Increasing evidence supports a role of an epithelial to mesenchymal transition (EMT) process in endowing
subsets of tumor cells with properties driving malignant tumor progression and resistance to cancer therapy. To advance
our understanding of the underlying mechanisms, we sought to generate a transplantable cellular model system that allows
defined experimental manipulation and analysis of EMT in vitro and at the same time recapitulates oncogenic EMT in vivo.

Methodology/Results: We have established a stable murine breast cancer cell line (Py2T) from a breast tumor of an MMTV-
PyMT transgenic mouse. Py2T cells display a metastable epithelial phenotype characterized by concomitant expression of
luminal and basal cytokeratins and sheet migration. Exposure of Py2T cells to transforming growth factor b (TGFb) in vitro
induces reversible EMT accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers,
including EMT transcription factors, and a gain in single cell motility and invasiveness. Py2T cells give rise to tumors after
orthotopic injection into syngeneic FVB/N mice. Notably, transplantation of epithelial Py2T cells results in the formation of
invasive primary tumors with low to absent E-cadherin expression, indicating that the cells undergo EMT-like changes
in vivo. This process appears to at least in part depend on TGFb signaling, since tumors formed by Py2T cells expressing
a dominant-negative version of TGFb receptor widely maintain their epithelial differentiation status.

Conclusions/Significance: Together, the data demonstrate that the Py2T cell line represents a versatile model system to
study the EMT process in vitro and in vivo. The observation that Py2T cells give rise to tumors and collectively undergo EMT-
like changes in vivo highlights the suitability of the Py2T model system as a tool to study tumor-related EMT. In particular,
Py2T cells may serve to corroborate recent findings relating EMT to cancer cell stemness, to therapy resistance and to tumor
recurrence.
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Introduction

Epithelial to mesenchymal transition (EMT) is an embryonic

cellular program during which polarized epithelial cells lose their

cell-cell adhesions and convert into a motile mesenchymal cell type

[1,2]. These phenotypic changes can be induced by a plethora of

signals, including hypoxia, Wnt signaling, epidermal growth factor

(EGF), hepatocyte growth factor (HGF), transforming growth

factor b (TGFb), and many more [3,4]. Intracellular signaling

pathways then integrate these signals to initiate the acquisition of

mesenchymal traits via an elaborate network of EMT-related

transcription factors [5], culminating in the loss of E-cadherin,

a central hallmark of an EMT [6]. In the adult, an analogous

program can be reactivated in the setting of solid tumors (termed

oncogenic or Type III EMT) [7]. During the last two decades,

EMT has been in the focus of many research fields and

laboratories [2]. One long-standing interest is based on the

concept that EMT of cancer cells facilitates their dissociation from

primary tumors and their invasion of surrounding tissue and

intravasation, thereby contributing to the initial steps of metastasis

[1,8,9]. Consistent with the metastatic role of an EMT, recent

results have indicated that EMT confers stem cell-like traits to

tumor cells [10–12]. These results have also provided an attractive

explanation for the findings that an oncogenic EMT contributes to

resistance against cancer therapy, escape from oncogene addiction

and recurrence of tumor growth [13–16]. A number of normal

and transformed cell lines of murine and human origin have been

described and used to study EMT in vitro, yet model systems that

allow the study of breast cancer EMT both in vitro and in vivo have

remained scarce.

To meet this need, we set out to establish a cellular model of

breast cancer EMT that with one cellular system allows the study

of epithelial plasticity in vitro and of EMT and malignant tumor

progression in vivo. We here report the establishment of a cell line

(Py2T) derived from a primary breast tumor of MMTV-PyMT

transgenic mice. Py2T cells undergo EMT in vitro upon TGFb
stimulation and, upon orthotopic injection into syngeneic or nude

mice, they form primary tumors with an EMT-like phenotype,

which is at least in part dependent on the responsiveness of the

transplanted tumor cells to TGFb signaling.
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Results

Py2T, a Novel Breast Cancer Cell Line Undergoing TGFb-
induced EMT

To establish a cellular model system that could be used to study

epithelial to mesenchymal transition (EMT) in vitro and also in vivo,

we sought to establish stable cancer cell lines from primary breast

tumors. Since EMT is regarded as a prerequisite in the early steps

of metastasis, we chose to isolate cells from tumors of the highly

metastatic MMTV-PyMT mouse model of breast cancer [18,19].

After recovery from culture shock and passaging for 2 months, an

isolated pool of cells displayed a uniform cobblestone-like

morphology typical of differentiated epithelial cells (Figure 1A).

We termed this cell line Py2T (Polyoma-middle-T tumor). The

presence of the MMTV-PyMT transgene in these cells could be

confirmed by genotyping (Figure 1B). Curiously, PyMT transgene

expression was not maintained during extended culturing

(Figure 1C).

Next, we investigated whether treatment with a selection of

known inducers of EMT [3] could induce EMT-like morpholog-

ical changes in cultured Py2T cells. Both transforming growth

factor b (TGFb) and hepatocyte growth factor/scatter factor

(HGF) provoked loss of cell-cell contacts, which was not observed

with other treatments, even after prolonged treatment for 10 days

(Figure 1D). Interestingly, only TGFb treatment resulted in

a classical ‘‘cadherin-switch’’, a hallmark of EMT in which

expression of the epithelial cell adhesion molecule E-cadherin is

lost and expression of mesenchymal N-cadherin is gained [29].

Furthermore, we observed an upregulation of the mesenchymal

marker fibronectin only in TGFb-treated cells and to a lesser

extent in EGF-treated cells (Figure 1E). Therefore, among all the

factors tested, only TGFb induced a bona fide EMT in Py2T cells.

TGFb is known to exert cytostatic effects via effector arms

downstream of the canonical Smad2/3 pathway in normal cells.

However, cancer cells often develop resistance to TGFb-induced

cell cycle arrest [30]. The canonical TGFb pathway was activated

in Py2T cells upon TGFb treatment, indicated by the nuclear

translocation of the Smad2/3 complex and the activation of

Smad3 by phosphorylation (Figure S1A). Furthermore, transient

transfection of a promoter reporter construct in which firefly

luciferase expression was under the control of a Smad-binding

element (SBE) revealed a dramatic induction of transcriptional

activity upon TGFb stimulation, while there was no detectable

activity in untreated cells (Figure S1B) [23]. Despite an intact

canonical pathway, we did not observe any significant increase in

cell cycle arrest or apoptosis upon TGFb treatment of Py2T cells

(data not shown).

To establish an experimental system that allowed direct

comparison of epithelial versus mesenchymal cells without prior

lengthy TGFb treatment, Py2T cells were treated with TGFb for

20 days and subsequently maintained as mesenchymal subline

(Py2T LT) in growth medium containing TGFb. Conveniently,

Py2T LT cells preserved their mesenchymal phenotype, even

when frozen and re-cultured in the presence of TGFb. As

confirmed by immunoblotting analysis, Py2T LT cells displayed

a lack of E-cadherin expression, along with high expression of the

mesenchymal markers N-cadherin and fibronectin (Figure 1F).

Furthermore, immunofluorescence staining against E-cadherin

and the mesenchymal marker vimentin were mutually exclusive in

Py2T and Py2T LT cells, respectively, further verifying their

distinct epithelial and mesenchymal states (Figure 1G left).

To determine the cell type represented by Py2T cells and to

further characterize the effects of TGFb-induced EMT on cellular

identity, we stained for relevant breast cancer and mammary

gland cell lineage markers. As the bulk of MMTV-PyMT tumors

consist of luminal, estrogen receptor a (ERa)-positive epithelial

cells, we expected Py2T cells to display a similar expression

pattern. Indeed, we could detect nuclear ERa staining in

untreated cells, indicative of luminal differentiation (Figure 1G

middle). Py2T LT cells however did not stain positive for ERa,

consistent with a role of ERa in maintaining an epithelial

phenotype and suppressing EMT [31]. To determine whether

Py2T cells represent a luminal or a basal mammary gland cell

subtype, we stained for luminal cytokeratin 8/18 (CK8/18) and

for basal cytokeratin 14 (CK14). Interestingly, Py2T cells were

double-positive for these markers, while, consistent with the loss of

the epithelial phenotype, Py2T LT cells only weakly stained for

CK8/18 and lacked CK14 (Figure 1G right, see also Figure 2B).

We also performed gene expression profiling by Affymetrix

DNA oligonucleotide microarray analysis of Py2T and Py2T LT

cells (Table S1). The gene expression profiles were compared to

molecular breast cancer subtypes using the PAM50 predictor

established by Parker and colleagues [20], followed by the 9-cell

line claudin-low predictor [32]. This bioinformatic analysis

revealed that the gene expression profile of Py2T cells resembles

a Her2-enriched breast cancer subtype, whereas the Py2T LT cell

line represents the highly invasive claudin-low subtype (data not

shown).

EMT Kinetics and Plasticity in Py2T Cells
To characterize the transition from an epithelial to a mesenchy-

mal phenotype in a time-resolved fashion, we analyzed various

hallmarks of EMT upon TGFb treatment of Py2T cells over time.

On a morphological level, TGFb treatment led to a gradual loss of

cell-cell contacts and scattering already after 1 day of TGFb
treatment, while cell elongation and filopodia formation gradually

increased over several days (Figure 2A). Immunoblotting analysis

revealed a downregulation of E-cadherin expression over seven

days, whereas N-cadherin levels began to increase between four

and seven days, illustrating a classical cadherin switch (Figure 2B)

[29]. Maximum fibronectin expression was observed already after

one day of TGFb treatment. Expression of the luminal CK8/18

was found reduced yet with significant expression remaining even

after thirteen days of treatment, whereas the expression of basal

CK14 was completely lost after seven days. We further examined

the transcriptional regulation of well-known EMT markers by

quantitative RT-PCR (Figure 2C). The kinetics of mRNA levels of

E-cadherin, N-cadherin and fibronectin closely correlated with the

immunoblotting analysis (Figure 2B and C). Furthermore, we

observed a strong and gradual increase in mRNA levels of

vimentin and the E-cadherin gene repressors Zeb1 and Zeb2,

a robust early induction of Snail mRNA, and only a modest

increase in mRNA levels of the other E-cadherin repressors Slug,

E47 and Twist (Figure 2C). Overall, these time-course experi-

ments demonstrated that in Py2T cells TGFb-induced EMT

involved gradual changes in gene expression, with early events

occurring already after one day (loss of cell-cell contact,

upregulation of fibronectin and Snail), while others were observed

at later stages of EMT (cadherin switch, expression of vimentin,

Zeb1 and Zeb2).

After having studied the transition from an epithelial to

a mesenchymal state, we wondered whether Py2T cells that had

undergone EMT could also revert back to the epithelial state and

undergo a mesenchymal to epithelial transition (MET) upon

withdrawal of TGFb. We observed that Py2T cells cultured for up

to 30 days in growth medium containing TGFb were still able to

revert to the original epithelial morphology when TGFb was

withdrawn from the medium. The MET process took approxi-

Py2T EMT Model
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Figure 1. Establishment of a murine breast cancer cell line undergoing TGFb-induced EMT. (A) Primary tumor cells were isolated from an
advanced breast tumor of a MMTV-PyMT transgenic female mouse and were cultured for at least 2 months prior to further experimentation, resulting
in a novel cell line termed Py2T. (B) Py2T cells maintain the MMTV-PyMT transgene. The MMTV-PyMT transgene was detected by PCR and agarose gel
electrophoresis. DNA from an MMTV-PyMT tumor and from normal murine mammary gland (NMuMG) cells served as positive and negative controls,
respectively. (C) Py2T cells lost the expression of the MMTV-PyMT transgene. Immunoblotting for the PyMT protein was performed on lysates of Py2T
cells untreated or treated with 0.1 mM Dexamethasone for up to 72 h to induce the MMTV promoter. Lysates of an MMTV-PyMT tumor and NMuMG
cells served as positive and negative controls, respectively. (D) Treatment of Py2T cells with known EMT inducers. Cells were continuously treated
with the indicated growth factors and cytokines for 10 days (2 ng/mL TGFb1; 50 ng/mL EGF; 10 ng/mL IGF-I; 50 ng/mL HGF; 20 ng/mL FGF-2; 20 ng/
mL PDGF-BB; 50 ng/mL IL-6). Potential morphological changes were analyzed by phase-contrast microscopy. (E) Expression of epithelial (E-cadherin)

Py2T EMT Model
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mately 18 days (Figure 2D), with a gradual re-establishment of E-

cadherin expression during this time (Figure 2E). These results

indicate that Py2T cells offer a valuable experimental system to

study the multiple stages of EMT and its reversion, MET.

Non-canonical TGFb Signaling is Responsible for Early
Morphological Changes

To obtain a more detailed picture of the mechanisms leading to

the striking morphological alterations after the first day of EMT

induction, we investigated the contribution of canonical and non-

canonical TGFb signaling to these processes. We first ablated

Smad4 expression to block canonical TGFb signaling [33]. We

could not observe a block of morphological alterations or junction

dissolution in cells depleted of Smad4 after one day of TGFb
treatment, indicating that canonical TGFb signaling is not

required for the initial changes in cell morphology (Figure 3A–B).

Non-canonical signaling by TGFb involves the activation of p38

and Jnk MAP kinases via activation of Tak1 by receptor-associated

TRAF6 and of Erk1/2 MAP kinase by recruitment and

phosphorylation of Shc by TGFbRI and subsequent activation

of MEK1/2 [34]. These mediators have been well established to

contribute to TGFb-induced EMT [35–40]. Indeed, inhibition of

these pathways by chemical inhibitors was sufficient to at least

partially block the pronounced morphological changes observed

after one day of TGFb treatment (Figure 3C). In addition, other

non-canonical TGFb-induced signals are known to contribute to

EMT, such as RhoA degradation at cell junctions, which results in

junction disassembly [41]. We indeed observed a slight decrease in

total RhoA expression levels after one day of TGFb treatment

(Figure 3D). We experimentally mimicked TGFb-induced down-

regulation of RhoA by siRNA-mediated knockdown in epithelial

Py2T cells, which resulted in a partial disruption of tight and

adherens junction (Figure 3E–F).

Together, these results illustrate that short-term TGFb treat-

ment of Py2T cells evokes cell-cell junction disassembly and

pronounced phenotypic changes mainly by non-canonical TGFb
signaling.

Migratory and Invasive Properties upon EMT Induction
To evaluate whether Py2T cells could be a suitable in vitro

model system to study functional consequences of EMT, we

assessed the migratory and invasive capabilities of these cells

before, during and after EMT. First, we employed a modified

Boyden chamber assay to analyze whether and to what extent

Py2T cells become migratory and invasive during EMT. Cells

previously treated with TGFb for different times were seeded into

Boyden chamber inserts without (migration assay) or with Matrigel

coating (invasion assay) and were allowed to move towards

a gradient of fetal bovine serum (FBS). Quantification of cells that

traversed the membrane revealed that cells treated with TGFb for

seven or more days were more migratory compared to untreated

cells, and the migratory capacity dramatically increased with

longer TGFb treatment (Figure 4A top left). Similarly, when seeded

into Boyden chambers pre-coated with Matrigel, the cells passed

through the bottom of the chambers with a similar increase over

the time of TGFb treatment (Figure 4A top right). To illustrate these

results, we stained cells located on the bottom side of the insert

membranes with crystal violet (Figure 4A bottom). These findings

clearly demonstrate that Py2T cells display a dramatic increase in

chemotactic, single cell migration and invasion upon induction of

EMT.

Scratch wound closure is another frequently used assay to assess

the migratory capacity of cells on tissue culture plastic. Untreated

and TGFb-treated Py2T cells were grown to confluence and then

starved in serum-free medium. After scratching a gap into

confluent monolayers, we followed gap closure by live cell imaging

(Movies S1 and S2). Figure 4B shows images at different time

points after wounding. Interestingly, untreated Py2T cells closed

the scratch wound already after 12 hours in a sheet-like fashion,

demonstrating that they are capable of a collective mode of

migration, indicative of a metastable state [42]. Py2T cells treated

with TGFb closed the scratch wound much slower, moving in

a mesenchymal mode of single cell migration and displaying front-

rear polarity. These observations indicate that TGFb treatment

switches Py2T cells from a collective to a single cell migration

mode [43].

To compare the migratory and invasive capabilities of Py2T

and Py2T LT cells in a more physiological setting, the cells were

seeded into a three-dimensional extracellular matrix (Matrigel;

Figure 4C). Cells cultured on plastic are shown for comparison

(Figure 4C, left; see also Movies S3 and S4 for live imaging). When

cultured for 6 days in growth factor-reduced Matrigel, Py2T cells

formed spheres. In contrast, Py2T LT cells invaded the

surrounding matrix (Figure 4C middle). To further examine these

different phenotypes, we performed in-gel immunofluorescence

staining of intact three-dimensional structures, followed by

confocal microscopy. Double-staining of Py2T spheres with

antibodies against E-cadherin and ZO-1 revealed densely packed

cells with intact adherens and tight junctions, respectively

(Figure 4C top right). In contrast, Py2T LT structures, stained

against vimentin and fibronectin, invaded the matrix as single cells

or as cell trails (Figure 4C bottom right). The phenotypic differences

between Py2T and Py2T LT cells grown in extracellular matrix

became even more apparent upon reconstructing the confocal

microscopy stacks to three-dimensional models using Imaris

software (Figure 4D, see also Movies S5 and S6 for animation).

This analysis revealed the invasion and indian-file-like trailing of

Py2T LT cells as single cells. Interestingly, only the leading cells

expressed vimentin, while all Py2T LT cells cultured on a two-

dimensional surface were positive for vimentin (Figure 1G) and

moved as single cells rather than being organized in trails (Movie

S6). Taken together, these data demonstrate that the Py2T cell line

represents a valuable model system to study various aspects of cell

migration and invasion in the context of EMT.

Invasive Tumor Formation upon Orthotopic
Transplantation into Syngeneic Mice

We next orthotopically transplanted Py2T cells into mammary

fat pads of mice to evaluate their tumorigenicity. Since Py2T cells

have been derived from tumors of MMTV-PyMT mice in an

FVB/N background and because the PyMT transgene was no

more expressed in cultured cells, we transplanted Py2T cells into

syngeneic FVB/N mice. Three mice were injected with

16106 cells, all of which developed tumors. After 27 days of

and mesenchymal (N-cadherin, fibronectin) markers were analyzed by immunoblotting of the lysates of cells treated in (D). (F) Immunoblotting
analysis of EMT marker expression in Py2T and Py2T LT cells. The mesenchymal subline Py2T LT (long-term) was generated by TGFb-treatment of Py2T
cells for at least 20 days, and was subsequently maintained in TGFb containing growth medium. (G) Analysis of markers for EMT and breast cell type
before and after TGFb-induced EMT. Immunofluorescence staining was performed with antibodies against E-Cadherin (epithelial marker), vimentin
(mesenchymal marker), estrogen receptor alpha (ERa), cytokeratin 8/18 (luminal markers) and cytokeratin 14 (basal marker). Scale bar, 20 mm.
doi:10.1371/journal.pone.0048651.g001
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growth, tumors were harvested and analyzed. Haematoxylin &

Eosin (H&E) staining of histological sections of a Py2T tumor

(Figure 5A, right) and a late stage MMTV-PyMT tumor (Figure 5A,

left) revealed that MMTV-PyMT tumors were mainly well

differentiated with some less well-differentiated areas and necrosis

towards the tumor center. The tumor borders were passively

Figure 2. Kinetics and reversibility of TGFb-induced EMT in Py2T cells. (A) Morphological changes of Py2T cells during a time-course of
TGFb-treatment. Cells were cultured in growth medium containing TGFb (2 ng/ml) and phase-contrast microscopy pictures were taken at the
indicated times. (B) Immunoblotting analysis of lysates prepared from Py2T cells treated as in (A). The expression of epithelial (E-cadherin),
mesenchymal (N-cadherin, fibronectin), luminal (CK8/18) and basal (CK14) markers was analyzed. (C) Changes in the expression of EMT markers
during TGFb-induced EMT of Py2T cells. Py2T cells were treated for 10 days with TGFb as described in (A). RNA was extracted at the indicated time
points of TGFb-treatment and quantitative RT-PCR was performed with primers specific for the EMT markers indicated. Expression levels are shown as
mean fold difference of untreated cells (0d) 6 S.E.M of 5 independent experiments. (D–E) Reversibility of TGFb-induced EMT. Py2T cells were treated
with TGFb for 30 days to induce EMT and were then further cultured without TGFb for additional 30 days. Phase-contrast microscopy images were
taken at the indicated time points (E). E-cadherin expression levels were analyzed throughout the experiment by immunoblotting (F).
doi:10.1371/journal.pone.0048651.g002

Py2T EMT Model
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invading the fat pad by proliferation (pushing borders). In contrast,

Py2T tumors were characterized by streams of elongated cells that

were actively invading the surrounding fat tissue. Of note, Py2T

tumors lacked excessive necrosis, possibly because they were well

vascularized as determined by staining for the blood vessel marker

CD31 (data not shown). Furthermore, Py2T tumors contained

a high stromal component intermixed with tumor cells. To

exclude the possibility that immune cell infiltration was due to

a possible re-expression of the PyMT transgene, tumor tissue

sections were stained with an antibody against the PyMT protein.

As expected, PyMT expression could be detected in MMTV-

PyMT tumors (Figure 5B, left), but not in Py2T tumors (Figure 5B,

right). When Py2T cells were orthotopically implanted into

immuno-deficient nude mice, all mice developed tumors with

a substantial infiltration of CD45-positive stromal cells, with a high

content of macrophages (Figure S2).

The spindle-like appearance of cells in the Py2T tumors

suggested that Py2T cells might have undergone an EMT in these

tumors. We thus compared lysates from mainly epithelial MMTV-

PyMT tumors with lysates from mainly invasive Py2T tumors for

expression of EMT markers. Indeed, expression of E-cadherin in

MMTV-PyMT tumors was readily detectable as expected,

however, very little if any E-cadherin expression was detectable

in lysates of Py2T tumors (Figure 5C), supporting the hypothesis

that Py2T cells had undergone EMT-like changes in vivo.

Expression of the mesenchymal markers fibronectin and N-

cadherin was also higher in some but not all Py2T tumors as

compared to MMTV-PyMT tumors. Collectively, these results

demonstrate that Py2T cells are tumorigenic, despite the absence

of PyMT expression, and that they undergo oncogenic EMT-like

changes in vivo. Notably, neither FVB/N nor immuno-deficient

mice bearing Py2T tumors developed apparent metastasis, as

determined by histological sectioning of various organs (data not

shown).

TGFb-dependent EMT of Py2T Tumors
We next assessed whether the EMT occurring during Py2T

tumor growth in the mammary fat pad of mice could be attributed

to stimulation by host-derived TGFb. First, we generated Py2T

cell lines that stably express GFP for their distinction from host

stromal cells. Next, we superinfected these cells with a lentiviral

construct encoding a dominant-negative form of TGFb receptor II

(TBRDN) [26] or empty vector as control. Cultured Py2T

TBRDN-expressing cells did not show any apparent changes in

phenotype as compared to control cells in the absence of TGFb,

but were resistant against TGFb-induced EMT (Figure S3A). In

a next step, we transplanted Py2T control and Py2T TBRDN into

fat pads of immuno-deficient nude mice to evaluate their ability to

undergo EMT in vivo. All mice developed tumors, and tumor

growth was not significantly different between the two experi-

mental groups, although TBRDN tumors tended to grow more

slowly with increasing size in comparison to Py2T control tumors

(Figure S3B). H&E staining of Py2T control tumors revealed the

same stream-like cellular growth pattern as observed in Py2T

tumors in FVB/N mice (Figure 6A top left), with cells displaying

a spindle-like morphology (Figure 6A bottom left). Interestingly,

tumors formed by Py2T TBRDN contained patches of more

differentiated appearance (Figure 6A top right), with cells adopting

a round, differentiated morphology (Figure 6A bottom right).

However, Py2T TBRDN tumors also contained a significant

portion of mesenchymal areas (Figure 6A right), suggesting that in

these areas, Py2T cells underwent EMT in response to signals

other than TGFb.

Analysis of the expression of EMT markers revealed that, Py2T

control tumors were negative for E-cadherin expression (Figure 6B,

top left), whereas the more differentiated regions in TBRDN tumors

strongly expressed E-cadherin (Figure 6B, top right). These results

indicated that the inhibition of TGFb signaling in Py2T TBRDN

cells was sufficient to prevent a loss of E-cadherin expression and

to preserve an epithelial phenotype in some but not all tumor

areas. Immunofluorescence microscopy analysis of E-cadherin

staining of GFP-expressing Py2T and Py2T TBRDN tumor cells,

respectively, confirmed these observations (Figure 6C). Further-

more, immunoblotting analysis demonstrated higher E-cadherin

expression in Py2T TBRDN tumors in contrast to Py2T control

tumors (Figure 6D). Py2T tumors also contained a large amount of

cells that stained positive for the mesenchymal marker vimentin,

however, these vimentin expressing cells represented stromal cells

rather than Py2T cells, as revealed by a lack of GFP expression

(Figure 6E). Hence, although capable of vimentin upregulation

upon EMT induction in vitro (Figure 2C), Py2T cells failed to

upregulate vimentin in vivo, suggesting that EMT in transplanted

tumors is incomplete, which is often reported as a hallmark of

oncogenic EMT [44]; (see also Discussion).

As Py2T cells expressed both luminal (CK8/18) and basal

(CK14) markers in culture (Figure 1G, Figure 2B), we were curious

to see whether the EMT-like changes observed in tumors would be

accompanied by changes in the expression of these cell lineage

markers. Immunohistochemistry staining (Figure 6B) and immu-

noblotting analysis (Figure 6D) revealed a switch-like change in

expression: a loss of CK14 expression was observed in favor of

CK8/18 expression in Py2T tumors. On the other hand, the

epithelial patches of Py2T TBRDN tumors were strongly positive

for CK14 expression and displayed a reduction or even a loss of

CK8/18 expression. Together, these results demonstrate that

Py2T tumors display EMT-like changes characterized by a loss of

E-cadherin expression, and suggest an apparent differentiation

along the luminal lineage, both of which is inhibited in distinct

tumor areas by blocking the TGFb responsiveness of the tumor

cells.

Figure 3. Early morphological changes and junction disassembly can be attributed to non-canonical TGFb signaling pathways. (A)
Smad-mediated canonical TGFb signaling is dispensable for early changes in morphology and junction disruption. Cells were transfected with a pool
of siRNAs against Smad4 or a non-targeting pool and were then treated or not with TGFb for 1 day as indicated. Fixed cells were stained for the
adherens junction components E-cadherin and b-catenin, or for E-cadherin and the tight junction component ZO-1. Note the relocalization of b-
catenin from adherens junctions to the cytoplasm upon TGFb-treatment. Scale bars, 50 mm. (B) Immunoblot analysis of lysates from the experiment
described in (A) to control for Smad4 knockdown efficiency. (C) Requirement of non-canonical TGFb signaling pathways on early morphological
changes and junction disassembly. Cells were pre-treated for 4 hours with chemical inhibitors of the kinases indicated, and were then treated with
TGFb for 1 day and analyzed as described in (A). Scale bars, 50 mm. (D) RhoA expression levels during the early stages of EMT. Cells were treated or
not with TGFb for 1 day and RhoA expression levels were analysed by immunoblotting. (E) Importance of RhoA levels for tight- and adherens junction
integrity. Epithelial Py2T cells were separately transfected with two different siRNAs targeting RhoA to achieve expression levels comparable to those
observed in Py2T cells treated with TGFb (see D). Cells were stained for the adherens junction components E-cadherin and b-catenin, or for E-cadherin
and the tight junction component ZO-1. (F) Immunoblotting analysis to determine the RhoA knockdown efficiency in the experiment described in (E).
doi:10.1371/journal.pone.0048651.g003

Py2T EMT Model

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48651



Py2T EMT Model

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e48651



Discussion

We herein report the generation and characterization of a stable

murine breast cancer cell line, named Py2T, from a primary breast

tumor of an MMTV-PyMT transgenic mouse. Cultured Py2T

cells can be induced to undergo a full EMT by TGFb treatment,

a multistage process that takes up to ten days and results in

a complete loss of epithelial morphology and epithelial marker

expression, and the gain of mesenchymal marker expression and

increased cell migration and invasion. Upon long-term treatment

with TGFb, Py2T cells maintain the mesenchymal differentiation

status (Py2T LT), allowing the direct comparison between the

extreme stages of epithelial-mesenchymal plasticity. Upon removal

of TGFb, Py2T LT cells revert to their epithelial origin by

undergoing an MET, with the gain of epithelial morphology and

marker expression. Our pharmacological interference studies

reveal that the early stages of TGFb-induced EMT in Py2T cells

depend on non-canonical TGFb signaling, involving Jnk, p38 and

ERK1/2 MAP kinase signaling and the degradation of the small

GTPase RhoA. In contrast, Smad4 and with it canonical TGFb
signaling appears to be dispensable for this process.

Py2T cells also offer a novel syngeneic orthotopic trans-

plantation model of malignant breast cancer progression. Upon

injection into the fat pads of syngeneic FVB/N mice or into

Figure 4. Changes of migratory and invasive properties of Py2T cells before, during and after TGFb-induced EMT. (A) Boyden
chamber migration and invasion assay. Cells were treated with TGFb for the indicated times (LT = long term treatment, as described in Fig. 1F). 25’000
cells were seeded into migration or invasion chambers in duplicate in the absence or presence of TGFb and allowed to pass through the membrane
pores for 24 hours along an FBS gradient. Invasion chambers were pre-coated with growth-factor reduced Matrigel (BD BioCoat chambers). Cells that
passed through the membrane pores were stained with crystal violet and photographed (bottom panels) and then counted (top graphs). Results are
expressed as mean6 S.E.M of three independent experiments. (B) Scratch wound healing assay. Cells pre-treated with TGFb or not as indicated were
starved over night and scratch wounds were introduced into confluent monolayers. Scratch wound closure was monitored by an IncuCyteTM live cell
imaging system. Black masking represents initial gap width at 0 hours. Note the collective, sheet-like wound closure by untreated Py2T cells in
contrast to single cell wound infiltration of TGFb-treated cells (also see Movies S1 and S2 for live imaging data of this experiment). (C) Morphology of
epithelial Py2T cells and mesenchymal Py2T LT cells grown on plastic tissue culture dishes (2D) and in Matrigel (4 mg/ml; 3D). Structures were grown
for 6 days, and stained directly in Matrigel with antibodies against epithelial E-cadherin and ZO-1 or against mesenchymal vimentin and fibronectin.
Immunofluorescence images were acquired by confocal microscopy. Scale bars, 25 mm. (D) Three-dimensional reconstruction of confocal imaging
stacks from cells grown in Matrigel as described in (A) (See also Movies S5 and S6 for rotating 3D models). Scale bars, 25 mm.
doi:10.1371/journal.pone.0048651.g004

Figure 5. Orthotopic transplantation of Py2T cells into syngeneic mice results in the formation of invasive tumors. (A) H&E staining of
histological sections from tumors of MMTV-PyMT transgenic mice and from transplanted Py2T tumors. 16106 Py2T cells were transplanted into the
fat pad of 8 weeks old female FVB/N mice and allowed to grow tumors for 27 days. Late-stage MMTV-PyMT tumors were from 12 weeks old female
mice. Bottom panels: enlarged regions indicated by the white squares in the top panels. Note the typical pushing borders in MMTV-PyMT tumors in
contrast to stream-like invasion of fat tissue in Py2T tumors. Scale bars, 200 mm. (B) Polyoma-middle-T (PyMT) expression in MMTV-PyMT and Py2T
tumors. Paraffin sections were stained with an antibody against PyMT. Immunohistochemical staining in the absence of primary antibody (1u) was
used as negative control. Scale bar, 100 mm. (C) Immunoblotting analysis for EMT markers in tumor lysates of MMTV-PyMT and Py2T tumors. Lysate
from cultured Py2T cells is included as a control. Note the loss of E-cadherin expression and upregulation of mesenchymal markers (N-cadherin,
fibronectin) in Py2T tumors.
doi:10.1371/journal.pone.0048651.g005
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immuno-deficient nude mice, Py2T cells form primary tumors and

spontaneously undergo EMT-like changes in vivo. As a proof of

concept for the dual in vitro and in vivo use of Py2T cells as models

of murine breast cancer cells undergoing EMT, we blocked TGFb
responsiveness of Py2T cells by stable expression of a dominant-

negative version of TGFbRII. Transplantation of these cells

yielded tumors containing areas with an epithelial phenotype,

showing that the EMT-like changes in Py2T cell-derived tumors

are, at least in part, dependent on TGFb stimulation. These

experiments approve Py2T cells as a versatile model for functional

studies of murine breast cancer cells undergoing EMT in vitro and

in vivo.

It has been recognized that breast cancer is not a single, but

a heterogenous disease of various subtypes, which can be

categorized according to staining for marker combinations, or,

more recently, by molecular subtyping according to gene

expression profiles. The type of breast cancer is largely dictated

by the transforming oncogene and the cell of origin being

transformed [45–48]. We therefore characterized the cell type

represented by Py2T cells. Molecular subtyping of MMTV-PyMT

tumors has previously shown that these tumors resemble the

luminal subtype of human breast cancer [45,49], as would be

expected from the fact that the MMTV promoter is active in

luminal epithelial cells [50,51]. Consistent with their origin from

a tumor of an MMTV-PyMT transgenic mouse, Py2T cells are

positive for the luminal markers estrogen receptor (ER) and CK8/

18 (Figure 1G). Interestingly, Py2T cells also co-express the basal

marker CK14 (Figure 1G) and therefore do not display a purely

luminal phenotype. Concomitant basal and luminal cytokeratin

expression has also been observed in a luminal breast cancer

model where the MMTV promoter has been used to drive mutant

PIK3CA H1047R oncogene expression [52], and one of the

pathways activated by PyMT is the PI3K pathway [53], suggesting

that similar mechanisms are involved. Our observations and those

of others show that MMTV-PyMT tumors also contain a fraction

of CK14-positive tumor cells (data not shown) [54]. Furthermore,

simultaneous expression of CK8/18 and CK14 has been

established as a hallmark of basal cell lines [55].

Together, these considerations suggest that Py2T cells should be

categorized as a basal cell line with luminal origin. It is interesting

to note in this context that EMT-like changes have most

commonly been observed in the basal-like subgroup of breast

cancers, indicating that this subgroup is predisposed for EMT-like

changes [56,57]. Basal-like tumors also encompass the recently

determined claudin-low subtype, now considered to be a distinct

entity, which is clearly enriched in EMT marker expression

[21,58,59]. Our gene expression profiling and subsequent

bioinformatic analysis according to the PAM50 and 9-cell line

claudin-low predictor [20,32] revealed that Py2T cells most closely

resemble Her2-enriched breast cancer of patients. In contrast,

Py2T cells that have undergone TGFb-induced EMT (Py2T LT)

resemble basal-like, claudin-low breast cancer, a highly invasive

breast cancer subtype that has been shown to correlate with EMT

in a variety of experimental systems [32,58,60,61].

Expression of basal cytokeratins 5 and 14 has also been linked to

a hybrid or metastable differentiation state, in which cells display

considerably more plasticity than fully differentiated cells, residing

in a dynamic continuum between epithelial and mesenchymal

states [42,44]. One feature that characterizes metastable cells is

that they display loose but intact cell-cell adhesions and show

migratory properties in the form of collective movement as a sheet.

Indeed, when grown to confluence, Py2T cells close a scratch

wound as a cellular sheet (Figure 4B and Movie S1). A further

indicator for a metastable state is the observation that, when

grown under sparse culture conditions on plastic, Py2T cells are

able to transiently leave the epithelial sheet and move as single

cells in a spontaneous manner (Movie S3). This single cell mode of

migration resembles amoeboid movement, characterized by

a rounding of cell bodies and a fast change in direction, and is

distinct from the mesenchymal mode of migration characterized

by front-rear polarity which we observed with Py2T LT cells

(Movie S4) [43,62]. The reversibility of TGFb-induced EMT of

Py2T cells further illustrates the plasticity of Py2T cells and has

also been proposed as a hallmark of metastability (Figure 2E)

[42,44,63]. From these observations we conclude that cultured

Py2T cells do not represent fully differentiated epithelial cells, but

that they are rather in a metastable state that is readily shifted

towards a mesenchymal phenotype by TGFb treatment.

When implanted into the mammary fat pad microenvironment,

Py2T cells eventually develop tumors with an EMT-like pheno-

type (Figures 5 and 6). We believe that the term ’’EMT-like‘‘ is

accurate, since we have noticed that in these tumors, Py2T cells do

not completely convert into mesenchymal cells as they do under

culture conditions in the presence of TGFb. Breast cancers can

display a range of stages of EMT, in fact, tumor-associated EMT

appears less complete than developmental EMT [7,64]. A staging

scheme has been proposed based on the state of cell polarization,

cell cohesiveness and intermediate filament expression, categoriz-

ing oncogenic EMT into four distinct stages (P0–P3), with P0

designating full epithelial differentiation and P3 indicating a fully

mesenchymal state [44]. Py2T tumors correspond to the P2 stage,

where cells have lost polarization and cohesive cell-cell contacts,

but retain cytokeratin expression (at least CK8/18) and fail to

upregulate vimentin (Figure 6). When we block TGFb-respon-

siveness in Py2T cells, epithelial morphology is retained in distinct

areas, where tumor cells appear to be organized as dynamic

cohesive sheets or strand-like structures, however not regaining full

epithelial polarization (Figure 6). This phenotype is again

consistent with a metastable state rather than full epithelial

differentiation, and corresponds to the P1 stage of oncogenic EMT

according to [44].

Despite the fact that Py2T cells form locally invasive tumors and

that MMTV-PyMT tumors give rise to distant metastases, we

were unable to detect any apparent metastases evoked by Py2T

tumors. One conceivable reason for this apparent discrepancy

Figure 6. Tumors of TGFb-resistant Py2T cells contain areas with a more epithelial phenotype. (A) Morphology of tumors generated from
Py2T cells stably overexpressing a dominant-negative TGFbRII (Py2T TBRDN) or empty vector control cells (Py2T). 16106 cells were injected into fat
pads of nude mice and tumors were grown for 24 days. Paraffin sections were stained with H&E. Note the appearance of more differentiated
epithelial areas in Py2T TBRDN tumors. Top: Epithelial (E) and mesenchymal (M) regions are separated by the dashed line (Scale bar, 200 mm). Bottom
panels show larger magnification (Scale bar, 50 mm). (B) Expression of EMT and lineage markers in Py2T tumors and in the more epithelial areas of
Py2T TBRDN tumors. Immunohistochemical staining of paraffin sections was performed using the specified antibodies. White squares show higher
magnification. Scale bar, 100 mm. (C) Immunofluorescence staining of frozen sections of GFP-labeled Py2T and Py2T TBRDN tumors as described in
(A) with antibodies against E-cadherin (red) and Py2T tumor cells (green). Scale bar, 20 mm. (D) Immunoblotting analysis of epithelial and cytokeratin
lineage markers in a series of Py2T and Py2T TBRDN tumors as indicated. (E) Immunofluorescence staining of frozen sections of GFP-labeled Py2T and
Py2T TBRDN tumors as described in (A) with antibodies against vimentin (red) and Py2T tumor cells (green). Scale bar, 20 mm.
doi:10.1371/journal.pone.0048651.g006
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could be the following: Py2T tumors appeared fast growing and

aggressive and, due to animal welfare considerations, mice had to

be sacrificed approximately 25 days after implantation (Figure

S3B). Therefore, the timeframe to establish detectable metastasis

may be simply too short. In comparison, the metastasis latency in

MMTV-PyMT tumors is about 3.5 months [65].

We have observed that PyMT transgene expression is absent in

Py2T cells both in vitro (Figure 1C) and in vivo (Figure 5B). This

finding has important implications. First, it allows the trans-

plantation of Py2T cells (derived from MMTV-PyMT mice in

a FVB/N background) into syngeneic FVB/N mice (Figure 5).

Second, the loss of PyMT expression together with the fact that

these cells are nevertheless tumorigenic suggests that outgrowing

Py2T cells that have undergone EMT have escaped oncogene

addiction. In support of this hypothesis, we observed that

mesenchymal Py2T LT cells formed significantly more colonies

when grown under anchorage-independent conditions in soft agar

(Figure S4). Intriguingly, in several other mouse models of breast

cancer, discontinued oncogene expression is followed by the

appearance of tumors that display EMT-like features (see

reference [66] for review). For example, after turning off Her2/

neu expression in tumors induced by this oncogene in the

mammary gland, tumors regress, yet regrow as spindle cell

’’EMT‘‘ tumors that are strikingly similar if not identical in

phenotype to the tumors we describe here [67]. In agreement with

our study, these tumors have not been observed to metastasize

[66]. It is likely that our model recapitulates these events, whose

underlying mechanisms have yet to be determined. If so, the Py2T

model system could be instrumental in elucidating mechanisms of

tumor recurrence and of therapy resistance development, which

has been previously attributed to EMT [13,15,64,68,69]. Finally,

in light of the recent findings that EMT confers stem cell-like traits

to cancer cells [10,11], Py2T cells also offer a unique system to

study these events in vitro and in vivo.

Conclusions
We have established and functionally characterized a novel

cellular model of murine breast cancer EMT (Py2T). While Py2T

cells undergo EMT in response to TGFb stimulation in vitro,

orthotopic transplantation into mice results in tumors displaying

oncogenic, TGFb-dependent EMT. Py2T cells thus represent

a versatile model to investigate the molecular mechanisms

underlying EMT and to delineate how EMT contributes to

therapy resistance, loss of oncogene addiction and tumor re-

currence.

Materials and Methods

Antibodies and Reagents
Antibodies: PyMT (mouse monoclonal Pab762, a kind gift of

Dr. S. Dilworth, Imperial College London), Actin (sc-1616,

SantaCruz Biotechnology), E-cadherin (610182, Transduction

Laboratories, used for immunoblotting and IHC), E-cadherin

(13-1900, Zymed, used for immunofluorescence stainings), N-

cadherin (M142, Takara Bio), fibronectin (F3648 Sigma-Aldrich),

GAPDH (ab9485, Abcam), cytokeratin 14 (RB-9020-P0, Neo-

Markers), cytokeratin 8/18 (20R-CP004, Fitzgerald), vimentin

(V2258, Sigma-Aldrich), ERa (sc-542, Santa Cruz Biotechnology),

ZO-1 (617300, Zymed), F4/80 (MCAP497, Serotec), CD45

(550539, BD), Smad2/3 (610842, BD), Smad3 pSer423/425

(9520, Cell Signalling), b-catenin (C2206, Sigma-Aldrich), Smad4

(sc-7966, Santa Cruz Biotechnology), RhoA (sc-418, Santa Cruz

Biotechnology).

Reagents: recombinant human (rh) TGFb1 (240-B-010, R&D

Systems), recombinant mouse (rm) EGF (PMG8041, Invitrogen),

rmIGF-1 (250-19, Peprotech), rmHGF (2207-HG, R&D Systems),

rmbasicFGF (3139-FB-025, R&D Systems), rhPDGF-BB (220-BB,

R&D Systems, rhIL-6 (200-06 Peprotech), Dexamethasone (800-

437-7500, Chemicon), Matrigel, growth factor reduced (356230,

BD), SB431542 (S4317, Sigma Aldrich), SB203580 (ALX-270-

339, Axxora), SP600125 (ALX-270-339, Axxora), PD98059

(ALX-385-023, Axxora).

Cells and Cell Lines
A subclone of NMuMG cells (NMuMG/E9; hereafter

NMuMG) was a kind gift of Dr. M. J. Wheelock and has been

previously described [17]. NMuMG cells were originally obtained

from the American Type Culture Collection (ATCC, Manassas,

VA). Py2T cells were isolated from a breast tumor of an MMTV-

PyMT female mouse with an FVB/N background. Isolation of this

cell line was done with approval, and according to the rules and

guidelines of, the Swiss Federal Veterinary Office (SFVO) and the

local ethics committee (Cantonal Veterinary Office, Basel-Stadt,

Switzerland); (see also Ethics Statement at the end of this section).

NMuMG and Py2T cells were cultured in DMEM supplemented

with glutamine, penicillin, streptomycin, and 10% FBS (Sigma).

Mouse Strains
MMTV-PyMT [18,19] were received from N. Hynes (FMI,

Basel, Switzerland). BALB/c nude mice were purchased from

JANVIER SAS (Le Genest Saint Isle, France).

Primers
Primers used for quantitative RT-PCR are listed in Table S2.

For genotyping of the MMTV-PyMT transgene, the following

primers were used: MMTV-PyMT (forward: 59-cggcggagcgag-

gaactgagg-39, reverse: 59-tcagaagactcggcagtcttag-39).

Genotyping
To extract DNA, cells from a confluent 10 cm dish were

trypsinized, washed in PBS and pelleted. To the pellet, 450 mL tail

tip buffer (50 mM Tris-HCl pH 8, 100 mM NaCl, 100 mM

EDTA, 1% SDS) and 180 mL 6 M NaCl were added, the samples

were mixed and spun at full speed in a tabletop centrifuge.

Supernatant was added to 600 mL isopropanol, vortexed and spun

for 5 min at full speed. Supernatant was discarded and 500 mL of

70% EtOH was added, vortexed and spun for 3 min at full speed.

Supernatant was discarded and the pellet was dried and

resuspended in TE buffer. Samples were analyzed using standard

PCR procedure.

Quantitative RT-PCR
Total RNA was prepared using Tri Reagent (Sigma-Aldrich),

reverse transcribed with M-MLV reverse transcriptase (Promega,

Wallisellen, Switzerland), and transcripts were quantified by PCR

using SYBR-green PCR MasterMix (Applied Biosystems, Rotk-

reuz, Switzerland). Riboprotein L19 primers were used for

normalization. PCR assays were performed in triplicates, and

fold induction was calculated using the comparative Ct method

(DDCt).

Microarray Gene Expression Profiling and Expression
Analysis

RNA was isolated from Py2T and Py2T LT cells using QIAzol

(Quiagen). RNA quality and quantity was evaluated using an

Agilent 2100 Bioanalyzer (Agilent Technologies). The manufac-
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turer’s protocols for the GeneChip platform by Affymetrix were

followed. Methods included synthesis of the first- and second-

strand cDNA followed by synthesis of cRNA by in vitro

transcription, subsequent synthesis of single-stranded cDNA,

biotin labeling and fragmentation of cDNA and hybridization

with the microarray slide (GeneChipH Mouse Gene 1.0 ST array),

posthybridization washings and detection of the hybridized

cDNAs using a streptavidin-coupled fluorescent dye. Hybridized

Affymetrix GeneChips were scanned using an Affymetrix

GeneChip 3000 scanner. Image generation and feature extraction

were performed using Affymetrix GCOS Software and quality

control was performed using Affymetrix Expression Console

Software. All microarray raw data has been uploaded to the

ArrayExpress Database (Accession number E-MEXP-3731 and is

publicly available (www.ebi.ac.uk/arrayexpress/).

Microarray data was analysed using R statistical programming

(R2.13.0; www.r-project.org) and its Bioconductor packages

(http://www.bioconductor.org). Gene expression was calculated

after RMA normalization and linear modeling using the limma

package. The probesets were annotated to mouse Refseq IDs with

the brainarray annotation package (http://brainarray.mbni.med.

umich.edu) and human homologues were mapped using biomart

(http://www.biomart.org/). Differentially expressed genes were

determined with Empirical Bayes Statistics according to the

following criteria: expression change between Py2T and Py2T LT

of at least 2 fold, an average log expression of at least 3 and

logOdds of at least 0.

Molecular Subtyping
First, intrinsic subtype classification into Luminal A, Luminal B,

Basal-like, HER2-enriched and Normal-like groups was per-

formed using the 50 gene (PAM50) predictor, comparing Py2T

and Py2T LT to the UNC337 training set provided by Parker

et al. [20]. Briefly, the centroids from 50 intrinsic genes were

compared between the training set and the cell lines analysed here

using Spearman’s rank correlation to predict the subtype on the

test set using PAM50 predictor bioclassifier R script with R2.13.0

(www.r-project.org) [20]. In a second step, Claudin-low subtype

prediction was performed as described by Prat et al. [21]. Briefly,

centroids for ‘‘claudin-low’’ or ‘‘others’’ were calculated on the

training set provided by Prat et al. [21] including different breast

cancer cell lines from the Neve et al. study [22]. For each novel

cell line to be classified, the Euclidean distance to the centroids

from the training set was calculated and the subtype assigned

according to the nearest centroid. Classification was performed

using R2.13.0 (www.r-project.org).

Luciferase Reporter Assay
56104 Py2T cells were plated in triplicate in a 24 well-plate.

One day after plating, cells were transfected with 800 ng reporter

and 5 ng Renilla encoding plasmids using Lipofectamine 2000.

Fresh growth medium was added after 5 hours of transfection

containing 2 ng/mL TGFb or not. After 2 days, cells were lysed

directly in plates using 16 passive lysis buffer (#E194, Promega)

and lysates were analyzed using the Dual-Luciferase Reporter

Assay System (#E1960, Promega) and a Berthold Luminometer

LB960. Measured luciferase values were normalized to internal

Renilla control. The Smad4 reporter was kindly provided by Dr.

P. ten Dijke (Leiden University; [23].

Cell Line Isolation
A piece (,200 mg) of freshly isolated tumor was transferred into

collection medium (DMEM supplemented with 10% FBS, 2 mM

glutamine, supplemented with Gentamycin (50 ug/mL)) and

minced into very small pieces using sterile technique with a scalpel.

Pieces were collected by rinsing with pre-digestion buffer (10 mM

HEPES pH 7.4, 142 mM NaCl, 0.67 mM KCl, 1 mM EDTA)

supplemented with Gentamycin (50 mg/mL)(G1397, Sigma-Al-

drich) and 16 Antibiotic-Antimycotic (15240-096, Invitrogen),

and transferred to a 15 mL Falcon tube. Pieces were predigested

in horizontal position at 200 rpm at 37uC for 30 min on a bacterial

shaker. Predigested tissue was pelleted by spinning at 9006g for

5 min, the supernatant was removed and the pellet was

resuspended in digestion mix (10 mM HEPES pH 7.4, 142 mM

NaCl, 0.67 mM KCl, 0.67 mM CaCl2, 20 mM Glucose, 1 mg/

mL Collagenase Type I, 0.1 mg/mL DNAseI) supplemented with

Gentamycin (50 mg/mL) and 16 Antibiotic-Antimycotic. The

tissue was digested by shaking in horizontal position at 200 rpm at

37uC for 30 min on a bacterial shaker. For final single cell

dissociation, tissue was pipetted up and down for 5 min using

a 1 mL pipette. Digested tissue was pelleted, washed twice in PBS

and plated into multiple wells of a 24 well-plate in normal growth

medium (DMEM supplemented with 10% FBS, 2 mM glutamine,

100 U penicillin and 0.2 mg/ml streptomycin). Growth medium

was exchanged the next day, and subsequently exchanged every

three to four days until epithelial cultures without Fibroblast

contamination emerged.

Immunofluorescence Staining of Cultured Cells
Cells were plated on glass coverslips and treated for the

indicated times with TGFb. The following steps were all done at

room temperature. After fixation using 4% paraformaldehyde/

PBS for 15 min, cells were permeabilized with 0.5% NP-40 for

5 min. Next, cells were blocked using 3% BSA, 0.01% TritonX-

100 in PBS for 20 min. Then, cells were incubated with the

indicated primary antibodies for 1 h followed by incubation with

the fluorochrome-labeled secondary antibody (Alexa FluorH,

Invitrogen) for 30 min at room temperature. Nuclei were stained

with 6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) for

10 min. The coverslips were mounted (Fluorescent mounting

medium, Dako) on microscope slides and imaged with a conven-

tional immunofluorescence microscope (Leica DMI 4000) or

a confocal microscope (Zeiss LSM 510 Meta). Confocal stacks

were reconstructed with Imaris Software (Bitplane, Switzerland).

Immunoblotting
Cells were lysed in RIPA buffer (150 mM NaCl, 2 mM MgCl,

2 mM CaCl2, 0.5% NaDOC, 1% NP40, 0.1% SDS, 10%

Glycerol, 50 mM Tris pH 8.0) containing 2 mM Na3VO4,

10 mM NaF, 1 mM DTT, and a 1:200 dilution of stock protease

inhibitor cocktail for mammalian cells (Roche). Protein concen-

tration was determined using the BCA assay kit (Pierce). Equal

amounts of protein were diluted in SDS-PAGE loading buffer

(10% glycerol, 2% SDS, 65 mM Tris, 1 mg/100 ml bromophenol

blue, 1% b-mercaptoethanol) and resolved by SDS-PAGE.

Proteins were transferred to polyvinylidene fluoride (PVDF)

membranes (Millipore) by semi-dry transfer, blocked with 5%

skim milk powder in TBS/0.05% Tween 20 and incubated with

the indicated antibodies. HRP conjugated secondary antibodies

were detected by chemiluminescence using a Fusion F67

chemiluminescence reader (Vilber Lourmat, France).

Retroviral Infection
A cDNA encoding EGFP was subcloned from pEGFP-N3

(Clontech) into the retroviral vector pBabe-hygro [24]. The

resulting plasmid pBH-EGFP was transfected into the retroviral

packaging cell line Plat-E (purchased from Cell Biolabs) [25]

using FugeneHD (Roche). One day after transfection, medium
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was exchanged and retroviral supernatant was produced for 2

days. Viral supernatant was filtered through 0.45 mm pores and

8 mg/mL Polybrene was added. Py2T cells were plated into 6-

well plates and were infected with viral supernatant one day

after plating. For infection, 2 mL supernatant was added per

well and plates were spun for 1 hour at 30uC at 10006g and

were subsequently incubated at 37uC with 5% CO2 in a tissue

culture incubator for 2 more hours. Viral supernatant was then

replaced by normal growth medium and one day later, selection

with 500 mg/mL Hygromycin B (Invitrogen) was performed for

5 consecutive days.

Lentiviral Infection
A cDNA encoding a human dominant-negative version of

TGFbRII (K277R) [26] (kindly provided by M. Oft, Targenics

Inc., San Francisco) was subcloned into the lentiviral expression

vector pLentiCMV (a kind gift from O. Pertz, University of Basel).

Lentiviral particles were produced by transfecting HEK293T cells

with the lentiviral expression vector pLentiTBRDN or empty

vector as a control, in combination with the helper vectors

pHDM-HGPM2, pHDM-Tat1b, pRC-CMV-RaII and the enve-

lope encoding vector pVSV using Fugene HD. After two days of

virus production, lentivirus-containing supernatants were har-

vested, filtered (0.45 mm) and added to target cells in the presence

of polybrene (8 mg/ml). Cells were spun for 1 hour at 30uC at

10006g and were subsequently incubated at 37uC with 5% CO2

in a tissue culture incubator for 2 more hours. Viral supernatant

was then replaced by normal growth medium and one day later,

selection with 5 mg/mL Puromycin (Sigma-Aldrich) was per-

formed for 3 consecutive days.

Boyden Chamber Migration and Invasion Assay
Cells pre-treated or not with TGFb were trypsinized, washed

once with PBS, and resuspended in growth medium containing

0.2% FBS and 2 ng/mL TGFb where appropriate. 2.56104 cells

in 500 mL were seeded into cell culture insert chambers

containing 8 mm pores (migration chambers: 353097, BD Falcon;

invasion chambers with ECM coating: 354483, BD Falcon) in

triplicate. Subsequently, the bottoms of chambers were filled with

700 mL of growth medium containing 20% FBS, and cells were

incubated in a tissue culture incubator at 37uC with 5% CO2.

After 24 hours, inserts were fixed with 4% PFA/PBS for 10 min.

Cells that had not crossed the membrane were removed with

a cotton swab, and cells on the bottom of the membrane were

stained with DAPI. Images of five fields per insert were taken

with a Leica DMI 4000 microscope and stained cells were

counted using an ImageJ software plugin developed in-house.

Subsequently, inserts were stained in crystal violet solution

(0.125% crystal violet, 20% MeOH) for 10 minutes, followed by

washing in a large volume of dH2O and drying over night.

Images of crystal violet stained inserts were taken with an

AxioVert microscope (Zeiss, Germany).

Scratch Wound Closure Assay
36105 untreated Py2T cells and 36105 Py2T cells treated with

TGFb for 13 days were seeded into 24-well plates with or without

TGFb. Normal growth medium was replaced by starving medium

containing 2% FBS with or without TGFb on the next day. After

starvation over night, a wound was scratched into confluent

monolayers and plates were transferred to an IncucyteTM live

imaging instrument (Essen BioScience).

3D Matrigel Culture and In-gel Immunofluorescence
Staining

Growth factor-reduced Matrigel (356230, BD) stock was thawed

on ice and diluted to 4 mg/mL protein with ice-cold, serum-free

growth medium. Cells were trypsinized, resuspended in ice-cold

normal growth medium and counted using a CASY cell counter

(Roche, Switzerland). A pellet of 2500 cells was resuspended in

10 mL of pre-diluted Matrigel and transferred to one well of a m-

slide angiogenesis microscopy slide (ibidi, Martinsried, Germany).

After an incubation of 20 min in a tissue culture incubator to allow

solidification of the gel, 50 mL of normal growth medium

containing or not 2 ng/mL TGFb was added to each well.

Growth medium was replenished every third day. After 6 days of

growth, structures were prepared for immunofluorescence analysis

directly in the matrix. Structures were fixed with 4% PFA/PBS for

10 min and washed with 20 mM glycine/PBS for 5 min. After

a second wash with PBS, cells were permeabilized and blocked

with IF buffer (0.2% TritonX-100/0.1% BSA/0.05% Tween20/

PBS) containing 10% goat serum. Samples were incubated with

primary antibodies diluted in IF buffer for 2 hours at room

temperature in a humid chamber. After 2 washes with IF buffer,

secondary antibodies diluted in IF buffer were incubated for 45

minutes, and nuclei were stained with DAPI solution for 20

minutes. After 2 final washes with IF buffer, samples were topped

with fluorescent mounting medium (Dako) and imaged with

a confocal microscope (LSM 510 Meta, Zeiss).

Soft Agar Colony Formation Assay
Cells were seeded into 6-well plates at 16104 cells per well in

0.35% agarose/DMEM complete growth medium onto a base

layer consisting of 0.5% agarose/DMEM complete growth

medium. Growth medium containing 2 ng/mL TGFb or not

was added on top of the agarose layers, and was replaced every

four days. After 10 days, viable colonies were stained with MTT

solution (Sigma-Aldrich) and were counted.

siRNA-mediated Knockdown
To achieve knockdown of Smad4, 10 nM final concentration of

siGENOME smart pool siRNAs (Dharmacon, M-040687-00-

0005) were used. A non-targeting pool was used as a control

(Dharmacon, D-001810-10-20). Two different, custom-designed

siRNAs against RhoA with the following sequences were used at

10 nM final concentration: siRhoA1 gaaggcagagauaugg-

caa(dT)(dT), siRhoA2 ugaagcaggagccgguaaa(dt)(dT). Negative

Universal Control Medium (45-2001, Invitrogen) served as

negative control. Reverse transfection of siRNAs was performed

with Lipofectamine RNAiMax reagent (Invitrogen) according to

the manufacturer’s instructions.

Orthotopic Tumor Cell Transplantation
Cells were trypsinized, washed twice and resuspended in ice-

cold PBS. Eight weeks old female BALB/c nude mice or FVB/N

mice were anaesthetized with isoflurane/oxygen and injected with

16106 Py2T cells in 100 mL PBS into mammary gland number 9.

Tumor volumes were calculated according to the formula

V = 0.5*D*d‘2, where D represents length and d represents width

of tumors measured by a digital caliper. Mice were sacrificed by

CO2 and tumors were isolated and further processed.

Histology and Immunostaining
For immunohistochemistry (IHC) and Haematoxylin & Eosin

(H&E) stainings, tumors were fixed at 4uC in 4% phosphate-

buffered paraformaldehyde (PFA) for 12 hours and then embed-
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ded in paraffin after ethanol/xylene dehydration. H&E staining

was performed as previously described [27,28]. For immunoflu-

orescence analysis of frozen sections, organs were fixed at 4uC in

4% PFA for 2 hours, and cryopreserved for 10 hours in 20%

sucrose in PBS prior to embedding in OCT freezing matrix. For

IHC stainings of PFA-fixed, paraffin-embedded specimens,

antigen epitopes were retrieved by boiling slides in 10 mM Na-

Citrate buffer (pH 6.0) in a PrestigeMedical Z2300 antigen

retriever. Stainings with mouse and rabbit antibodies were

performed using the Dako EnVision plus Kit (K4065) according

to the manufacturer’s recommendations. Cytokeratin 8/18

staining was performed using the Vectastain ABC kit (PK-6100

standard, Vector). Stainings were revealed by incubation with

biotinylated secondary antibodies and ABC Elite detection kit

using AEC substrate (all from Vector Laboratories) according to

the manufacturer’s instructions and counterstained using hema-

toxilin. Cryosections were cut 7 mm thick and dried for 309 prior

to rehydration in PBS. Slides were permeabilized with in PBS/

0.2% TritonX-100 and blocked for 30 min in PBS/5% normal

goat serum and then incubated with the primary antibody in

blocking buffer for 1 hour at room temperature. Immunofluores-

cence (IF) stainings were revealed by incubation with Alexa488 or

Alexa568 labeled secondary antibodies (Molecular Probes) and

nuclei were stained with DAPI (SIGMA). IHC stainings were

evaluated on an AxioVert microscope (Zeiss, Germany) and IF

stainings on a Leica DMI 4000 microscope (Leica Microsystems,

Germany).

Statistical Analysis
Statistical analysis and graphs were generated using the

GraphPad Prism software (GraphPad Software Inc, San Diego,

CA). All statistical analysis was performed by unpaired, two-sided

t-test.

Gene Expression Profiling Data
The raw data of gene expression profiling of Py2T cells in the

absence and presence of TGFb is publicly available at the

ArrayExpress Database (Accession number E-MEXP-3731, avail-

able at http://www.ebi.ac.uk/arrayexpress/).

Ethics Statement
Animal experiments were performed in strict accordance with

the guidelines of the Swiss Federal Veterinary Office (SFVO) and

the regulations of the Cantonal Veterinary Office of Basel-Stadt

(license numbers 1878, 1907, and 1908). During the whole course

of animal experiments, all efforts were made to minimize suffering.

Supporting Information

Figure S1 Canonical TGFb signaling in untreated versus
TGFb-treated Py2T cells. (A) Immunofluorescence staining for

total Smad2/3 (red) and phosphorylated (activated) pSmad3 (green).

Nuclei are visualized by DAPI staining. Scale bar, 20 mm. (B)
Transcriptional Smad activity was determined by a dual luciferase

reporter assay. Cells were transfected with a Smad4 luciferase

reporter containing a Smad-binding element (SBE-luc) or a control

plasmid lacking the SBE (luc), along with Renilla luciferase for

normalization. Relative luminescence units (RLU) are expressed as

mean +/2 S.E.M from 2 independent experiments.

(TIF)

Figure S2 Py2T tumors are characterized by a high
immune cell infiltration. Immunofluorescence staining of

a Py2T tumor for the leukocyte marker CD45 and the

macrophage marker F4/80. Images show a central region of

a tumor grown in nude mice as described in Figure 6. Scale bar,

50 mm.

(TIF)

Figure S3 Expression of a dominant-negative TGFb
receptor prevents EMT in vitro and does not signifi-
cantly affect tumor growth. (A) Py2T cells stably expressing

a dominant-negative TGFbRII (Py2T TBRDN) or cells trans-

duced with empty vector control were treated with TGFb (2 ng/

mL). To assess activation of canonical TGFb signaling and nuclear

accumulation of Smad proteins, cells were stained with an

antibody against Smad2/3. To evaluate the breakdown of cell

junctions downstream of TGFb signaling, cells were stained with

E-cadherin (adherens junctions) and ZO-1 (tight junctions). Scale

bars, 50 mm. (B) Tumor growth of Py2T TBRDN and control

cells (Experiment is described in Figure 6). n = 10 mice per group.

Data is presented as mean 6 S.E.M. Statistical values are

calculated by using an unpaired, two-tailed t-test. A p-value .0.05

was considered not significant.

(TIF)

Figure S4 Soft agar colony formation of epithelial and
mesenchymal Py2T cells. (A) Anchorage-independent growth

of epithelial Py2T and mesenchymal Py2T LT cells. Cells were

embedded in soft agar and supplemented with growth medium

containing TGFb (Py2T LT) or not (Py2T) and were allowed to

grow for 10 days. (B) Quantification of formed colonies. Data is

presented as mean 6 S.E.M. Statistical values are calculated by

using an unpaired, two-tailed t-test. ***p-value ,0.001.

(TIF)

Movie S1 Movie corresponding to Figure 4B: scratch
wound closure of untreated Py2T cells for 13 days.
(MOV)

Movie S2 Movie corresponding to Figure 4B: scratch
wound closure of Py2T cells treated with TGFb for 13
days.
(MOV)

Movie S3 Movie corresponding to Figure 4C: Live
imaging of Py2T cells grown on 2D tissue culture plastic.
(MOV)

Movie S4 Movie corresponding to Figure 4C: Live
imaging of Py2T LT cells grown on 2D tissue culture
plastic.
(MOV)

Movie S5 Movie corresponding to Figure 4D: Animation
of Py2T cells grown in extracellular matrix and stained
for either E-cadherin (red) and ZO-1 (green) or vimentin
(red) and fibronectin (green), respectively.
(MOV)

Movie S6 Movie corresponding to Figure 4D: Animation
of Py2T LT cells grown in extracellular matrix and
stained for either E-cadherin (red) and ZO-1 (green) or
vimentin (red) and fibronectin (green), respectively.
(MOV)

Table S1 List of genes that are significantly differen-
tially expressed by at least 2 fold between Py2T cells
(Py2T) and Py2T cells treated with TGFb for 20 days
(Py2T LT). Data is derived from two independent experiments.

(XLS)

Table S2 Sequences of RT-qPCR primers used.
(DOC)
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